
WCSLIB

Generated by Doxygen 1.9.3

i

1 WCSLIB 7.11 and PGSBOX 7.11 1

1.1 Contents . 1

1.2 Copyright . 1

2 Introduction 2

3 FITS-WCS and related software 2

4 Overview of WCSLIB 5

5 WCSLIB data structures 7

6 Memory management 8

7 Diagnostic output 8

8 Vector API 9

8.1 Vector lengths . 10

8.2 Vector strides . 11

9 Thread-safety 12

10 Limits 12

11 Example code, testing and verification 13

12 WCSLIB Fortran wrappers 14

13 PGSBOX 16

14 WCSLIB version numbers 17

15 Deprecated List 18

16 Data Structure Index 20

16.1 Data Structures . 20

17 File Index 21

17.1 File List . 21

18 Data Structure Documentation 22

18.1 auxprm Struct Reference . 22

18.1.1 Detailed Description . 22

18.1.2 Field Documentation . 22

18.2 celprm Struct Reference . 23

18.2.1 Detailed Description . 23

18.2.2 Field Documentation . 24

18.3 disprm Struct Reference . 26

18.3.1 Detailed Description . 26

Generated by Doxygen

ii

18.3.2 Field Documentation . 27

18.4 dpkey Struct Reference . 30

18.4.1 Detailed Description . 30

18.4.2 Field Documentation . 30

18.5 fitskey Struct Reference . 31

18.5.1 Detailed Description . 32

18.5.2 Field Documentation . 32

18.6 fitskeyid Struct Reference . 35

18.6.1 Detailed Description . 35

18.6.2 Field Documentation . 35

18.7 linprm Struct Reference . 36

18.7.1 Detailed Description . 36

18.7.2 Field Documentation . 36

18.8 prjprm Struct Reference . 40

18.8.1 Detailed Description . 40

18.8.2 Field Documentation . 40

18.9 pscard Struct Reference . 44

18.9.1 Detailed Description . 44

18.9.2 Field Documentation . 44

18.10 pvcard Struct Reference . 45

18.10.1 Detailed Description . 45

18.10.2 Field Documentation . 45

18.11 spcprm Struct Reference . 46

18.11.1 Detailed Description . 46

18.11.2 Field Documentation . 46

18.12 spxprm Struct Reference . 49

18.12.1 Detailed Description . 50

18.12.2 Field Documentation . 50

18.13 tabprm Struct Reference . 54

18.13.1 Detailed Description . 54

18.13.2 Field Documentation . 55

18.14 wcserr Struct Reference . 58

18.14.1 Detailed Description . 58

18.14.2 Field Documentation . 58

18.15 wcsprm Struct Reference . 59

18.15.1 Detailed Description . 61

18.15.2 Field Documentation . 61

18.16 wtbarr Struct Reference . 76

18.16.1 Detailed Description . 77

18.16.2 Field Documentation . 77

19 File Documentation 78

Generated by Doxygen

iii

19.1 cel.h File Reference . 78

19.1.1 Detailed Description . 80

19.1.2 Macro Definition Documentation . 80

19.1.3 Enumeration Type Documentation . 81

19.1.4 Function Documentation . 81

19.1.5 Variable Documentation . 86

19.2 cel.h . 86

19.3 dis.h File Reference . 91

19.3.1 Detailed Description . 93

19.3.2 Macro Definition Documentation . 97

19.3.3 Enumeration Type Documentation . 97

19.3.4 Function Documentation . 97

19.3.5 Variable Documentation . 106

19.4 dis.h . 106

19.5 fitshdr.h File Reference . 119

19.5.1 Detailed Description . 121

19.5.2 Macro Definition Documentation . 121

19.5.3 Typedef Documentation . 122

19.5.4 Enumeration Type Documentation . 122

19.5.5 Function Documentation . 122

19.5.6 Variable Documentation . 124

19.6 fitshdr.h . 124

19.7 getwcstab.h File Reference . 129

19.7.1 Detailed Description . 130

19.7.2 Function Documentation . 130

19.8 getwcstab.h . 131

19.9 lin.h File Reference . 133

19.9.1 Detailed Description . 135

19.9.2 Macro Definition Documentation . 135

19.9.3 Enumeration Type Documentation . 136

19.9.4 Function Documentation . 137

19.9.5 Variable Documentation . 145

19.10 lin.h . 145

19.11 log.h File Reference . 154

19.11.1 Detailed Description . 155

19.11.2 Enumeration Type Documentation . 155

19.11.3 Function Documentation . 155

19.11.4 Variable Documentation . 157

19.12 log.h . 157

19.13 prj.h File Reference . 159

19.13.1 Detailed Description . 164

19.13.2 Macro Definition Documentation . 166

Generated by Doxygen

iv

19.13.3 Enumeration Type Documentation . 167

19.13.4 Function Documentation . 167

19.13.5 Variable Documentation . 184

19.14 prj.h . 185

19.15 spc.h File Reference . 195

19.15.1 Detailed Description . 197

19.15.2 Macro Definition Documentation . 199

19.15.3 Enumeration Type Documentation . 200

19.15.4 Function Documentation . 200

19.15.5 Variable Documentation . 210

19.16 spc.h . 211

19.17 sph.h File Reference . 222

19.17.1 Detailed Description . 222

19.17.2 Function Documentation . 222

19.18 sph.h . 225

19.19 spx.h File Reference . 228

19.19.1 Detailed Description . 230

19.19.2 Macro Definition Documentation . 232

19.19.3 Enumeration Type Documentation . 232

19.19.4 Function Documentation . 233

19.19.5 Variable Documentation . 239

19.20 spx.h . 239

19.21 tab.h File Reference . 246

19.21.1 Detailed Description . 247

19.21.2 Macro Definition Documentation . 248

19.21.3 Enumeration Type Documentation . 248

19.21.4 Function Documentation . 249

19.21.5 Variable Documentation . 256

19.22 tab.h . 256

19.23 wcs.h File Reference . 264

19.23.1 Detailed Description . 266

19.23.2 Macro Definition Documentation . 267

19.23.3 Enumeration Type Documentation . 270

19.23.4 Function Documentation . 271

19.23.5 Variable Documentation . 286

19.24 wcs.h . 286

19.25 wcserr.h File Reference . 312

19.25.1 Detailed Description . 313

19.25.2 Macro Definition Documentation . 313

19.25.3 Function Documentation . 313

19.26 wcserr.h . 317

19.27 wcsfix.h File Reference . 320

Generated by Doxygen

v

19.27.1 Detailed Description . 322

19.27.2 Macro Definition Documentation . 323

19.27.3 Enumeration Type Documentation . 324

19.27.4 Function Documentation . 325

19.27.5 Variable Documentation . 332

19.28 wcsfix.h . 333

19.29 wcshdr.h File Reference . 340

19.29.1 Detailed Description . 343

19.29.2 Macro Definition Documentation . 344

19.29.3 Enumeration Type Documentation . 348

19.29.4 Function Documentation . 348

19.29.5 Variable Documentation . 366

19.30 wcshdr.h . 366

19.31 wcsmath.h File Reference . 382

19.31.1 Detailed Description . 382

19.31.2 Macro Definition Documentation . 382

19.32 wcsmath.h . 383

19.33 wcsprintf.h File Reference . 384

19.33.1 Detailed Description . 385

19.33.2 Macro Definition Documentation . 385

19.33.3 Function Documentation . 385

19.34 wcsprintf.h . 387

19.35 wcstrig.h File Reference . 388

19.35.1 Detailed Description . 389

19.35.2 Macro Definition Documentation . 389

19.35.3 Function Documentation . 390

19.36 wcstrig.h . 392

19.37 wcsunits.h File Reference . 395

19.37.1 Detailed Description . 397

19.37.2 Macro Definition Documentation . 397

19.37.3 Enumeration Type Documentation . 399

19.37.4 Function Documentation . 399

19.37.5 Variable Documentation . 404

19.38 wcsunits.h . 405

19.39 wcsutil.h File Reference . 409

19.39.1 Detailed Description . 410

19.39.2 Function Documentation . 410

19.40 wcsutil.h . 419

19.41 wtbarr.h File Reference . 424

19.41.1 Detailed Description . 425

19.42 wtbarr.h . 425

19.43 wcslib.h File Reference . 426

Generated by Doxygen

1 WCSLIB 7.11 and PGSBOX 7.11 1

19.43.1 Detailed Description . 427

19.44 wcslib.h . 427

Index 429

1 WCSLIB 7.11 and PGSBOX 7.11

1.1 Contents

• Introduction

• FITS-WCS and related software

• Overview of WCSLIB

• WCSLIB data structures

• Memory management

• Diagnostic output

• Vector API

• Thread-safety

• Limits

• Example code, testing and verification

• WCSLIB Fortran wrappers

• PGSBOX

• WCSLIB version numbers

1.2 Copyright

WCSLIB 7.11 - an implementation of the FITS WCS standard.
Copyright (C) 1995-2022, Mark Calabretta

WCSLIB is free software: you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.

WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details.

You should have received a copy of the GNU Lesser General Public License
along with WCSLIB. If not, see http://www.gnu.org/licenses.

Direct correspondence concerning WCSLIB to mark@calabretta.id.au

Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
http://www.atnf.csiro.au/people/Mark.Calabretta
$Id: mainpage.dox,v 7.11 2022/04/26 06:13:52 mcalabre Exp $

Generated by Doxygen

2

2 Introduction

WCSLIB is a C library, supplied with a full set of Fortran wrappers, that implements the "World Coordinate System"
(WCS) standard in FITS (Flexible Image Transport System). It also includes a PGPLOT-based routine, PGSBOX,
for drawing general curvilinear coordinate graticules, and also a number of utility programs.

The FITS data format is widely used within the international astronomical community, from the radio to gamma-ray
regimes, for data interchange and archive, and also increasingly as an online format. It is described in

• "Definition of The Flexible Image Transport System (FITS)", FITS Standard, Version 3.0, 2008 July 10.

available from the FITS Support Office at http://fits.gsfc.nasa.gov.

The FITS WCS standard is described in

• "Representations of world coordinates in FITS" (Paper I), Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395,
1061-1075

• "Representations of celestial coordinates in FITS" (Paper II), Calabretta, M.R., & Greisen, E.W. 2002, A&A,
395, 1077-1122

• "Representations of spectral coordinates in FITS" (Paper III), Greisen, E.W., Calabretta, M.R., Valdes, F.G.,
& Allen, S.L. 2006, A&A, 446, 747

• "Representations of distortions in FITS world coordinate systems", Calabretta, M.R. et al. (WCS Pa-
per IV, draft dated 2004/04/22), available from http://www.atnf.csiro.au/people/Mark.←↩

Calabretta

• "Mapping on the HEALPix Grid" (HPX, Paper V), Calabretta, M.R., & Roukema, B.F. 2007, MNRAS, 381, 865

• "Representing the 'Butterfly' Projection in FITS: Projection Code XPH" (XPH, Paper VI), Calabretta, M.R., &
Lowe, S.R. 2013, PASA, 30, e050

• "Representations of time coordinates in FITS: Time and relative dimension in space" (Paper VII), Rots, A.H.,
Bunclark, P.S., Calabretta, M.R., Allen, S.L., Manchester R.N., & Thompson, W.T. 2015, A&A, 574, A36

Reprints of all published papers may be obtained from NASA's Astrophysics Data System (ADS), http←↩

://adsabs.harvard.edu/. Reprints of Papers I, II (including HPX & XPH), and III are available from
http://www.atnf.csiro.au/people/Mark.Calabretta. This site also includes errata and supple-
mentary material for Papers I, II and III.

Additional information on all aspects of FITS and its various software implementations may be found at the FITS
Support Office http://fits.gsfc.nasa.gov.

3 FITS-WCS and related software

Several implementations of the FITS WCS standards are available:

• The WCSLIB software distribution (i.e. this library) may be obtained from http://www.atnf.←↩

csiro.au/people/Mark.Calabretta/WCS/. The remainder of this manual describes its use.

WCSLIB is included in the Astrophysics Source Code Library (ASCL https://ascl.net) as record
ascl:1108.003 (https://ascl.net/1108.003), and in the Astrophysics Data System (ADS
https://ui.adsabs.harvard.edu) with bibcode 2011ascl.soft08003C (https://ui.←↩

adsabs.harvard.edu/abs/2011ascl.soft08003C).

Generated by Doxygen

http://fits.gsfc.nasa.gov
http://www.atnf.csiro.au/people/Mark.Calabretta
http://www.atnf.csiro.au/people/Mark.Calabretta
http://adsabs.harvard.edu/
http://adsabs.harvard.edu/
http://www.atnf.csiro.au/people/Mark.Calabretta
http://www.atnf.csiro.au/people/Mark.Calabretta
http://fits.gsfc.nasa.gov
http://www.atnf.csiro.au/people/Mark.Calabretta/WCS/
http://www.atnf.csiro.au/people/Mark.Calabretta/WCS/
https://ascl.net
https://ascl.net/1108.003
https://ui.adsabs.harvard.edu
https://ui.adsabs.harvard.edu/abs/2011ascl.soft08003C
https://ui.adsabs.harvard.edu/abs/2011ascl.soft08003C

3 FITS-WCS and related software 3

• wcstools, developed by Jessica Mink, may be obtained from http://tdc-www.harvard.←↩

edu/software/wcstools/.

ASCL: https://ascl.net/1109.015
ADS: https://ui.adsabs.harvard.edu/abs/2011ascl.soft09015M

• AST, developed by David Berry within the U.K. Starlink project, http://www.starlink.←↩

ac.uk/ast/ and now supported by JAC, Hawaii http://starlink.jach.hawaii.←↩

edu/starlink/. A useful utility for experimenting with FITS WCS descriptions (similar to wcsgrid)
is also provided; go to the above site and then look at the section entitled "FITS-WCS Plotting Demo".

ASCL: https://ascl.net/1404.016
ADS: https://ui.adsabs.harvard.edu/abs/2014ascl.soft04016B

• SolarSoft, http://sohowww.nascom.nasa.gov/solarsoft/, primarily an IDL-based
system for analysis of Solar physics data, contains a module written by Bill Thompson oriented
towards Solar coordinate systems, including spectral, http://sohowww.nascom.nasa.←↩

gov/solarsoft/gen/idl/wcs/.

ASCL: https://ascl.net/1208.013
ADS: https://ui.adsabs.harvard.edu/abs/2012ascl.soft08013F

• The IDL Astronomy Library, http://idlastro.gsfc.nasa.gov/, contains an independent
implementation of FITS-WCS in IDL by Rick Balsano, Wayne Landsman and others. See http←↩

://idlastro.gsfc.nasa.gov/contents.html#C5.

Python wrappers to WCSLIB are provided by

• The Kapteyn Package http://www.astro.rug.nl/software/kapteyn/ by Hans Terlouw and
Martin Vogelaar.

ASCL: https://ascl.net/1611.010
ADS: https://ui.adsabs.harvard.edu/abs/2016ascl.soft11010T

• pywcs, http://stsdas.stsci.edu/astrolib/pywcs/ by Michael Droettboom, which is dis-
tributed within Astropy, https://www.astropy.org.

ASCL (Astropy): https://ascl.net/1304.002
ADS (Astropy): https://ui.adsabs.harvard.edu/abs/2013ascl.soft04002G

Java is supported via

• CADC/CCDA Java Native Interface (JNI) bindings to WCSLIB 4.2 http://www.cadc-ccda.←↩

hia-iha.nrc-cnrc.gc.ca/cadc/source/ by Patrick Dowler.

and Javascript by

• wcsjs, https://github.com/astrojs/wcsjs, a port created by Amit Kapadia using Emscripten,
an LLVM to Javascript compiler. wcsjs provides a code base for running WCSLIB on web browsers.

Julia wrappers (https://en.wikipedia.org/wiki/Julia_(programming_language)) are pro-
vided by

• WCS.jl, https://github.com/JuliaAstro/WCS.jl, a component of Julia Astro, https←↩

://github.com/JuliaAstro.

Generated by Doxygen

http://tdc-www.harvard.edu/software/wcstools/
http://tdc-www.harvard.edu/software/wcstools/
https://ascl.net/1109.015
https://ui.adsabs.harvard.edu/abs/2011ascl.soft09015M
http://www.starlink.ac.uk/ast/
http://www.starlink.ac.uk/ast/
http://starlink.jach.hawaii.edu/starlink/
http://starlink.jach.hawaii.edu/starlink/
https://ascl.net/1404.016
https://ui.adsabs.harvard.edu/abs/2014ascl.soft04016B
http://sohowww.nascom.nasa.gov/solarsoft/
http://sohowww.nascom.nasa.gov/solarsoft/gen/idl/wcs/
http://sohowww.nascom.nasa.gov/solarsoft/gen/idl/wcs/
https://ascl.net/1208.013
https://ui.adsabs.harvard.edu/abs/2012ascl.soft08013F
http://idlastro.gsfc.nasa.gov/
http://idlastro.gsfc.nasa.gov/contents.html#C5
http://idlastro.gsfc.nasa.gov/contents.html#C5
http://www.astro.rug.nl/software/kapteyn/
https://ascl.net/1611.010
https://ui.adsabs.harvard.edu/abs/2016ascl.soft11010T
http://stsdas.stsci.edu/astrolib/pywcs/
https://www.astropy.org
https://ascl.net/1304.002
https://ui.adsabs.harvard.edu/abs/2013ascl.soft04002G
http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/cadc/source/
http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/cadc/source/
https://github.com/astrojs/wcsjs
https://en.wikipedia.org/wiki/Julia_(programming_language)
https://github.com/JuliaAstro/WCS.jl
https://github.com/JuliaAstro
https://github.com/JuliaAstro

4

An interface for the R programming language (https://en.wikipedia.org/wiki/R_(programming←↩

_language)) is available at

• Rwcs, https://github.com/asgr/Rwcs/ by Aaron Robotham.

Recommended WCS-aware FITS image viewers:

• Bill Joye's DS9, http://hea-www.harvard.edu/RD/ds9/, and

ASCL: https://ascl.net/0003.002
ADS: https://ui.adsabs.harvard.edu/abs/2000ascl.soft03002S

• Fv by Pan Chai, http://heasarc.gsfc.nasa.gov/ftools/fv/.

ASCL: https://ascl.net/1205.005
ADS: https://ui.adsabs.harvard.edu/abs/2012ascl.soft05005P

both handle 2-D images.

Currently (2013/01/29) I know of no image viewers that handle 1-D spectra properly nor multi-dimensional data, not
even multi-dimensional data with only two non-degenerate image axes (please inform me if you know otherwise).

Pre-built WCSLIB packages are available, generally a little behind the main release (this list will probably be stale
by the time you read it, best do a web search):

• archlinux (tgz), https://www.archlinux.org/packages/extra/i686/wcslib.

• Debian (deb), http://packages.debian.org/search?keywords=wcslib.

• Fedora (RPM), https://admin.fedoraproject.org/pkgdb/package/wcslib.

• Fresh Ports (RPM), http://www.freshports.org/astro/wcslib.

• Gentoo, http://packages.gentoo.org/package/sci-astronomy/wcslib.

• Homebrew (MacOSX), https://github.com/Homebrew/homebrew-science.

• RPM (general) http://rpmfind.net/linux/rpm2html/search.php?query=wcslib,
http://www.rpmseek.com/rpm-pl/wcslib.html.

• Ubuntu (deb), https://launchpad.net/ubuntu/+source/wcslib.

Bill Pence's general FITS IO library, CFITSIO is available from http://heasarc.gsfc.nasa.←↩

gov/fitsio/. It is used optionally by some of the high-level WCSLIB test programs and is required by
two of the utility programs.

ASCL: https://ascl.net/1010.001
ADS: https://ui.adsabs.harvard.edu/abs/2010ascl.soft10001P

PGPLOT, Tim Pearson's Fortran plotting package on which PGSBOX is based, also used by some of the WCSLIB
self-test suite and a utility program, is available from http://astro.caltech.edu/∼tjp/pgplot/.

ASCL: https://ascl.net/1103.002
ADS: https://ui.adsabs.harvard.edu/abs/2011ascl.soft03002P

Generated by Doxygen

https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/R_(programming_language)
https://github.com/asgr/Rwcs/
http://hea-www.harvard.edu/RD/ds9/
https://ascl.net/0003.002
https://ui.adsabs.harvard.edu/abs/2000ascl.soft03002S
http://heasarc.gsfc.nasa.gov/ftools/fv/
https://ascl.net/1205.005
https://ui.adsabs.harvard.edu/abs/2012ascl.soft05005P
https://www.archlinux.org/packages/extra/i686/wcslib
http://packages.debian.org/search?keywords=wcslib
https://admin.fedoraproject.org/pkgdb/package/wcslib
http://www.freshports.org/astro/wcslib
http://packages.gentoo.org/package/sci-astronomy/wcslib
https://github.com/Homebrew/homebrew-science
http://rpmfind.net/linux/rpm2html/search.php?query=wcslib
http://www.rpmseek.com/rpm-pl/wcslib.html
http://www.rpmseek.com/rpm-pl/wcslib.html
https://launchpad.net/ubuntu/+source/wcslib
http://heasarc.gsfc.nasa.gov/fitsio/
http://heasarc.gsfc.nasa.gov/fitsio/
https://ascl.net/1010.001
https://ui.adsabs.harvard.edu/abs/2010ascl.soft10001P
http://astro.caltech.edu/~tjp/pgplot/
https://ascl.net/1103.002
https://ui.adsabs.harvard.edu/abs/2011ascl.soft03002P

4 Overview of WCSLIB 5

4 Overview of WCSLIB

WCSLIB is documented in the prologues of its header files which provide a detailed description of the purpose of
each function and its interface (this material is, of course, used to generate the doxygen manual). Here we explain
how the library as a whole is structured. We will normally refer to WCSLIB 'routines', meaning C functions or Fortran
'subroutines', though the latter are actually wrappers implemented in C.

WCSLIB is layered software, each layer depends only on those beneath; understanding WCSLIB first means un-
derstanding its stratigraphy. There are essentially three levels, though some intermediate levels exist within these:

• The top layer consists of routines that provide the connection between FITS files and the high-level WCSLIB
data structures, the main function being to parse a FITS header, extract WCS information, and copy it into
a wcsprm struct. The lexical parsers among these are implemented as Flex descriptions (source files with .l
suffix) and the C code generated from these by Flex is included in the source distribution.

– wcshdr.h,c – Routines for constructing wcsprm data structures from information in a FITS header and
conversely for writing a wcsprm struct out as a FITS header.

– wcspih.l – Flex implementation of wcspih(), a lexical parser for WCS "keyrecords" in an image header.
A keyrecord (formerly called "card image") consists of a keyword, its value - the keyvalue - and an
optional comment, the keycomment.

– wcsbth.l – Flex implementation of wcsbth() which parses binary table image array and pixel list headers
in addition to image array headers.

– getwcstab.h,c – Implementation of a -TAB binary table reader in CFITSIO.

A generic FITS header parser is also provided to handle non-WCS keyrecords that are ignored by wcspih():

– fitshdr.h,l – Generic FITS header parser (not WCS-specific).

The philosophy adopted for dealing with non-standard WCS usage is to translate it at this level so that the
middle- and low-level routines need only deal with standard constructs:

– wcsfix.h,c – Translator for non-standard FITS WCS constructs (uses wcsutrne()).

– wcsutrn.l – Lexical translator for non-standard units specifications.

As a concrete example, within this layer the CTYPEia keyvalues would be extracted from a FITS header and
copied into the ctype[] array within a wcsprm struct. None of the header keyrecords are interpreted.

• The middle layer analyses the WCS information obtained from the FITS header by the top-level routines,
identifying the separate steps of the WCS algorithm chain for each of the coordinate axes in the image. It
constructs the various data structures on which the low-level routines are based and invokes them in the
correct sequence. Thus the wcsprm struct is essentially the glue that binds together the low-level routines
into a complete coordinate description.

– wcs.h,c – Driver routines for the low-level routines.

– wcsunits.h,c – Unit conversions (uses wcsulexe()).

– wcsulex.l – Lexical parser for units specifications.

To continue the above example, within this layer the ctype[] keyvalues in a wcsprm struct are analysed to
determine the nature of the coordinate axes in the image.

• Applications programmers who use the top- and middle-level routines generally need know nothing about
the low-level routines. These are essentially mathematical in nature and largely independent of FITS itself.
The mathematical formulae and algorithms cited in the WCS Papers, for example the spherical projection
equations of Paper II and the lookup-table methods of Paper III, are implemented by the routines in this layer,
some of which serve to aggregate others:

Generated by Doxygen

6

– cel.h,c – Celestial coordinate transformations, combines prj.h,c and sph.h,c.

– spc.h,c – Spectral coordinate transformations, combines transformations from spx.h,c.

The remainder of the routines in this level are independent of everything other than the grass-roots mathe-
matical functions:

– lin.h,c – Linear transformation matrix.

– dis.h,c – Distortion functions.

– log.h,c – Logarithmic coordinates.

– prj.h,c – Spherical projection equations.

– sph.h,c – Spherical coordinate transformations.

– spx.h,c – Basic spectral transformations.

– tab.h,c – Coordinate lookup tables.

As the routines within this layer are quite generic, some, principally the implementation of the spherical pro-
jection equations, have been used in other packages (AST, wcstools) that provide their own implementations
of the functionality of the top and middle-level routines.

• At the grass-roots level there are a number of mathematical and utility routines.

When dealing with celestial coordinate systems it is often desirable to use an angular measure that provides
an exact representation of the latitude of the north or south pole. The WCSLIB routines use the following
trigonometric functions that take or return angles in degrees:

– cosd(), sind(), sincosd(), tand(), acosd(), asind(), atand(), atan2d()

These "trigd" routines are expected to handle angles that are a multiple of 90◦ returning an exact result.
Some C implementations provide these as part of a system library and in such cases it may (or may not!) be
preferable to use them. wcstrig.c provides wrappers on the standard trig functions based on radian measure,
adding tests for multiples of 90◦.

However, wcstrig.h also provides the choice of using preprocessor macro implementations of the trigd
functions that don't test for multiples of 90◦ (compile with -DWCSTRIG_MACRO). These are typically 20%
faster but may lead to problems near the poles.

– wcsmath.h – Defines mathematical and other constants.

– wcstrig.h,c – Various implementations of trigd functions.

– wcsutil.h,c – Simple utility functions for string manipulation, etc. used by WCSLIB.

Complementary to the C library, a set of wrappers are provided that allow all WCSLIB C functions to be called by
Fortran programs, see below.

Plotting of coordinate graticules is one of the more important requirements of a world coordinate system. WCSLIB
provides a PGPLOT-based subroutine, PGSBOX (Fortran), which handles general curvilinear coordinates via a
user-supplied function - PGWCSL provides the interface to WCSLIB. A C wrapper, cpgsbox(), is also provided, see
below.

Several utility programs are distributed with WCSLIB:

• wcsgrid extracts the WCS keywords for an image from the specified FITS file and uses cpgsbox() to plot a
2-D coordinate graticule for it. It requires WCSLIB, PGSBOX and CFITSIO.

• wcsware extracts the WCS keywords for an image from the specified FITS file and constructs wcsprm structs
for each coordinate representation found. The structs may then be printed or used to transform pixel coordi-
nates to world coordinates. It requires WCSLIB and CFITSIO.

Generated by Doxygen

5 WCSLIB data structures 7

• HPXcvt reorganises HEALPix data into a 2-D FITS image with HPX coordinate system. The input data may
be stored in a FITS file as a primary image or image extension, or as a binary table extension. Both NESTED
and RING pixel indices are supported. It uses CFITSIO.

• fitshdr lists headers from a FITS file specified on the command line, or else on stdin, printing them as 80-
character keyrecords without trailing blanks. It is independent of WCSLIB.

5 WCSLIB data structures

The WCSLIB routines are based on data structures specific to them: wcsprm for the wcs.h,c routines, celprm for
cel.h,c, and likewise spcprm, linprm, prjprm, tabprm, and disprm, with struct definitions contained in the corre-
sponding header files: wcs.h, cel.h, etc. The structs store the parameters that define a coordinate transformation
and also intermediate values derived from those parameters. As a high-level object, the wcsprm struct contains
linprm, tabprm, spcprm, and celprm structs, and in turn the linprm struct contains disprm structs, and the celprm
struct contains a prjprm struct. Hence the wcsprm struct contains everything needed for a complete coordinate
description.

Applications programmers who use the top- and middle-level routines generally only need to pass wcsprm structs
from one routine that fills them to another that uses them. However, since these structs are fundamental to WCSLIB
it is worthwhile knowing something about the way they work.

Three basic operations apply to all WCSLIB structs:

• Initialize. Each struct has a specific initialization routine, e.g. wcsinit(), celini(), spcini(), etc. These allocate
memory (if required) and set all struct members to default values.

• Fill in the required values. Each struct has members whose values must be provided. For example, for
wcsprm these values correspond to FITS WCS header keyvalues as are provided by the top-level header
parsing routine, wcspih().

• Compute intermediate values. Specific setup routines, e.g. wcsset(), celset(), spcset(), etc., compute inter-
mediate values from the values provided. In particular, wcsset() analyses the FITS WCS keyvalues provided,
fills the required values in the lower-level structs contained in wcsprm, and invokes the setup routine for each
of them.

Each struct contains a flag member that records its setup state. This is cleared by the initialization routine and
checked by the routines that use the struct; they will invoke the setup routine automatically if necessary, hence it
need not be invoked specifically by the application programmer. However, if any of the required values in a struct
are changed then either the setup routine must be invoked on it, or else the flag must be zeroed to signal that the
struct needs to be reset.

The initialization routine may be invoked repeatedly on a struct if it is desired to reuse it. However, the flag member
of structs that contain allocated memory (wcsprm, linprm, tabprm, and disprm) must be set to -1 before the first
initialization to initialize memory management, but not subsequently or else memory leaks will result.

Each struct has one or more service routines: to do deep copies from one to another, to print its contents, and to
free allocated memory. Refer to the header files for a detailed description.

Generated by Doxygen

8

6 Memory management

The initialization routines for certain of the WCSLIB data structures allocate memory for some of their members:

• wcsinit() optionally allocates memory for the crpix, pc, cdelt, crval, cunit, ctype, pv, ps, cd, crota, colax,
cname, crder, and csyer arrays in the wcsprm struct (using lininit() for certain of these). Note that wcsinit()
does not allocate memory for the tab array - refer to the usage notes for wcstab() in wcshdr.h. If the pc matrix
is not unity, wcsset() (via linset()) also allocates memory for the piximg and imgpix arrays.

• lininit(): optionally allocates memory for the crpix, pc, and cdelt arrays in the linprm struct. If the pc matrix is
not unity, linset() also allocates memory for the piximg and imgpix arrays. Typically these would be used by
wcsinit() and wcsset().

• tabini(): optionally allocates memory for the K, map, crval, index, and coord arrays (including the arrays
referenced by index[]) in the tabprm struct. tabmem() takes control of any of these arrays that may have been
allocated by the user, specifically in that tabfree() will then free it. tabset() also allocates memory for the
sense, p0, delta and extrema arrays.

• disinit(): optionally allocates memory for the dtype, dp, and maxdis arrays. disset() also allocates memory for
a number of arrays that hold distortion parmeters and intermediate values: axmap, Nhat, offset, scale, iparm,
and dparm, and also several private work arrays: disp2x, disx2p, and tmpmem.

The caller may load data into these arrays but must not modify the struct members (i.e. the pointers) themselves or
else memory leaks will result.

wcsinit() maintains a record of memory it has allocated and this is used by wcsfree() which wcsinit() uses to free
any memory that it may have allocated on a previous invokation. Thus it is not necessary for the caller to invoke
wcsfree() separately if wcsinit() is invoked repeatedly on the same wcsprm struct. Likewise, wcsset() deallocates
memory that it may have allocated on a previous invokation. The same comments apply to lininit(), linfree(), and
linset(), to tabini(), tabfree(), and tabset(), and to disinit(), disfree() and disset().

A memory leak will result if a wcsprm, linprm, tabprm, or disprm struct goes out of scope before the memory has
been free'd, either by the relevant routine, wcsfree(), linfree(), tabfree(), or disfree() or otherwise. Likewise, if one
of these structs itself has been malloc'd and the allocated memory is not free'd when the memory for the struct is
free'd. A leak may also arise if the caller interferes with the array pointers in the "private" part of these structs.

Beware of making a shallow copy of a wcsprm, linprm, tabprm, or disprm struct by assignment; any changes made
to allocated memory in one would be reflected in the other, and if the memory allocated for one was free'd the other
would reference unallocated memory. Use the relevant routine instead to make a deep copy: wcssub(), lincpy(),
tabcpy(), or discpy().

7 Diagnostic output

All WCSLIB functions return a status value, each of which is associated with a fixed error message which may be
used for diagnostic output. For example

int status;
struct wcsprm wcs;

...

if ((status = wcsset(&wcs)) {
fprintf(stderr, "ERROR %d from wcsset(): %s.\n", status, wcs_errmsg[status]);
return status;

}

Generated by Doxygen

8 Vector API 9

This might produce output like

ERROR 5 from wcsset(): Invalid parameter value.

The error messages are provided as global variables with names of the form cel_errmsg, prj_errmsg, etc. by
including the relevant header file.

As of version 4.8, courtesy of Michael Droettboom (pywcs), WCSLIB has a second error messaging system which
provides more detailed information about errors, including the function, source file, and line number where the error
occurred. For example,

struct wcsprm wcs;

/* Enable wcserr and send messages to stderr. */
wcserr_enable(1);
wcsprintf_set(stderr);

...

if (wcsset(&wcs) {
wcsperr(&wcs);
return wcs.err->status;

}

In this example, if an error was generated in one of the prjset() functions, wcsperr() would print an error traceback
starting with wcsset(), then celset(), and finally the particular projection-setting function that generated the error. For
each of them it would print the status return value, function name, source file, line number, and an error message
which may be more specific and informative than the general error messages reported in the first example. For
example, in response to a deliberately generated error, the twcs test program, which tests wcserr among other
things, produces a traceback similar to this:

ERROR 5 in wcsset() at line 1564 of file wcs.c:
Invalid parameter value.

ERROR 2 in celset() at line 196 of file cel.c:
Invalid projection parameters.

ERROR 2 in bonset() at line 5727 of file prj.c:
Invalid parameters for Bonne’s projection.

Each of the structs in WCSLIB includes a pointer, called err, to a wcserr struct. When an error occurs, a struct is
allocated and error information stored in it. The wcserr pointers and the memory allocated for them are managed
by the routines that manage the various structs such as wcsinit() and wcsfree().

wcserr messaging is an opt-in system enabled via wcserr_enable(), as in the example above. If enabled, when
an error occurs it is the user's responsibility to free the memory allocated for the error message using wcsfree(),
celfree(), prjfree(), etc. Failure to do so before the struct goes out of scope will result in memory leaks (if execution
continues beyond the error).

8 Vector API

WCSLIB's API is vector-oriented. At the least, this allows the function call overhead to be amortised by spreading
it over multiple coordinate transformations. However, vector computations may provide an opportunity for caching
intermediate calculations and this can produce much more significant efficiencies. For example, many of the spher-
ical projection equations are partially or fully separable in the mathematical sense, i.e. (x, y) = f(φ)g(θ), so if θ
was invariant for a set of coordinate transformations then g(θ) would only need to be computed once. Depending
on the circumstances, this may well lead to speedups of a factor of two or more.

WCSLIB has two different categories of vector API:

Generated by Doxygen

10

• Certain steps in the WCS algorithm chain operate on coordinate vectors as a whole rather than particular
elements of it. For example, the linear transformation takes one or more pixel coordinate vectors, multiples
by the transformation matrix, and returns whole intermediate world coordinate vectors.
The routines that implement these steps, wcsp2s(), wcss2p(), linp2x(), linx2p(), tabx2s(), tabs2x(), disp2x()
and disx2p() accept and return two-dimensional arrays, i.e. a number of coordinate vectors. Because WC-
SLIB permits these arrays to contain unused elements, three parameters are needed to describe them:

– naxis: the number of coordinate elements, as per the FITS NAXIS or WCSAXES keyvalues,

– ncoord: the number of coordinate vectors,

– nelem: the total number of elements in each vector, unused as well as used. Clearly, nelem must equal
or exceed naxis. (Note that when ncoord is unity, nelem is irrelevant and so is ignored. It may be set to
0.)

ncoord and nelem are specified as function arguments while naxis is provided as a member of the wcsprm
(or linprm or disprm) struct.
For example, wcss2p() accepts an array of world coordinate vectors, world[ncoord][nelem]. In the following
example, naxis = 4, ncoord = 5, and nelem = 7:

s1 x1 y1 t1 u u u
s2 x2 y2 t2 u u u
s3 x3 y3 t3 u u u
s4 x4 y4 t4 u u u
s5 x5 y5 t5 u u u

where u indicates unused array elements, and the array is laid out in memory as

s1 x1 y1 t1 u u u s2 x2 y2 ...

Note that the stat[] vector returned by routines in this category is of length ncoord, as are the intermediate
phi[] and theta[] vectors returned by wcsp2s() and wcss2p().
Note also that the function prototypes for routines in this category have to declare these two-dimensional
arrays as one-dimensional vectors in order to avoid warnings from the C compiler about declaration of "in-
complete types". This was considered preferable to declaring them as simple pointers-to-double which gives
no indication that storage is associated with them.

• Other steps in the WCS algorithm chain typically operate only on a part of the coordinate vector. For example,
a spectral transformation operates on only one element of an intermediate world coordinate that may also
contain celestial coordinate elements. In the above example, spcx2s() might operate only on the s (spectral)
coordinate elements.
Routines like spcx2s() and celx2s() that implement these steps accept and return one-dimensional vectors in
which the coordinate element of interest is specified via a starting address, a length, and a stride. To continue
the previous example, the starting address for the spectral elements is s1, the length is 5, and the stride is 7.

8.1 Vector lengths

Routines such as spcx2s() and celx2s() accept and return either one coordinate vector, or a pair of coordinate
vectors (one-dimensional C arrays). As explained above, the coordinate elements of interest are usually embedded
in a two-dimensional array and must be selected by specifying a starting point, length and stride through the array.
For routines such as spcx2s() that operate on a single element of each coordinate vector these parameters have a
straightforward interpretation.

However, for routines such as celx2s() that operate on a pair of elements in each coordinate vector, WCSLIB allows
these parameters to be specified independently for each input vector, thereby providing a much more general
interpretation than strictly needed to traverse an array.

This is best described by illustration. The following diagram describes the situation for cels2x(), as a specific
example, with nlng = 5, and nlat = 3:

lng[0] lng[1] lng[2] lng[3] lng[4]
------ ------ ------ ------ ------

lat[0] | x,y[0] x,y[1] x,y[2] x,y[3] x,y[4]
lat[1] | x,y[5] x,y[6] x,y[7] x,y[8] x,y[9]
lat[2] | x,y[10] x,y[11] x,y[12] x,y[13] x,y[14]

Generated by Doxygen

8.2 Vector strides 11

In this case, while only 5 longitude elements and 3 latitude elements are specified, the world-to-pixel routine would
calculate nlng ∗ nlat = 15 (x,y) coordinate pairs. It is the responsibility of the caller to ensure that sufficient space
has been allocated in all of the output arrays, in this case phi[], theta[], x[], y[] and stat[].

Vector computation will often be required where neither lng nor lat is constant. This is accomplished by setting nlat
= 0 which is interpreted to mean nlat = nlng but only the matrix diagonal is to be computed. Thus, for nlng = 3 and
nlat = 0 only three (x,y) coordinate pairs are computed:

lng[0] lng[1] lng[2]
------ ------ ------

lat[0] | x,y[0]
lat[1] | x,y[1]
lat[2] | x,y[2]

Note how this differs from nlng = 3, nlat = 1:

lng[0] lng[1] lng[2]
------ ------ ------

lat[0] | x,y[0] x,y[1] x,y[2]

The situation for celx2s() is similar; the x-coordinate (like lng) varies fastest.

Similar comments can be made for all routines that accept arguments specifying vector length(s) and stride(s).
(tabx2s() and tabs2x() do not fall into this category because the -TAB algorithm is fully N-dimensional so there is
no way to know in advance how many coordinate elements may be involved.)

The reason that WCSLIB allows this generality is related to the aforementioned opportunities that vector computa-
tions may provide for caching intermediate calculations and the significant efficiencies that can result. The high-level
routines, wcsp2s() and wcss2p(), look for opportunities to collapse a set of coordinate transformations where one
of the coordinate elements is invariant, and the low-level routines take advantage of such to cache intermediate
calculations.

8.2 Vector strides

As explained above, the vector stride arguments allow the caller to specify that successive elements of a vector are
not contiguous in memory. This applies equally to vectors given to, or returned from a function.

As a further example consider the following two arrangements in memory of the elements of four (x,y) coordinate
pairs together with an s coordinate element (e.g. spectral):

• x1 x2 x3 x4 y1 y2 y3 y4 s1 s2 s3 s4
the address of x[] is x1, its stride is 1, and length 4,
the address of y[] is y1, its stride is 1, and length 4,
the address of s[] is s1, its stride is 1, and length 4.

• x1 y1 s1 x2 y2 s2 x3 y3 s3 x4 y4 s4
the address of x[] is x1, its stride is 3, and length 4,
the address of y[] is y1, its stride is 3, and length 4,
the address of s[] is s1, its stride is 3, and length 4.

For routines such as cels2x(), each of the pair of input vectors is assumed to have the same stride. Each of the
output vectors also has the same stride, though it may differ from the input stride. For example, for cels2x() the input
lng[] and lat[] vectors each have vector stride sll, while the x[] and y[] output vectors have stride sxy. However, the
intermediate phi[] and theta[] arrays each have unit stride, as does the stat[] vector.

If the vector length is 1 then the stride is irrelevant and so ignored. It may be set to 0.

Generated by Doxygen

12

9 Thread-safety

Thanks to feedback and patches provided by Rodrigo Tobar Carrizo, as of release 5.18, WCSLIB is now completely
thread-safe, with only a couple of minor provisos.

In particular, a number of new routines were introduced to preclude altering the global variables NPVMAX, NPS-
MAX, and NDPMAX, which determine how much memory to allocate for storing PVi_ma, PSi_ma, DPja, and DQia
keyvalues: wcsinit(), lininit(), lindist(), and disinit(). Specifically, these new routines are now used by various WC-
SLIB routines, such as the header parsers, which previously temporarily altered the global variables, thus posing a
thread hazard.

In addition, the Flex scanners were made reentrant and consequently should now be thread-safe. This was achieved
by rewriting them as thin wrappers (with the same API) over scanners that were modified (with changed API), as
required to use Flex's "reentrant" option.

For complete thread-safety, please observe the following provisos:

• The low-level routines wcsnpv(), wcsnps(), and disndp() are not thread-safe, but they are not used within
WCSLIB itself other than to get (not set) the values of the global variables NPVMAX, NPSMAX, and NDPMAX.

wcsinit() and disinit() only do so to get default values if the relevant parameters are not provided as function
arguments. Note that wcsini() invokes wcsinit() with defaults which cause this behavior, as does disini()
invoking disinit().

The preset values of NPVMAX(=64), NPSMAX(=8), and NDPMAX(=256) are large enough to cover most
practical cases. However, it may be desirable to tailor them to avoid allocating memory that remains unused.
If so, and thread-safety is an issue, then use wcsinit() and disinit() instead with the relevant values speci-
fied. This is what WCSLIB routines, such as the header parsers wcspih() and wcsbth(), do to avoid wasting
memory.

• wcserr_enable() sets a static variable and so is not thread-safe. However, the error reporting facility is not
intended to be used dynamically. If detailed error messages are required, enable wcserr when execution
starts and don't change it.

Note that diagnostic routines that print the contents of the various structs, namely celprt(), disprt(), linprt(), prjprt(),
spcprt(), tabprt(), wcsprt(), and wcsperr() use printf() which is thread-safe by the POSIX requirement on stdio.
However, this is only at the function level. Where multiple threads invoke these routines simultaneously their output
is likely to be interleaved.

10 Limits

While the FITS WCS standard imposes a limit of 99 on the number of image coordinate axes, WCSLIB has a limit
of 32 on the number it can handle – enforced by wcsset(), though allowed by wcsinit(). This arises in wcsp2s() and
wcss2p() from the use of the stat[] vector as a bit mask to indicate invalid pixel or world coordinate elements.

In the unlikely event that it ever becomes necessary to handle more than 32 axes, it would be a simple matter
to modify the stat[] bit mask so that bit 32 applies to all axes beyond 31. However, it was not considered worth
introducing the various tests required just for the sake of pandering to unrealistic possibilities.

In addition, wcssub() has a hard-coded limit of 32 coordinate elements (matching the stat[] bit mask), and likewise
for tabs2p() (via a static helper function, tabvox()). While it would be a simple matter to generalise this by allocating
memory from the heap, since tabvox() calls itself recursively and needs to be as fast as possible, again it was not
considered worth pandering to unrealistic possibilities.

Generated by Doxygen

11 Example code, testing and verification 13

11 Example code, testing and verification

WCSLIB has an extensive test suite that also provides programming templates as well as demonstrations. Test
programs, with names that indicate the main WCSLIB routine under test, reside in ./{C,Fortran}/test and each
contains a brief description of its purpose.

The high- and middle-level test programs are more instructive for applications programming, while the low-level tests
are important for verifying the integrity of the mathematical routines.

• High level:
twcstab provides an example of high-level applications programming using WCSLIB and CFITSIO. It con-
structs an input FITS test file, specifically for testing TAB coordinates, partly using wcstab.keyrec, and
then extracts the coordinate description from it following the steps outlined in wcshdr.h.

tpih1 and tpih2 verify wcspih(). The first prints the contents of the structs returned by wcspih() using
wcsprt() and the second uses cpgsbox() to draw coordinate graticules. Input for these comes from a FITS
WCS test header implemented as a list of keyrecords, wcs.keyrec, one keyrecord per line, together with
a program, tofits, that compiles these into a valid FITS file.

tbth1 tests wcsbth() by reading a test header and printing the resulting wcsprm structs. In the process
it also tests wcsfix().

tfitshdr also uses wcs.keyrec to test the generic FITS header parsing routine.

twcsfix sets up a wcsprm struct containing various non-standard constructs and then invokes wcsfix() to
translate them all to standard usage.

twcslint tests the syntax checker for FITS WCS keyrecords (wcsware -l) on a specially constructed header
riddled with invalid entries.

tdis3 uses wcsware to test the handling of different types of distortion functions encoded in a set of test
FITS headers.

• Middle level:
twcs tests closure of wcss2p() and wcsp2s() for a number of selected projections. twcsmix verifies wcsmix()
on the 1◦ grid of celestial longitude and latitude for a number of selected projections. It plots a test grid
for each projection and indicates the location of successful and failed solutions. tdis2 and twcssub test the
extraction of a coordinate description for a subimage from a wcsprm struct by wcssub().

tunits tests wcsutrne(), wcsunitse() and wcsulexe(), the units specification translator, converter and parser,
either interactively or using a list of units specifications contained in units_test.

twcscompare tests particular aspects of the comparison routine, wcscompare().

• Low level:
tdis1, tlin, tlog, tprj1, tspc, tsph, tspx, and ttab1 test "closure" of the respective routines. Closure tests
apply the forward and reverse transformations in sequence and compare the result with the original value.
Ideally, the result should agree exactly, but because of floating point rounding errors there is usually a small
discrepancy so it is only required to agree within a "closure tolerance".

tprj1 tests for closure separately for longitude and latitude except at the poles where it only tests for
closure in latitude. Note that closure in longitude does not deal with angular displacements on the sky. This
is appropriate for many projections such as the cylindricals where circumpolar parallels are projected at the
same length as the equator. On the other hand, tsph does test for closure in angular displacement.

The tolerance for reporting closure discrepancies is set at 10−10 degree for most projections; this is
slightly less than 3 microarcsec. The worst case closure figure is reported for each projection and this is

Generated by Doxygen

14

usually better than the reporting tolerance by several orders of magnitude. tprj1 and tsph test closure at all
points on the 1◦ grid of native longitude and latitude and to within 5◦ of any latitude of divergence for those
projections that cannot represent the full sphere. Closure is also tested at a sequence of points close to the
reference point (tprj1) or pole (tsph).

Closure has been verified at all test points for SUN workstations. However, non-closure may be observed for
other machines near native latitude −90◦ for the zenithal, cylindrical and conic equal area projections (ZEA,
CEA and COE), and near divergent latitudes of projections such as the azimuthal perspective and stereo-
graphic projections (AZP and STG). Rounding errors may also carry points between faces of the quad-cube
projections (CSC, QSC, and TSC). Although such excursions may produce long lists of non-closure points,
this is not necessarily indicative of a fundamental problem.

Note that the inverse of the COBE quad-qube projection (CSC) is a polynomial approximation and its
closure tolerance is intrinsically poor.

Although tests for closure help to verify the internal consistency of the routines they do not verify them
in an absolute sense. This is partly addressed by tcel1, tcel2, tprj2, ttab2 and ttab3 which plot graticules for
visual inspection of scaling, orientation, and other macroscopic characteristics of the projections.

There are also a number of other special-purpose test programs that are not automatically exercised by
the test suite.

12 WCSLIB Fortran wrappers

The Fortran subdirectory contains wrappers, written in C, that allow Fortran programs to use WCSLIB. The wrappers
have no associated C header files, nor C function prototypes, as they are only meant to be called by Fortran code.
Hence the C code must be consulted directly to determine the argument lists. This resides in files with names of the
form ∗_f.c. However, there are associated Fortran INCLUDE files that declare function return types and various
parameter definitions. There are also BLOCK DATA modules, in files with names of the form ∗_data.f, used solely
to initialise error message strings.

A prerequisite for using the wrappers is an understanding of the usage of the associated C routines, in particular the
data structures they are based on. The principle difficulty in creating the wrappers was the need to manage these
C structs from within Fortran, particularly as they contain pointers to allocated memory, pointers to C functions, and
other structs that themselves contain similar entities.

To this end, routines have been provided to set and retrieve values of the various structs, for example WCSPUT
and WCSGET for the wcsprm struct, and CELPUT and CELGET for the celprm struct. These must be used in
conjunction with wrappers on the routines provided to manage the structs in C, for example WCSINIT, WCSSUB,
WCSCOPY, WCSFREE, and WCSPRT which wrap wcsinit(), wcssub(), wcscopy(), wcsfree(), and wcsprt().

Compilers (e.g. gfortran) may warn of inconsistent usage of the third argument in the various ∗PUT and ∗GET
routines, and as of gfortran 10, these warnings have been promoted to errors. Thus, type-specific variants are
provided for each of the ∗PUT routines, ∗PTI, ∗PTD, and ∗PTC for int, double, or char[], and likewise ∗GTI, ∗GTD,
and ∗GTC for the ∗GET routines. While, for brevity, we will here continue to refer to the ∗PUT and ∗GET routines,
as compilers are generally becoming stricter, use of the type-specific variants is recommended.

The various ∗PUT and ∗GET routines are based on codes defined in Fortran include files (∗.inc). If your Fortran
compiler does not support the INCLUDE statement then you will need to include these manually in your code as
necessary. Codes are defined as parameters with names like WCS_CRPIX which refers to wcsprm::crpix (if your
Fortran compiler does not support long symbolic names then you will need to rename these).

The include files also contain parameters, such as WCSLEN, that define the length of an INTEGER array that
must be declared to hold the struct. This length may differ for different platforms depending on how the C compiler
aligns data within the structs. A test program for the C library, twcs, prints the size of the struct in sizeof(int) units
and the values in the Fortran include files must equal or exceed these. On some platforms, such as Suns, it is

Generated by Doxygen

12 WCSLIB Fortran wrappers 15

important that the start of the INTEGER array be aligned on a DOUBLE PRECISION boundary, otherwise a
mysterious BUS error may result. This may be achieved via an EQUIVALENCE with a DOUBLE PRECISION
variable, or by sequencing variables in a COMMON block so that the INTEGER array follows immediately after a
DOUBLE PRECISION variable.

The ∗PUT routines set only one element of an array at a time; the final one or two integer arguments of these
routines specify 1-relative array indices (N.B. not 0-relative as in C). The one exception is the prjprm::pv array.

The ∗PUT routines also reset the flag element to signal that the struct needs to be reinitialized. Therefore, if you
wanted to set wcsprm::flag itself to -1 prior to the first call to WCSINIT, for example, then that WCSPUT must be
the last one before the call.

The ∗GET routines retrieve whole arrays at a time and expect array arguments of the appropriate length where
necessary. Note that they do not initialize the structs, i.e. via wcsset(), prjset(), or whatever.

A basic coding fragment is

INTEGER LNGIDX, STATUS
CHARACTER CTYPE1*72

INCLUDE ’wcs.inc’

* WCSLEN is defined as a parameter in wcs.inc.
INTEGER WCS(WCSLEN)
DOUBLE PRECISION DUMMY
EQUIVALENCE (WCS, DUMMY)

* Allocate memory and set default values for 2 axes.
STATUS = WCSPTI (WCS, WCS_FLAG, -1, 0, 0)
STATUS = WCSINI (2, WCS)

* Set CRPIX1, and CRPIX2; WCS_CRPIX is defined in wcs.inc.
STATUS = WCSPTD (WCS, WCS_CRPIX, 512D0, 1, 0)
STATUS = WCSPTD (WCS, WCS_CRPIX, 512D0, 2, 0)

* Set PC1_2 to 5.0 (I = 1, J = 2).
STATUS = WCSPTD (WCS, WCS_PC, 5D0, 1, 2)

* Set CTYPE1 to ’RA---SIN’; N.B. must be given as CHARACTER*72.
CTYPE1 = ’RA---SIN’
STATUS = WCSPTC (WCS, WCS_CTYPE, CTYPE1, 1, 0)

* Use an alternate method to set CTYPE2.
STATUS = WCSPTC (WCS, WCS_CTYPE, ’DEC--SIN’//CHAR(0), 2, 0)

* Set PV1_3 to -1.0 (I = 1, M = 3).
STATUS = WCSPTD (WCS, WCS_PV, -1D0, 1, 3)

etc.

* Initialize.
STATUS = WCSSET (WCS)
IF (STATUS.NE.0) THEN

CALL FLUSH (6)
STATUS = WCSPERR (WCS, ’EXAMPLE: ’//CHAR(0))

ENDIF

* Find the "longitude" axis.
STATUS = WCSGTI (WCS, WCS_LNG, LNGIDX)

* Free memory.
STATUS = WCSFREE (WCS)

Refer to the various Fortran test programs for further programming examples. In particular, twcs and twcsmix show
how to retrieve elements of the celprm and prjprm structs contained within the wcsprm struct.

Generated by Doxygen

16

Treatment of CHARACTER arguments in wrappers such as SPCTYPE, SPECX, and WCSSPTR, depends on
whether they are given or returned. Where a CHARACTER variable is returned, its length must match the de-
clared length in the definition of the C wrapper. The terminating null character in the C string, and all following it up
to the declared length, are replaced with blanks. If the Fortran CHARACTER variable were shorter than the declared
length, an out-of-bounds memory access error would result. If longer, the excess, uninitialized, characters could
contain garbage.

If the CHARACTER argument is given, a null-terminated CHARACTER variable may be provided as input, e.g.
constructed using the Fortran CHAR(0) intrinsic as in the example code above. The wrapper makes a character-
by-character copy, searching for a NULL character in the process. If it finds one, the copy terminates early, resulting
in a valid C string. In this case any trailing blanks before the NULL character are preserved if it makes sense to
do so, such as in setting a prefix for use by the ∗PERR wrappers, such as WCSPERR in the example above. If a
NULL is not found, then the CHARACTER argument must be at least as long as the declared length, and any trailing
blanks are stripped off. Should a CHARACTER argument exceed the declared length, the excess characters are
ignored.

There is one exception to the above caution regarding CHARACTER arguments. The WCSLIB_VERSION wrapper
is unusual in that it provides for the length of its CHARACTER argument to be specified, and only so many characters
as fit within that length are returned.

Note that the data type of the third argument to the ∗PUT (or ∗PTI, ∗PTD, or ∗PTC) and ∗GET (or ∗GTI, ∗GTD, or
∗GTC) routines differs depending on the data type of the corresponding C struct member, be it int, double, or char[].
It is essential that the Fortran data type match that of the C struct for int and double types, and be a CHARACTER
variable of the correct length for char[] types, or else be null-terminated, as in the coding example above. As a
further example, in the two equivalent calls

STATUS = PRJGET (PRJ, PRJ_NAME, NAME)
STATUS = PRJGTC (PRJ, PRJ_NAME, NAME)

which return a character string, NAME must be a CHARACTER variable of length 40, as declared in the prjprm
struct, no less and no more, the comments above pertaining to wrappers that contain CHARACTER arguments also
applying here. However, a few exceptions have been made to simplify coding. The relevant ∗PUT (or ∗PTC) wrap-
pers allow unterminated CHARACTER variables of less than the declared length for the following: prjprm::code
(3 characters), spcprm::type (4 characters), spcprm::code (3 characters), and fitskeyid::name (8
characters). It doesn't hurt to specify longer CHARACTER variables, but the trailing characters will be ignored.
Notwithstanding this simplification, the length of the corresponding variables in the ∗GET (or ∗GTC) wrappers must
match the length declared in the struct.

When calling wrappers for C functions that print to stdout, such as WCSPRT, and WCSPERR, or that may print to
stderr, such as WCSPIH, WCSBTH, WCSULEXE, or WCSUTRNE, it may be necessary to flush the Fortran I/O buffers
beforehand so that the output appears in the correct order. The wrappers for these functions do call fflush(←↩

NULL), but depending on the particular system, this may not succeed in flushing the Fortran I/O buffers. Most
Fortran compilers provide the non-standard intrinsic FLUSH(), which is called with unit number 6 to flush stdout
(as in the example above), and unit 0 for stderr.

A basic assumption made by the wrappers is that an INTEGER variable is no less than half the size of a DOUBLE
PRECISION.

13 PGSBOX

PGSBOX, which is provided as a separate part of WCSLIB, is a PGPLOT routine (PGPLOT being a Fortran graph-
ics library) that draws and labels curvilinear coordinate grids. Example PGSBOX grids can be seen at http←↩

://www.atnf.csiro.au/people/Mark.Calabretta/WCS/PGSBOX/index.html.

Generated by Doxygen

http://www.atnf.csiro.au/people/Mark.Calabretta/WCS/PGSBOX/index.html
http://www.atnf.csiro.au/people/Mark.Calabretta/WCS/PGSBOX/index.html

14 WCSLIB version numbers 17

The prologue to pgsbox.f contains usage instructions. pgtest.f and cpgtest.c serve as test and demonstration
programs in Fortran and C and also as well- documented examples of usage.

PGSBOX requires a separate routine, EXTERNAL NLFUNC, to define the coordinate transformation. Fortran sub-
routine PGCRFN (pgcrfn.f) is provided to define separable pairs of non-linear coordinate systems. Linear, logarithmic
and power-law axis types are currently defined; further types may be added as required. A C function, pgwcsl←↩

_(), with Fortran-like interface defines an NLFUNC that interfaces to WCSLIB 4.x for PGSBOX to draw celestial
coordinate grids.

PGPLOT is implemented as a Fortran library with a set of C wrapper routines that are generated by a software
tool. However, PGSBOX has a more complicated interface than any of the standard PGPLOT routines, especially
in having an EXTERNAL function in its argument list. Consequently, PGSBOX is implemented in Fortran but with a
hand-coded C wrapper, cpgsbox().

As an example, in this suite the C test/demo program, cpgtest, calls the C wrapper, cpgsbox(), passing it a pointer
to pgwcsl_(). In turn, cpgsbox() calls PGSBOX, which invokes pgwcsl_() as an EXTERNAL subroutine. In this
sequence, a complicated C struct defined by cpgtest is passed through PGSBOX to pgwcsl_() as an INTEGER
array.

While there are no formal standards for calling Fortran from C, there are some fairly well established conventions.
Nevertheless, it's possible that you may need to modify the code if you use a combination of Fortran and C compilers
with linkage conventions that differ from that of the GNU compilers, gcc and g77.

14 WCSLIB version numbers

The full WCSLIB/PGSBOX version number is composed of three integers in fields separated by periods:

• Major: the first number changes only when the ABI changes, a rare occurence (and the API never changes).
Typically, the ABI changes when the contents of a struct change. For example, the contents of the linprm
struct changed between 4.25.1 and 5.0.

In practical terms, this number becomes the major version number of the WCSLIB sharable library, libwcs.←↩

so.<major>. To avoid possible segmentation faults or bus errors that may arise from the altered ABI, the
dynamic (runtime) linker will not allow an application linked to a sharable library with a particular major version
number to run with that of a different major version number.

Application code must be recompiled and relinked to use a newer version of the WCSLIB sharable library with
a new major version number.

• Minor: the second number changes when existing code is changed, whether due to added function-
ality or bug fixes. This becomes the minor version number of the WCSLIB sharable library, libwcs.←↩

so.<major>.<minor>.

Because the ABI remains unchanged, older applications can use the new sharable library without needing to
be recompiled, thus obtaining the benefit of bug fixes, speed enhancements, etc.

Application code written subsequently to use the added functionality would, of course, need to be recompiled.

• Patch: the third number, which is often omitted, indicates a change to the build procedures, documentation,
or test suite. It may also indicate changes to the utility applications (wcsware, HPXcvt, etc.), including the
addition of new ones.

However, the library itself, including the definitions in the header files, remains unaltered, so there is no point
in recompiling applications.

The following describes what happens (or should happen) when WCSLIB's installation procedures are used on a
typical Linux system using the GNU gcc compiler and GNU linker.

The sharable library should be installed as libwcs.so.<major>.<minor>, say libwcs.so.5.4 for concreteness, and a
number of symbolic links created as follows:

Generated by Doxygen

18

libwcs.so -> libwcs.so.5
libwcs.so.5 -> libwcs.so.5.4
libwcs.so.5.4

When an application is linked using '-lwcs', the linker finds libwcs.so and the symlinks lead it to libwcs.so.5.4.
However, that library's SONAME is actually 'libwcs.so.5', by virtue of linker options used when the sharable library
was created, as can be seen by running

readelf -d libwcs.so.5.4

Thus, when an application that was compiled and linked to libwcs.so.5.4 begins execution, the dynamic linker, ld.so,
will attempt to bind it to libwcs.so.5, as can be seen by running

ldd <application>

Later, when WCSLIB 5.5 is installed, the library symbolic links will become

libwcs.so -> libwcs.so.5
libwcs.so.5 -> libwcs.so.5.5
libwcs.so.5.4
libwcs.so.5.5

Thus, even without being recompiled, existing applications will link automatically to libwcs.so.5.5 at runtime. In fact,
libwcs.so.5.4 would no longer be used and could be deleted.

If WCSLIB 6.0 were to be installed at some later time, then the libwcs.so.6 libraries would be used for new compila-
tions. However, the libwcs.so.5 libraries must be left in place for existing executables that still require them:

libwcs.so -> libwcs.so.6
libwcs.so.6 -> libwcs.so.6.0
libwcs.so.6.0
libwcs.so.5 -> libwcs.so.5.5
libwcs.so.5.5

15 Deprecated List

Global celini_errmsg

Added for backwards compatibility, use cel_errmsg directly now instead.

Global celprt_errmsg

Added for backwards compatibility, use cel_errmsg directly now instead.

Global cels2x_errmsg

Added for backwards compatibility, use cel_errmsg directly now instead.

Global celset_errmsg

Added for backwards compatibility, use cel_errmsg directly now instead.

Global celx2s_errmsg

Added for backwards compatibility, use cel_errmsg directly now instead.

Global cylfix_errmsg

Added for backwards compatibility, use wcsfix_errmsg directly now instead.

Generated by Doxygen

15 Deprecated List 19

Global FITSHDR_CARD

Added for backwards compatibility, use FITSHDR_KEYREC instead.

Global lincpy_errmsg

Added for backwards compatibility, use lin_errmsg directly now instead.

Global linfree_errmsg

Added for backwards compatibility, use lin_errmsg directly now instead.

Global linini_errmsg

Added for backwards compatibility, use lin_errmsg directly now instead.

Global linp2x_errmsg

Added for backwards compatibility, use lin_errmsg directly now instead.

Global linprt_errmsg

Added for backwards compatibility, use lin_errmsg directly now instead.

Global linset_errmsg

Added for backwards compatibility, use lin_errmsg directly now instead.

Global linx2p_errmsg

Added for backwards compatibility, use lin_errmsg directly now instead.

Global prjini_errmsg

Added for backwards compatibility, use prj_errmsg directly now instead.

Global prjprt_errmsg

Added for backwards compatibility, use prj_errmsg directly now instead.

Global prjs2x_errmsg

Added for backwards compatibility, use prj_errmsg directly now instead.

Global prjset_errmsg

Added for backwards compatibility, use prj_errmsg directly now instead.

Global prjx2s_errmsg

Added for backwards compatibility, use prj_errmsg directly now instead.

Global spcini_errmsg

Added for backwards compatibility, use spc_errmsg directly now instead.

Global spcprt_errmsg

Added for backwards compatibility, use spc_errmsg directly now instead.

Global spcs2x_errmsg

Added for backwards compatibility, use spc_errmsg directly now instead.

Global spcset_errmsg

Added for backwards compatibility, use spc_errmsg directly now instead.

Global spcx2s_errmsg

Added for backwards compatibility, use spc_errmsg directly now instead.

Global tabcpy_errmsg

Added for backwards compatibility, use tab_errmsg directly now instead.

Global tabfree_errmsg

Added for backwards compatibility, use tab_errmsg directly now instead.

Global tabini_errmsg

Added for backwards compatibility, use tab_errmsg directly now instead.

Global tabprt_errmsg

Added for backwards compatibility, use tab_errmsg directly now instead.

Generated by Doxygen

20

Global tabs2x_errmsg

Added for backwards compatibility, use tab_errmsg directly now instead.

Global tabset_errmsg

Added for backwards compatibility, use tab_errmsg directly now instead.

Global tabx2s_errmsg

Added for backwards compatibility, use tab_errmsg directly now instead.

Global wcscopy_errmsg

Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wcsfree_errmsg

Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wcsini_errmsg

Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wcsmix_errmsg

Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wcsp2s_errmsg

Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wcsprt_errmsg

Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wcss2p_errmsg

Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wcsset_errmsg

Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wcssub_errmsg

Added for backwards compatibility, use wcs_errmsg directly now instead.

16 Data Structure Index

16.1 Data Structures

Here are the data structures with brief descriptions:

auxprm
Additional auxiliary parameters 22

celprm
Celestial transformation parameters 23

disprm
Distortion parameters 26

dpkey
Store for DPja and DQia keyvalues 30

fitskey
Keyword/value information 31

fitskeyid
Keyword indexing 35

Generated by Doxygen

17 File Index 21

linprm
Linear transformation parameters 36

prjprm
Projection parameters 40

pscard
Store for PSi_ma keyrecords 44

pvcard
Store for PVi_ma keyrecords 45

spcprm
Spectral transformation parameters 46

spxprm
Spectral variables and their derivatives 49

tabprm
Tabular transformation parameters 54

wcserr
Error message handling 58

wcsprm
Coordinate transformation parameters 59

wtbarr
Extraction of coordinate lookup tables from BINTABLE 76

17 File Index

17.1 File List

Here is a list of all files with brief descriptions:

cel.h 78

dis.h 91

fitshdr.h 119

getwcstab.h 129

lin.h 133

log.h 154

prj.h 159

spc.h 195

sph.h 222

spx.h 228

tab.h 246

Generated by Doxygen

22

wcs.h 264

wcserr.h 312

wcsfix.h 320

wcshdr.h 340

wcsmath.h 382

wcsprintf.h 384

wcstrig.h 388

wcsunits.h 395

wcsutil.h 409

wtbarr.h 424

wcslib.h 426

18 Data Structure Documentation

18.1 auxprm Struct Reference

Additional auxiliary parameters.

#include <wcs.h>

Data Fields

• double rsun_ref
• double dsun_obs
• double crln_obs
• double hgln_obs
• double hglt_obs

18.1.1 Detailed Description

The auxprm struct holds auxiliary coordinate system information of a specialist nature. It is anticipated that this
struct will expand in future to accomodate additional parameters.

All members of this struct are to be set by the user.

18.1.2 Field Documentation

Generated by Doxygen

18.2 celprm Struct Reference 23

18.1.2.1 rsun_ref double auxprm::rsun_ref

(Given, auxiliary) Reference radius of the Sun used in coordinate calculations (m).

18.1.2.2 dsun_obs double auxprm::dsun_obs

(Given, auxiliary) Distance between the centre of the Sun and the observer (m).

18.1.2.3 crln_obs double auxprm::crln_obs

(Given, auxiliary) Carrington heliographic longitude of the observer (deg).

18.1.2.4 hgln_obs double auxprm::hgln_obs

(Given, auxiliary) Stonyhurst heliographic longitude of the observer (deg).

18.1.2.5 hglt_obs double auxprm::hglt_obs

(Given, auxiliary) Heliographic latitude (Carrington or Stonyhurst) of the observer (deg).

18.2 celprm Struct Reference

Celestial transformation parameters.

#include <cel.h>

Data Fields

• int flag
• int offset
• double phi0
• double theta0
• double ref [4]
• struct prjprm prj
• double euler [5]
• int latpreq
• int isolat
• struct wcserr ∗ err
• void ∗ padding

18.2.1 Detailed Description

The celprm struct contains information required to transform celestial coordinates. It consists of certain members
that must be set by the user (given) and others that are set by the WCSLIB routines (returned). Some of the latter
are supplied for informational purposes and others are for internal use only.

Returned celprm struct members must not be modified by the user.

Generated by Doxygen

24

18.2.2 Field Documentation

18.2.2.1 flag int celprm::flag

(Given and returned) This flag must be set to zero whenever any of the following celprm struct members are set or
changed:

• celprm::offset,

• celprm::phi0,

• celprm::theta0,

• celprm::ref[4],

• celprm::prj:

– prjprm::code,

– prjprm::r0,

– prjprm::pv[],

– prjprm::phi0,

– prjprm::theta0.

This signals the initialization routine, celset(), to recompute the returned members of the celprm struct. celset() will
reset flag to indicate that this has been done.

18.2.2.2 offset int celprm::offset

(Given) If true (non-zero), an offset will be applied to (x, y) to force (x, y) = (0,0) at the fiducial point, (φ0, θ0).
Default is 0 (false).

18.2.2.3 phi0 double celprm::phi0

(Given) The native longitude, φ0 [deg], and ...

18.2.2.4 theta0 double celprm::theta0

(Given) ... the native latitude, θ0 [deg], of the fiducial point, i.e. the point whose celestial coordinates are given
in celprm::ref[1:2]. If undefined (set to a magic value by prjini()) the initialization routine, celset(), will set this to a
projection-specific default.

Generated by Doxygen

18.2 celprm Struct Reference 25

18.2.2.5 ref double celprm::ref

(Given) The first pair of values should be set to the celestial longitude and latitude of the fiducial point [deg] - typically
right ascension and declination. These are given by the CRVALia keywords in FITS.

(Given and returned) The second pair of values are the native longitude, φp [deg], and latitude, θp [deg], of the
celestial pole (the latter is the same as the celestial latitude of the native pole, δp) and these are given by the FITS
keywords LONPOLEa and LATPOLEa (or by PVi_2a and PVi_3a attached to the longitude axis which take
precedence if defined).

LONPOLEa defaults to φ0 (see above) if the celestial latitude of the fiducial point of the projection is greater than or
equal to the native latitude, otherwise φ0 + 180 [deg]. (This is the condition for the celestial latitude to increase in
the same direction as the native latitude at the fiducial point.) ref[2] may be set to UNDEFINED (from wcsmath.h)
or 999.0 to indicate that the correct default should be substituted.

θp, the native latitude of the celestial pole (or equally the celestial latitude of the native pole, δp) is often determined
uniquely by CRVALia and LONPOLEa in which case LATPOLEa is ignored. However, in some circumstances
there are two valid solutions for θp and LATPOLEa is used to choose between them. LATPOLEa is set in ref[3]
and the solution closest to this value is used to reset ref[3]. It is therefore legitimate, for example, to set ref[3] to
+90.0 to choose the more northerly solution - the default if the LATPOLEa keyword is omitted from the FITS header.
For the special case where the fiducial point of the projection is at native latitude zero, its celestial latitude is zero,
and LONPOLEa = ± 90.0 then the celestial latitude of the native pole is not determined by the first three reference
values and LATPOLEa specifies it completely.

The returned value, celprm::latpreq, specifies how LATPOLEa was actually used.

18.2.2.6 prj struct prjprm celprm::prj

(Given and returned) Projection parameters described in the prologue to prj.h.

18.2.2.7 euler double celprm::euler

(Returned) Euler angles and associated intermediaries derived from the coordinate reference values. The first three
values are the Z-, X-, and Z '-Euler angles [deg], and the remaining two are the cosine and sine of the X-Euler
angle.

18.2.2.8 latpreq int celprm::latpreq

(Returned) For informational purposes, this indicates how the LATPOLEa keyword was used

• 0: Not required, θp (== δp) was determined uniquely by the CRVALia and LONPOLEa keywords.

• 1: Required to select between two valid solutions of θp.

• 2: θp was specified solely by LATPOLEa.

18.2.2.9 isolat int celprm::isolat

(Returned) True if the spherical rotation preserves the magnitude of the latitude, which occurs iff the axes of the
native and celestial coordinates are coincident. It signals an opportunity to cache intermediate calculations common
to all elements in a vector computation.

Generated by Doxygen

26

18.2.2.10 err struct wcserr ∗ celprm::err

(Returned) If enabled, when an error status is returned, this struct contains detailed information about the error, see
wcserr_enable().

18.2.2.11 padding void ∗ celprm::padding

(An unused variable inserted for alignment purposes only.)

Global variable: const char ∗cel_errmsg[] - Status return messages Status messages to match the status value
returned from each function.

18.3 disprm Struct Reference

Distortion parameters.

#include <dis.h>

Data Fields

• int flag
• int naxis
• char(∗ dtype)[72]
• int ndp
• int ndpmax
• struct dpkey ∗ dp
• double ∗ maxdis
• double totdis
• int ∗ docorr
• int ∗ Nhat
• int ∗∗ axmap
• double ∗∗ offset
• double ∗∗ scale
• int ∗∗ iparm
• double ∗∗ dparm
• int i_naxis
• int ndis
• struct wcserr ∗ err
• int(∗∗ disp2x)(DISP2X_ARGS)
• int(∗∗ disx2p)(DISX2P_ARGS)
• double ∗ tmpmem
• int m_flag
• int m_naxis
• char(∗ m_dtype)[72]
• struct dpkey ∗ m_dp
• double ∗ m_maxdis

18.3.1 Detailed Description

The disprm struct contains all of the information required to apply a set of distortion functions. It consists of certain
members that must be set by the user (given) and others that are set by the WCSLIB routines (returned). While the
addresses of the arrays themselves may be set by disinit() if it (optionally) allocates memory, their contents must be
set by the user.

Generated by Doxygen

18.3 disprm Struct Reference 27

18.3.2 Field Documentation

18.3.2.1 flag int disprm::flag

(Given and returned) This flag must be set to zero whenever any of the following members of the disprm struct are
set or modified:

• disprm::naxis,

• disprm::dtype,

• disprm::ndp,

• disprm::dp.

This signals the initialization routine, disset(), to recompute the returned members of the disprm struct. disset() will
reset flag to indicate that this has been done.

PLEASE NOTE: flag must be set to -1 when disinit() is called for the first time for a particular disprm struct in order
to initialize memory management. It must ONLY be used on the first initialization otherwise memory leaks may
result.

18.3.2.2 naxis int disprm::naxis

(Given or returned) Number of pixel and world coordinate elements.

If disinit() is used to initialize the disprm struct (as would normally be the case) then it will set naxis from the value
passed to it as a function argument. The user should not subsequently modify it.

18.3.2.3 dtype disprm::dtype

(Given) Pointer to the first element of an array of char[72] containing the name of the distortion function for each
axis.

18.3.2.4 ndp int disprm::ndp

(Given) The number of entries in the disprm::dp[] array.

18.3.2.5 ndpmax int disprm::ndpmax

(Given) The length of the disprm::dp[] array.

ndpmax will be set by disinit() if it allocates memory for disprm::dp[], otherwise it must be set by the user. See also
disndp().

Generated by Doxygen

28

18.3.2.6 dp struct dpkey disprm::dp

(Given) Address of the first element of an array of length ndpmax of dpkey structs.

As a FITS header parser encounters each DPja or DQia keyword it should load it into a dpkey struct in the array
and increment ndp. However, note that a single disprm struct must hold only DPja or DQia keyvalues, not both.
disset() interprets them as required by the particular distortion function.

18.3.2.7 maxdis double ∗ disprm::maxdis

(Given) Pointer to the first element of an array of double specifying the maximum absolute value of the distortion for
each axis computed over the whole image.

It is not necessary to reset the disprm struct (via disset()) when disprm::maxdis is changed.

18.3.2.8 totdis double disprm::totdis

(Given) The maximum absolute value of the combination of all distortion functions specified as an offset in pixel
coordinates computed over the whole image.

It is not necessary to reset the disprm struct (via disset()) when disprm::totdis is changed.

18.3.2.9 docorr int ∗ disprm::docorr

(Returned) Pointer to the first element of an array of int containing flags that indicate the mode of correction for each
axis.

If docorr is zero, the distortion function returns the corrected coordinates directly. Any other value indicates that
the distortion function computes a correction to be added to pixel coordinates (prior distortion) or intermediate pixel
coordinates (sequent distortion).

18.3.2.10 Nhat int ∗ disprm::Nhat

(Returned) Pointer to the first element of an array of int containing the number of coordinate axes that form the
independent variables of the distortion function for each axis.

18.3.2.11 axmap int ∗∗ disprm::axmap

(Returned) Pointer to the first element of an array of int∗ containing pointers to the first elements of the axis mapping
arrays for each axis.

An axis mapping associates the independent variables of a distortion function with the 0-relative image axis number.
For example, consider an image with a spectrum on the first axis (axis 0), followed by RA (axis 1), Dec (axis2), and
time (axis 3) axes. For a distortion in (RA,Dec) and no distortion on the spectral or time axes, the axis mapping
arrays, axmap[j][], would be
j=0: [-1, -1, -1, -1] ...no distortion on spectral axis,

1: [1, 2, -1, -1] ...RA distortion depends on RA and Dec,
2: [2, 1, -1, -1] ...Dec distortion depends on Dec and RA,
3: [-1, -1, -1, -1] ...no distortion on time axis,

where -1 indicates that there is no corresponding independent variable.

Generated by Doxygen

18.3 disprm Struct Reference 29

18.3.2.12 offset double ∗∗ disprm::offset

(Returned) Pointer to the first element of an array of double∗ containing pointers to the first elements of arrays of
offsets used to renormalize the independent variables of the distortion function for each axis.

The offsets are subtracted from the independent variables before scaling.

18.3.2.13 scale double ∗∗ disprm::scale

(Returned) Pointer to the first element of an array of double∗ containing pointers to the first elements of arrays of
scales used to renormalize the independent variables of the distortion function for each axis.

The scale is applied to the independent variables after the offsets are subtracted.

18.3.2.14 iparm int ∗∗ disprm::iparm

(Returned) Pointer to the first element of an array of int∗ containing pointers to the first elements of the arrays of
integer distortion parameters for each axis.

18.3.2.15 dparm double ∗∗ disprm::dparm

(Returned) Pointer to the first element of an array of double∗ containing pointers to the first elements of the arrays
of floating point distortion parameters for each axis.

18.3.2.16 i_naxis int disprm::i_naxis

(Returned) Dimension of the internal arrays (normally equal to naxis).

18.3.2.17 ndis int disprm::ndis

(Returned) The number of distortion functions.

18.3.2.18 err struct wcserr ∗ disprm::err

(Returned) If enabled, when an error status is returned, this struct contains detailed information about the error, see
wcserr_enable().

18.3.2.19 disp2x int(∗∗ disprm::disp2x)(DISP2X_ARGS)

(For internal use only.)

18.3.2.20 disx2p int(∗∗ disprm::disx2p)(DISX2P_ARGS)

(For internal use only.)

18.3.2.21 tmpmem double ∗ disprm::tmpmem

(For internal use only.)

Generated by Doxygen

30

18.3.2.22 m_flag int disprm::m_flag

(For internal use only.)

18.3.2.23 m_naxis int disprm::m_naxis

(For internal use only.)

18.3.2.24 m_dtype disprm::m_dtype

(For internal use only.)

18.3.2.25 m_dp double ∗∗ disprm::m_dp

(For internal use only.)

18.3.2.26 m_maxdis double ∗ disprm::m_maxdis

(For internal use only.)

18.4 dpkey Struct Reference

Store for DPja and DQia keyvalues.

#include <dis.h>

Data Fields

• char field [72]
• int j
• int type
• union {

int i
double f

} value

18.4.1 Detailed Description

The dpkey struct is used to pass the parsed contents of DPja or DQia keyrecords to disset() via the disprm struct.
A disprm struct must hold only DPja or DQia keyvalues, not both.

All members of this struct are to be set by the user.

18.4.2 Field Documentation

Generated by Doxygen

18.5 fitskey Struct Reference 31

18.4.2.1 field char dpkey::field

(Given) The full field name of the record, including the keyword name. Note that the colon delimiter separating the
field name and the value in record-valued keyvalues is not part of the field name. For example, in the following:
DP3A = ’AXIS.1: 2’

the full record field name is "DP3A.AXIS.1", and the record's value is 2.

18.4.2.2 j int dpkey::j

(Given) Axis number (1-relative), i.e. the j in DPja or i in DQia.

18.4.2.3 type int dpkey::type

(Given) The data type of the record's value

• 0: Integer (stored as an int),

• 1: Floating point (stored as a double).

18.4.2.4 i int dpkey::i

18.4.2.5 f double dpkey::f

18.4.2.6 value union dpkey::value

(Given) A union comprised of

• dpkey::i,

• dpkey::f,

the record's value.

18.5 fitskey Struct Reference

Keyword/value information.

#include <fitshdr.h>

Generated by Doxygen

32

Data Fields

• int keyno
• int keyid
• int status
• char keyword [12]
• int type
• int padding
• union {

int i
int64 k
int l [8]
double f
double c [2]
char s [72]

} keyvalue

• int ulen
• char comment [84]

18.5.1 Detailed Description

fitshdr() returns an array of fitskey structs, each of which contains the result of parsing one FITS header keyrecord.
All members of the fitskey struct are returned by fitshdr(), none are given by the user.

18.5.2 Field Documentation

18.5.2.1 keyno int fitskey::keyno

(Returned) Keyrecord number (1-relative) in the array passed as input to fitshdr(). This will be negated if the keyword
matched any specified in the keyids[] index.

18.5.2.2 keyid int fitskey::keyid

(Returned) Index into the first entry in keyids[] with which the keyrecord matches, else -1.

18.5.2.3 status int fitskey::status

(Returned) Status flag bit-vector for the header keyrecord employing the following bit masks defined as preprocessor
macros:

• FITSHDR_KEYWORD: Illegal keyword syntax.

• FITSHDR_KEYVALUE: Illegal keyvalue syntax.

• FITSHDR_COMMENT: Illegal keycomment syntax.

• FITSHDR_KEYREC: Illegal keyrecord, e.g. an END keyrecord with trailing text.

• FITSHDR_TRAILER: Keyrecord following a valid END keyrecord.

The header keyrecord is syntactically correct if no bits are set.

Generated by Doxygen

18.5 fitskey Struct Reference 33

18.5.2.4 keyword char fitskey::keyword

(Returned) Keyword name, null-filled for keywords of less than eight characters (trailing blanks replaced by nulls).

Use
sprintf(dst, "%.8s", keyword)

to copy it to a character array with null-termination, or
sprintf(dst, "%8.8s", keyword)

to blank-fill to eight characters followed by null-termination.

18.5.2.5 type int fitskey::type

(Returned) Keyvalue data type:

• 0: No keyvalue (both the value and type are undefined).

• 1: Logical, represented as int.

• 2: 32-bit signed integer.

• 3: 64-bit signed integer (see below).

• 4: Very long integer (see below).

• 5: Floating point (stored as double).

• 6: Integer complex (stored as double[2]).

• 7: Floating point complex (stored as double[2]).

• 8: String.

• 8+10∗n: Continued string (described below and in fitshdr() note 2).

A negative type indicates that a syntax error was encountered when attempting to parse a keyvalue of the particular
type.

Comments on particular data types:

• 64-bit signed integers lie in the range
(-9223372036854775808 <= int64 < -2147483648) ||

(+2147483647 < int64 <= +9223372036854775807)

A native 64-bit data type may be defined via preprocessor macro WCSLIB_INT64 defined in wcsconfig.h, e.g.
as 'long long int'; this will be typedef'd to 'int64' here. If WCSLIB_INT64 is not set, then int64 is typedef'd to
int[3] instead and fitskey::keyvalue is to be computed as
((keyvalue.k[2]) * 1000000000 +
keyvalue.k[1]) * 1000000000 +
keyvalue.k[0]

and may reported via
if (keyvalue.k[2]) {
printf("%d%09d%09d", keyvalue.k[2], abs(keyvalue.k[1]),

abs(keyvalue.k[0]));
} else {
printf("%d%09d", keyvalue.k[1], abs(keyvalue.k[0]));

}

where keyvalue.k[0] and keyvalue.k[1] range from -999999999 to +999999999.

• Very long integers, up to 70 decimal digits in length, are encoded in keyvalue.l as an array of int[8], each of
which stores 9 decimal digits. fitskey::keyvalue is to be computed as
(((((((keyvalue.l[7]) * 1000000000 +

keyvalue.l[6]) * 1000000000 +
keyvalue.l[5]) * 1000000000 +
keyvalue.l[4]) * 1000000000 +
keyvalue.l[3]) * 1000000000 +
keyvalue.l[2]) * 1000000000 +
keyvalue.l[1]) * 1000000000 +
keyvalue.l[0]

• Continued strings are not reconstructed, they remain split over successive fitskey structs in the keys[] array
returned by fitshdr(). fitskey::keyvalue data type, 8 + 10n, indicates the segment number, n, in the continua-
tion.

Generated by Doxygen

34

18.5.2.6 padding int fitskey::padding

(An unused variable inserted for alignment purposes only.)

18.5.2.7 i int fitskey::i

(Returned) Logical (fitskey::type == 1) and 32-bit signed integer (fitskey::type == 2) data types in the fitskey::keyvalue
union.

18.5.2.8 k int64 fitskey::k

(Returned) 64-bit signed integer (fitskey::type == 3) data type in the fitskey::keyvalue union.

18.5.2.9 l int fitskey::l

(Returned) Very long integer (fitskey::type == 4) data type in the fitskey::keyvalue union.

18.5.2.10 f double fitskey::f

(Returned) Floating point (fitskey::type == 5) data type in the fitskey::keyvalue union.

18.5.2.11 c double fitskey::c

(Returned) Integer and floating point complex (fitskey::type == 6 || 7) data types in the fitskey::keyvalue union.

18.5.2.12 s char fitskey::s

(Returned) Null-terminated string (fitskey::type == 8) data type in the fitskey::keyvalue union.

18.5.2.13 keyvalue union fitskey::keyvalue

(Returned) A union comprised of

• fitskey::i,

• fitskey::k,

• fitskey::l,

• fitskey::f,

• fitskey::c,

• fitskey::s,

used by the fitskey struct to contain the value associated with a keyword.

Generated by Doxygen

18.6 fitskeyid Struct Reference 35

18.5.2.14 ulen int fitskey::ulen

(Returned) Where a keycomment contains a units string in the standard form, e.g. [m/s], the ulen member indicates
its length, inclusive of square brackets. Otherwise ulen is zero.

18.5.2.15 comment char fitskey::comment

(Returned) Keycomment, i.e. comment associated with the keyword or, for keyrecords rejected because of syntax
errors, the compete keyrecord itself with null-termination.

Comments are null-terminated with trailing spaces removed. Leading spaces are also removed from keycomments
(i.e. those immediately following the '/' character), but not from COMMENT or HISTORY keyrecords or keyrecords
without a value indicator (''= '' in columns 9-80).

18.6 fitskeyid Struct Reference

Keyword indexing.

#include <fitshdr.h>

Data Fields

• char name [12]
• int count
• int idx [2]

18.6.1 Detailed Description

fitshdr() uses the fitskeyid struct to return indexing information for specified keywords. The struct contains three
members, the first of which, fitskeyid::name, must be set by the user with the remainder returned by fitshdr().

18.6.2 Field Documentation

18.6.2.1 name char fitskeyid::name

(Given) Name of the required keyword. This is to be set by the user; the '.' character may be used for wildcarding.
Trailing blanks will be replaced with nulls.

18.6.2.2 count int fitskeyid::count

(Returned) The number of matches found for the keyword.

Generated by Doxygen

36

18.6.2.3 idx int fitskeyid::idx

(Returned) Indices into keys[], the array of fitskey structs returned by fitshdr(). Note that these are 0-relative array
indices, not keyrecord numbers.

If the keyword is found in the header the first index will be set to the array index of its first occurrence, otherwise it
will be set to -1.

If multiples of the keyword are found, the second index will be set to the array index of its last occurrence, otherwise
it will be set to -1.

18.7 linprm Struct Reference

Linear transformation parameters.

#include <lin.h>

Data Fields

• int flag
• int naxis
• double ∗ crpix
• double ∗ pc
• double ∗ cdelt
• struct disprm ∗ dispre
• struct disprm ∗ disseq
• double ∗ piximg
• double ∗ imgpix
• int i_naxis
• int unity
• int affine
• int simple
• struct wcserr ∗ err
• double ∗ tmpcrd
• int m_flag
• int m_naxis
• double ∗ m_crpix
• double ∗ m_pc
• double ∗ m_cdelt
• struct disprm ∗ m_dispre
• struct disprm ∗ m_disseq

18.7.1 Detailed Description

The linprm struct contains all of the information required to perform a linear transformation. It consists of certain
members that must be set by the user (given) and others that are set by the WCSLIB routines (returned).

18.7.2 Field Documentation

Generated by Doxygen

18.7 linprm Struct Reference 37

18.7.2.1 flag int linprm::flag

(Given and returned) This flag must be set to zero whenever any of the following members of the linprm struct are
set or modified:

• linprm::naxis (q.v., not normally set by the user),

• linprm::pc,

• linprm::cdelt,

• linprm::dispre.

• linprm::disseq.

This signals the initialization routine, linset(), to recompute the returned members of the linprm struct. linset() will
reset flag to indicate that this has been done.

PLEASE NOTE: flag should be set to -1 when lininit() is called for the first time for a particular linprm struct in
order to initialize memory management. It must ONLY be used on the first initialization otherwise memory leaks
may result.

18.7.2.2 naxis int linprm::naxis

(Given or returned) Number of pixel and world coordinate elements.

If lininit() is used to initialize the linprm struct (as would normally be the case) then it will set naxis from the value
passed to it as a function argument. The user should not subsequently modify it.

18.7.2.3 crpix double ∗ linprm::crpix

(Given) Pointer to the first element of an array of double containing the coordinate reference pixel, CRPIXja.

It is not necessary to reset the linprm struct (via linset()) when linprm::crpix is changed.

18.7.2.4 pc double ∗ linprm::pc

(Given) Pointer to the first element of the PCi_ja (pixel coordinate) transformation matrix. The expected order is
struct linprm lin;
lin.pc = {PC1_1, PC1_2, PC2_1, PC2_2};

This may be constructed conveniently from a 2-D array via
double m[2][2] = {{PC1_1, PC1_2},

{PC2_1, PC2_2}};

which is equivalent to
double m[2][2];
m[0][0] = PC1_1;
m[0][1] = PC1_2;
m[1][0] = PC2_1;
m[1][1] = PC2_2;

The storage order for this 2-D array is the same as for the 1-D array, whence
lin.pc = *m;

would be legitimate.

Generated by Doxygen

38

18.7.2.5 cdelt double ∗ linprm::cdelt

(Given) Pointer to the first element of an array of double containing the coordinate increments, CDELTia.

18.7.2.6 dispre struct disprm ∗ linprm::dispre

(Given) Pointer to a disprm struct holding parameters for prior distortion functions, or a null (0x0) pointer if there are
none.

Function lindist() may be used to assign a disprm pointer to a linprm struct, allowing it to take control of any memory
allocated for it, as in the following example:
void add_distortion(struct linprm *lin)
{

struct disprm *dispre;
dispre = malloc(sizeof(struct disprm));
dispre->flag = -1;
lindist(1, lin, dispre, ndpmax);
:
(Set up dispre.)
:

return;
}

Here, after the distortion function parameters etc. are copied into dispre, dispre is assigned using lindist() which
takes control of the allocated memory. It will be freed later when linfree() is invoked on the linprm struct.

Consider also the following erroneous code:
void bad_code(struct linprm *lin)
{

struct disprm dispre;
dispre.flag = -1;
lindist(1, lin, &dispre, ndpmax); // WRONG.
:

return;
}

Here, dispre is declared as a struct, rather than a pointer. When the function returns, dispre will go out of scope and
its memory will most likely be reused, thereby trashing its contents. Later, a segfault will occur when linfree() tries
to free dispre's stale address.

18.7.2.7 disseq struct disprm ∗ linprm::disseq

(Given) Pointer to a disprm struct holding parameters for sequent distortion functions, or a null (0x0) pointer if there
are none.

Refer to the comments and examples given for disprm::dispre.

18.7.2.8 piximg double ∗ linprm::piximg

(Returned) Pointer to the first element of the matrix containing the product of the CDELTia diagonal matrix and the
PCi_ja matrix.

18.7.2.9 imgpix double ∗ linprm::imgpix

(Returned) Pointer to the first element of the inverse of the linprm::piximg matrix.

18.7.2.10 i_naxis int linprm::i_naxis

(Returned) The dimension of linprm::piximg and linprm::imgpix (normally equal to naxis).

Generated by Doxygen

18.7 linprm Struct Reference 39

18.7.2.11 unity int linprm::unity

(Returned) True if the linear transformation matrix is unity.

18.7.2.12 affine int linprm::affine

(Returned) True if there are no distortions.

18.7.2.13 simple int linprm::simple

(Returned) True if unity and no distortions.

18.7.2.14 err struct wcserr ∗ linprm::err

(Returned) If enabled, when an error status is returned, this struct contains detailed information about the error, see
wcserr_enable().

18.7.2.15 tmpcrd double ∗ linprm::tmpcrd

(For internal use only.)

18.7.2.16 m_flag int linprm::m_flag

(For internal use only.)

18.7.2.17 m_naxis int linprm::m_naxis

(For internal use only.)

18.7.2.18 m_crpix double ∗ linprm::m_crpix

(For internal use only.)

18.7.2.19 m_pc double ∗ linprm::m_pc

(For internal use only.)

18.7.2.20 m_cdelt double ∗ linprm::m_cdelt

(For internal use only.)

18.7.2.21 m_dispre struct disprm ∗ linprm::m_dispre

(For internal use only.)

Generated by Doxygen

40

18.7.2.22 m_disseq struct disprm ∗ linprm::m_disseq

(For internal use only.)

18.8 prjprm Struct Reference

Projection parameters.

#include <prj.h>

Data Fields

• int flag
• char code [4]
• double r0
• double pv [PVN]
• double phi0
• double theta0
• int bounds
• char name [40]
• int category
• int pvrange
• int simplezen
• int equiareal
• int conformal
• int global
• int divergent
• double x0
• double y0
• struct wcserr ∗ err
• void ∗ padding
• double w [10]
• int m
• int n
• int(∗ prjx2s)(PRJX2S_ARGS)
• int(∗ prjs2x)(PRJS2X_ARGS)

18.8.1 Detailed Description

The prjprm struct contains all information needed to project or deproject native spherical coordinates. It consists
of certain members that must be set by the user (given) and others that are set by the WCSLIB routines (returned).
Some of the latter are supplied for informational purposes while others are for internal use only.

18.8.2 Field Documentation

Generated by Doxygen

18.8 prjprm Struct Reference 41

18.8.2.1 flag int prjprm::flag

(Given and returned) This flag must be set to zero whenever any of the following prjprm struct members are set or
changed:

• prjprm::code,

• prjprm::r0,

• prjprm::pv[],

• prjprm::phi0,

• prjprm::theta0.

This signals the initialization routine (prjset() or ???set()) to recompute the returned members of the prjprm struct.
flag will then be reset to indicate that this has been done.

Note that flag need not be reset when prjprm::bounds is changed.

18.8.2.2 code char prjprm::code

(Given) Three-letter projection code defined by the FITS standard.

18.8.2.3 r0 double prjprm::r0

(Given) The radius of the generating sphere for the projection, a linear scaling parameter. If this is zero, it will be
reset to its default value of 180◦/π (the value for FITS WCS).

18.8.2.4 pv double prjprm::pv

(Given) Projection parameters. These correspond to the PVi_ma keywords in FITS, so pv[0] is PVi_0a, pv[1] is
PVi_1a, etc., where i denotes the latitude-like axis. Many projections use pv[1] (PVi_1a), some also use pv[2]
(PVi_2a) and SZP uses pv[3] (PVi_3a). ZPN is currently the only projection that uses any of the others.

Usage of the pv[] array as it applies to each projection is described in the prologue to each trio of projection routines
in prj.c.

18.8.2.5 phi0 double prjprm::phi0

(Given) The native longitude, φ0 [deg], and ...

18.8.2.6 theta0 double prjprm::theta0

(Given) ... the native latitude, θ0 [deg], of the reference point, i.e. the point (x, y) = (0,0). If undefined (set to a
magic value by prjini()) the initialization routine will set this to a projection-specific default.

Generated by Doxygen

42

18.8.2.7 bounds int prjprm::bounds

(Given) Controls bounds checking. If bounds&1 then enable strict bounds checking for the spherical-to-Cartesian
(s2x) transformation for the AZP, SZP, TAN, SIN, ZPN, and COP projections. If bounds&2 then enable strict bounds
checking for the Cartesian-to-spherical transformation (x2s) for the HPX and XPH projections. If bounds&4 then the
Cartesian- to-spherical transformations (x2s) will invoke prjbchk() to perform bounds checking on the computed
native coordinates, with a tolerance set to suit each projection. bounds is set to 7 by prjini() by default which
enables all checks. Zero it to disable all checking.

It is not necessary to reset the prjprm struct (via prjset() or ???set()) when prjprm::bounds is changed.

The remaining members of the prjprm struct are maintained by the setup routines and must not be modified
elsewhere:

18.8.2.8 name char prjprm::name

(Returned) Long name of the projection.

Provided for information only, not used by the projection routines.

18.8.2.9 category int prjprm::category

(Returned) Projection category matching the value of the relevant global variable:

• ZENITHAL,

• CYLINDRICAL,

• PSEUDOCYLINDRICAL,

• CONVENTIONAL,

• CONIC,

• POLYCONIC,

• QUADCUBE, and

• HEALPIX.

The category name may be identified via the prj_categories character array, e.g.
struct prjprm prj;

...
printf("%s\n", prj_categories[prj.category]);

Provided for information only, not used by the projection routines.

18.8.2.10 pvrange int prjprm::pvrange

(Returned) Range of projection parameter indices: 100 times the first allowed index plus the number of parameters,
e.g. TAN is 0 (no parameters), SZP is 103 (1 to 3), and ZPN is 30 (0 to 29).

Provided for information only, not used by the projection routines.

Generated by Doxygen

18.8 prjprm Struct Reference 43

18.8.2.11 simplezen int prjprm::simplezen

(Returned) True if the projection is a radially-symmetric zenithal projection.

Provided for information only, not used by the projection routines.

18.8.2.12 equiareal int prjprm::equiareal

(Returned) True if the projection is equal area.

Provided for information only, not used by the projection routines.

18.8.2.13 conformal int prjprm::conformal

(Returned) True if the projection is conformal.

Provided for information only, not used by the projection routines.

18.8.2.14 global int prjprm::global

(Returned) True if the projection can represent the whole sphere in a finite, non-overlapped mapping.

Provided for information only, not used by the projection routines.

18.8.2.15 divergent int prjprm::divergent

(Returned) True if the projection diverges in latitude.

Provided for information only, not used by the projection routines.

18.8.2.16 x0 double prjprm::x0

(Returned) The offset in x,and ...

18.8.2.17 y0 double prjprm::y0

(Returned) ... the offset in y used to force (x, y) = (0,0) at (φ0, θ0).

18.8.2.18 err struct wcserr ∗ prjprm::err

(Returned) If enabled, when an error status is returned, this struct contains detailed information about the error, see
wcserr_enable().

18.8.2.19 padding void ∗ prjprm::padding

(An unused variable inserted for alignment purposes only.)

Generated by Doxygen

44

18.8.2.20 w double prjprm::w

(Returned) Intermediate floating-point values derived from the projection parameters, cached here to save recom-
putation.

Usage of the w[] array as it applies to each projection is described in the prologue to each trio of projection routines
in prj.c.

18.8.2.21 m int prjprm::m

18.8.2.22 n int prjprm::n

(Returned) Intermediate integer value (used only for the ZPN and HPX projections).

18.8.2.23 prjx2s prjprm::prjx2s

(Returned) Pointer to the spherical projection ...

18.8.2.24 prjs2x prjprm::prjs2x

(Returned) ... and deprojection routines.

18.9 pscard Struct Reference

Store for PSi_ma keyrecords.

#include <wcs.h>

Data Fields

• int i
• int m
• char value [72]

18.9.1 Detailed Description

The pscard struct is used to pass the parsed contents of PSi_ma keyrecords to wcsset() via the wcsprm struct.

All members of this struct are to be set by the user.

18.9.2 Field Documentation

Generated by Doxygen

18.10 pvcard Struct Reference 45

18.9.2.1 i int pscard::i

(Given) Axis number (1-relative), as in the FITS PSi_ma keyword.

18.9.2.2 m int pscard::m

(Given) Parameter number (non-negative), as in the FITS PSi_ma keyword.

18.9.2.3 value char pscard::value

(Given) Parameter value.

18.10 pvcard Struct Reference

Store for PVi_ma keyrecords.

#include <wcs.h>

Data Fields

• int i
• int m
• double value

18.10.1 Detailed Description

The pvcard struct is used to pass the parsed contents of PVi_ma keyrecords to wcsset() via the wcsprm struct.

All members of this struct are to be set by the user.

18.10.2 Field Documentation

18.10.2.1 i int pvcard::i

(Given) Axis number (1-relative), as in the FITS PVi_ma keyword. If i == 0, wcsset() will replace it with the latitude
axis number.

18.10.2.2 m int pvcard::m

(Given) Parameter number (non-negative), as in the FITS PVi_ma keyword.

18.10.2.3 value double pvcard::value

(Given) Parameter value.

Generated by Doxygen

46

18.11 spcprm Struct Reference

Spectral transformation parameters.

#include <spc.h>

Data Fields

• int flag
• char type [8]
• char code [4]
• double crval
• double restfrq
• double restwav
• double pv [7]
• double w [6]
• int isGrism
• int padding1
• struct wcserr ∗ err
• void ∗ padding2
• int(∗ spxX2P)(SPX_ARGS)
• int(∗ spxP2S)(SPX_ARGS)
• int(∗ spxS2P)(SPX_ARGS)
• int(∗ spxP2X)(SPX_ARGS)

18.11.1 Detailed Description

The spcprm struct contains information required to transform spectral coordinates. It consists of certain members
that must be set by the user (given) and others that are set by the WCSLIB routines (returned). Some of the latter
are supplied for informational purposes while others are for internal use only.

18.11.2 Field Documentation

18.11.2.1 flag int spcprm::flag

(Given and returned) This flag must be set to zero whenever any of the following spcprm structure members are
set or changed:

• spcprm::type,

• spcprm::code,

• spcprm::crval,

• spcprm::restfrq,

• spcprm::restwav,

• spcprm::pv[].

This signals the initialization routine, spcset(), to recompute the returned members of the spcprm struct. spcset()
will reset flag to indicate that this has been done.

Generated by Doxygen

18.11 spcprm Struct Reference 47

18.11.2.2 type char spcprm::type

(Given) Four-letter spectral variable type, e.g "ZOPT" for CTYPEia = 'ZOPT-F2W'. (Declared as char[8] for
alignment reasons.)

18.11.2.3 code char spcprm::code

(Given) Three-letter spectral algorithm code, e.g "F2W" for CTYPEia = 'ZOPT-F2W'.

18.11.2.4 crval double spcprm::crval

(Given) Reference value (CRVALia), SI units.

18.11.2.5 restfrq double spcprm::restfrq

(Given) The rest frequency [Hz], and ...

18.11.2.6 restwav double spcprm::restwav

(Given) ... the rest wavelength in vacuo [m], only one of which need be given, the other should be set to zero.
Neither are required if the X and S spectral variables are both wave-characteristic, or both velocity-characteristic,
types.

18.11.2.7 pv double spcprm::pv

(Given) Grism parameters for 'GRI' and 'GRA' algorithm codes:

• 0: G, grating ruling density.

• 1: m, interference order.

• 2: α, angle of incidence [deg].

• 3: nr, refractive index at the reference wavelength, λr.

• 4: n'r, dn/dλ at the reference wavelength, λr (/m).

• 5: ε, grating tilt angle [deg].

• 6: θ, detector tilt angle [deg].

The remaining members of the spcprm struct are maintained by spcset() and must not be modified elsewhere:

18.11.2.8 w double spcprm::w

(Returned) Intermediate values:

• 0: Rest frequency or wavelength (SI).

• 1: The value of the X-type spectral variable at the reference point (SI units).

• 2: dX/dS at the reference point (SI units).

The remainder are grism intermediates.

Generated by Doxygen

48

18.11.2.9 isGrism int spcprm::isGrism

(Returned) Grism coordinates?

• 0: no,

• 1: in vacuum,

• 2: in air.

18.11.2.10 padding1 int spcprm::padding1

(An unused variable inserted for alignment purposes only.)

18.11.2.11 err struct wcserr ∗ spcprm::err

(Returned) If enabled, when an error status is returned, this struct contains detailed information about the error, see
wcserr_enable().

18.11.2.12 padding2 void ∗ spcprm::padding2

(An unused variable inserted for alignment purposes only.)

18.11.2.13 spxX2P spcprm::spxX2P

(Returned) The first and ...

18.11.2.14 spxP2S spcprm::spxP2S

(Returned) ... the second of the pointers to the transformation functions in the two-step algorithm chain X ;

P → S in the pixel-to-spectral direction where the non-linear transformation is from X to P . The argument list,
SPX_ARGS, is defined in spx.h.

18.11.2.15 spxS2P spcprm::spxS2P

(Returned) The first and ...

18.11.2.16 spxP2X spcprm::spxP2X

(Returned) ... the second of the pointers to the transformation functions in the two-step algorithm chain S →
P ; X in the spectral-to-pixel direction where the non-linear transformation is from P to X . The argument list,
SPX_ARGS, is defined in spx.h.

Generated by Doxygen

18.12 spxprm Struct Reference 49

18.12 spxprm Struct Reference

Spectral variables and their derivatives.

#include <spx.h>

Data Fields

• double restfrq
• double restwav
• int wavetype
• int velotype
• double freq
• double afrq
• double ener
• double wavn
• double vrad
• double wave
• double vopt
• double zopt
• double awav
• double velo
• double beta
• double dfreqafrq
• double dafrqfreq
• double dfreqener
• double denerfreq
• double dfreqwavn
• double dwavnfreq
• double dfreqvrad
• double dvradfreq
• double dfreqwave
• double dwavefreq
• double dfreqawav
• double dawavfreq
• double dfreqvelo
• double dvelofreq
• double dwavevopt
• double dvoptwave
• double dwavezopt
• double dzoptwave
• double dwaveawav
• double dawavwave
• double dwavevelo
• double dvelowave
• double dawavvelo
• double dveloawav
• double dvelobeta
• double dbetavelo
• struct wcserr ∗ err
• void ∗ padding

Generated by Doxygen

50

18.12.1 Detailed Description

The spxprm struct contains the value of all spectral variables and their derivatives. It is used solely by specx()
which constructs it from information provided via its function arguments.

This struct should be considered read-only, no members need ever be set nor should ever be modified by the user.

18.12.2 Field Documentation

18.12.2.1 restfrq double spxprm::restfrq

(Returned) Rest frequency [Hz].

18.12.2.2 restwav double spxprm::restwav

(Returned) Rest wavelength [m].

18.12.2.3 wavetype int spxprm::wavetype

(Returned) True if wave types have been computed, and ...

18.12.2.4 velotype int spxprm::velotype

(Returned) ... true if velocity types have been computed; types are defined below.

If one or other of spxprm::restfrq and spxprm::restwav is given (non-zero) then all spectral variables may be com-
puted. If both are given, restfrq is used. If restfrq and restwav are both zero, only wave characteristic xor velocity
type spectral variables may be computed depending on the variable given. These flags indicate what is available.

18.12.2.5 freq double spxprm::freq

(Returned) Frequency [Hz] (wavetype).

18.12.2.6 afrq double spxprm::afrq

(Returned) Angular frequency [rad/s] (wavetype).

18.12.2.7 ener double spxprm::ener

(Returned) Photon energy [J] (wavetype).

18.12.2.8 wavn double spxprm::wavn

(Returned) Wave number [/m] (wavetype).

Generated by Doxygen

18.12 spxprm Struct Reference 51

18.12.2.9 vrad double spxprm::vrad

(Returned) Radio velocity [m/s] (velotype).

18.12.2.10 wave double spxprm::wave

(Returned) Vacuum wavelength [m] (wavetype).

18.12.2.11 vopt double spxprm::vopt

(Returned) Optical velocity [m/s] (velotype).

18.12.2.12 zopt double spxprm::zopt

(Returned) Redshift [dimensionless] (velotype).

18.12.2.13 awav double spxprm::awav

(Returned) Air wavelength [m] (wavetype).

18.12.2.14 velo double spxprm::velo

(Returned) Relativistic velocity [m/s] (velotype).

18.12.2.15 beta double spxprm::beta

(Returned) Relativistic beta [dimensionless] (velotype).

18.12.2.16 dfreqafrq double spxprm::dfreqafrq

(Returned) Derivative of frequency with respect to angular frequency [/rad] (constant, = 1/2π), and ...

18.12.2.17 dafrqfreq double spxprm::dafrqfreq

(Returned) ... vice versa [rad] (constant, = 2π, always available).

18.12.2.18 dfreqener double spxprm::dfreqener

(Returned) Derivative of frequency with respect to photon energy [/J/s] (constant, = 1/h), and ...

18.12.2.19 denerfreq double spxprm::denerfreq

(Returned) ... vice versa [Js] (constant, = h, Planck's constant, always available).

Generated by Doxygen

52

18.12.2.20 dfreqwavn double spxprm::dfreqwavn

(Returned) Derivative of frequency with respect to wave number [m/s] (constant, = c, the speed of light in vacuo),
and ...

18.12.2.21 dwavnfreq double spxprm::dwavnfreq

(Returned) ... vice versa [s/m] (constant, = 1/c, always available).

18.12.2.22 dfreqvrad double spxprm::dfreqvrad

(Returned) Derivative of frequency with respect to radio velocity [/m], and ...

18.12.2.23 dvradfreq double spxprm::dvradfreq

(Returned) ... vice versa [m] (wavetype && velotype).

18.12.2.24 dfreqwave double spxprm::dfreqwave

(Returned) Derivative of frequency with respect to vacuum wavelength [/m/s], and ...

18.12.2.25 dwavefreq double spxprm::dwavefreq

(Returned) ... vice versa [m s] (wavetype).

18.12.2.26 dfreqawav double spxprm::dfreqawav

(Returned) Derivative of frequency with respect to air wavelength, [/m/s], and ...

18.12.2.27 dawavfreq double spxprm::dawavfreq

(Returned) ... vice versa [m s] (wavetype).

18.12.2.28 dfreqvelo double spxprm::dfreqvelo

(Returned) Derivative of frequency with respect to relativistic velocity [/m], and ...

18.12.2.29 dvelofreq double spxprm::dvelofreq

(Returned) ... vice versa [m] (wavetype && velotype).

18.12.2.30 dwavevopt double spxprm::dwavevopt

(Returned) Derivative of vacuum wavelength with respect to optical velocity [s], and ...

Generated by Doxygen

18.12 spxprm Struct Reference 53

18.12.2.31 dvoptwave double spxprm::dvoptwave

(Returned) ... vice versa [/s] (wavetype && velotype).

18.12.2.32 dwavezopt double spxprm::dwavezopt

(Returned) Derivative of vacuum wavelength with respect to redshift [m], and ...

18.12.2.33 dzoptwave double spxprm::dzoptwave

(Returned) ... vice versa [/m] (wavetype && velotype).

18.12.2.34 dwaveawav double spxprm::dwaveawav

(Returned) Derivative of vacuum wavelength with respect to air wavelength [dimensionless], and ...

18.12.2.35 dawavwave double spxprm::dawavwave

(Returned) ... vice versa [dimensionless] (wavetype).

18.12.2.36 dwavevelo double spxprm::dwavevelo

(Returned) Derivative of vacuum wavelength with respect to relativistic velocity [s], and ...

18.12.2.37 dvelowave double spxprm::dvelowave

(Returned) ... vice versa [/s] (wavetype && velotype).

18.12.2.38 dawavvelo double spxprm::dawavvelo

(Returned) Derivative of air wavelength with respect to relativistic velocity [s], and ...

18.12.2.39 dveloawav double spxprm::dveloawav

(Returned) ... vice versa [/s] (wavetype && velotype).

18.12.2.40 dvelobeta double spxprm::dvelobeta

(Returned) Derivative of relativistic velocity with respect to relativistic beta [m/s] (constant, = c, the speed of light in
vacuo), and ...

18.12.2.41 dbetavelo double spxprm::dbetavelo

(Returned) ... vice versa [s/m] (constant, = 1/c, always available).

Generated by Doxygen

54

18.12.2.42 err struct wcserr ∗ spxprm::err

(Returned) If enabled, when an error status is returned, this struct contains detailed information about the error, see
wcserr_enable().

18.12.2.43 padding void ∗ spxprm::padding

(An unused variable inserted for alignment purposes only.)

Global variable: const char ∗spx_errmsg[] - Status return messages Error messages to match the status value
returned from each function.

18.13 tabprm Struct Reference

Tabular transformation parameters.

#include <tab.h>

Data Fields

• int flag
• int M
• int ∗ K
• int ∗ map
• double ∗ crval
• double ∗∗ index
• double ∗ coord
• int nc
• int padding
• int ∗ sense
• int ∗ p0
• double ∗ delta
• double ∗ extrema
• struct wcserr ∗ err
• int m_flag
• int m_M
• int m_N
• int set_M
• int ∗ m_K
• int ∗ m_map
• double ∗ m_crval
• double ∗∗ m_index
• double ∗∗ m_indxs
• double ∗ m_coord

18.13.1 Detailed Description

The tabprm struct contains information required to transform tabular coordinates. It consists of certain members
that must be set by the user (given) and others that are set by the WCSLIB routines (returned). Some of the latter
are supplied for informational purposes while others are for internal use only.

Generated by Doxygen

18.13 tabprm Struct Reference 55

18.13.2 Field Documentation

18.13.2.1 flag int tabprm::flag

(Given and returned) This flag must be set to zero whenever any of the following tabprm structure members are set
or changed:

• tabprm::M (q.v., not normally set by the user),

• tabprm::K (q.v., not normally set by the user),

• tabprm::map,

• tabprm::crval,

• tabprm::index,

• tabprm::coord.

This signals the initialization routine, tabset(), to recompute the returned members of the tabprm struct. tabset()
will reset flag to indicate that this has been done.

PLEASE NOTE: flag should be set to -1 when tabini() is called for the first time for a particular tabprm struct in
order to initialize memory management. It must ONLY be used on the first initialization otherwise memory leaks
may result.

18.13.2.2 M int tabprm::M

(Given or returned) Number of tabular coordinate axes.

If tabini() is used to initialize the tabprm struct (as would normally be the case) then it will set M from the value
passed to it as a function argument. The user should not subsequently modify it.

18.13.2.3 K int ∗ tabprm::K

(Given or returned) Pointer to the first element of a vector of length tabprm::M whose elements (K1,K2, ...KM)
record the lengths of the axes of the coordinate array and of each indexing vector.

If tabini() is used to initialize the tabprm struct (as would normally be the case) then it will set K from the array
passed to it as a function argument. The user should not subsequently modify it.

18.13.2.4 map int ∗ tabprm::map

(Given) Pointer to the first element of a vector of length tabprm::M that defines the association between axis m in
the M-dimensional coordinate array (1 ≤ m ≤ M) and the indices of the intermediate world coordinate and world
coordinate arrays, x[] and world[], in the argument lists for tabx2s() and tabs2x().

When x[] and world[] contain the full complement of coordinate elements in image-order, as will usually be the case,
then map[m-1] == i-1 for axis i in the N-dimensional image (1 ≤ i ≤ N). In terms of the FITS keywords

map[PVi_3a - 1] == i - 1.

However, a different association may result if x[], for example, only contains a (relevant) subset of intermediate
world coordinate elements. For example, if M == 1 for an image with N > 1, it is possible to fill x[] with the relevant
coordinate element with nelem set to 1. In this case map[0] = 0 regardless of the value of i.

Generated by Doxygen

56

18.13.2.5 crval double ∗ tabprm::crval

(Given) Pointer to the first element of a vector of length tabprm::M whose elements contain the index value for the
reference pixel for each of the tabular coordinate axes.

18.13.2.6 index double ∗∗ tabprm::index

(Given) Pointer to the first element of a vector of length tabprm::M of pointers to vectors of lengths (K1,K2, ...KM)
of 0-relative indexes (see tabprm::K).

The address of any or all of these index vectors may be set to zero, i.e.
index[m] == 0;

this is interpreted as default indexing, i.e.
index[m][k] = k;

18.13.2.7 coord double ∗ tabprm::coord

(Given) Pointer to the first element of the tabular coordinate array, treated as though it were defined as
double coord[K_M]...[K_2][K_1][M];

(see tabprm::K) i.e. with the M dimension varying fastest so that the M elements of a coordinate vector are stored
contiguously in memory.

18.13.2.8 nc int tabprm::nc

(Returned) Total number of coordinate vectors in the coordinate array being the product K1K2 . . .KM (see
tabprm::K).

18.13.2.9 padding int tabprm::padding

(An unused variable inserted for alignment purposes only.)

18.13.2.10 sense int ∗ tabprm::sense

(Returned) Pointer to the first element of a vector of length tabprm::M whose elements indicate whether the corre-
sponding indexing vector is monotonic increasing (+1), or decreasing (-1).

18.13.2.11 p0 int ∗ tabprm::p0

(Returned) Pointer to the first element of a vector of length tabprm::M of interpolated indices into the coordinate
array such that Υm, as defined in Paper III, is equal to (p0[m] + 1) + tabprm::delta[m].

18.13.2.12 delta double ∗ tabprm::delta

(Returned) Pointer to the first element of a vector of length tabprm::M of interpolated indices into the coordinate
array such that Υm, as defined in Paper III, is equal to (tabprm::p0[m] + 1) + delta[m].

Generated by Doxygen

18.13 tabprm Struct Reference 57

18.13.2.13 extrema double ∗ tabprm::extrema

(Returned) Pointer to the first element of an array that records the minimum and maximum value of each element
of the coordinate vector in each row of the coordinate array, treated as though it were defined as
double extrema[K_M]...[K_2][2][M]

(see tabprm::K). The minimum is recorded in the first element of the compressedK1 dimension, then the maximum.
This array is used by the inverse table lookup function, tabs2x(), to speed up table searches.

18.13.2.14 err struct wcserr ∗ tabprm::err

(Returned) If enabled, when an error status is returned, this struct contains detailed information about the error, see
wcserr_enable().

18.13.2.15 m_flag int tabprm::m_flag

(For internal use only.)

18.13.2.16 m_M int tabprm::m_M

(For internal use only.)

18.13.2.17 m_N int tabprm::m_N

(For internal use only.)

18.13.2.18 set_M int tabprm::set_M

(For internal use only.)

18.13.2.19 m_K int tabprm::m_K

(For internal use only.)

18.13.2.20 m_map int tabprm::m_map

(For internal use only.)

18.13.2.21 m_crval int tabprm::m_crval

(For internal use only.)

18.13.2.22 m_index int tabprm::m_index

(For internal use only.)

Generated by Doxygen

58

18.13.2.23 m_indxs int tabprm::m_indxs

(For internal use only.)

18.13.2.24 m_coord int tabprm::m_coord

(For internal use only.)

18.14 wcserr Struct Reference

Error message handling.

#include <wcserr.h>

Data Fields

• int status
• int line_no
• const char ∗ function
• const char ∗ file
• char ∗ msg

18.14.1 Detailed Description

The wcserr struct contains the numeric error code, a textual description of the error, and information about the
function, source file, and line number where the error was generated.

18.14.2 Field Documentation

18.14.2.1 status int wcserr::status

Numeric status code associated with the error, the meaning of which depends on the function that generated it. See
the documentation for the particular function.

18.14.2.2 line_no int wcserr::line_no

Line number where the error occurred as given by the __LINE__ preprocessor macro.

const char ∗function Name of the function where the error occurred.

const char ∗file Name of the source file where the error occurred as given by the __FILE__ preprocessor macro.

18.14.2.3 function const char∗ wcserr::function

Generated by Doxygen

18.15 wcsprm Struct Reference 59

18.14.2.4 file const char∗ wcserr::file

18.14.2.5 msg char ∗ wcserr::msg

Informative error message.

18.15 wcsprm Struct Reference

Coordinate transformation parameters.

#include <wcs.h>

Data Fields

• int flag
• int naxis
• double ∗ crpix
• double ∗ pc
• double ∗ cdelt
• double ∗ crval
• char(∗ cunit)[72]
• char(∗ ctype)[72]
• double lonpole
• double latpole
• double restfrq
• double restwav
• int npv
• int npvmax
• struct pvcard ∗ pv
• int nps
• int npsmax
• struct pscard ∗ ps
• double ∗ cd
• double ∗ crota
• int altlin
• int velref
• char alt [4]
• int colnum
• int ∗ colax
• char(∗ cname)[72]
• double ∗ crder
• double ∗ csyer
• double ∗ czphs
• double ∗ cperi
• char wcsname [72]
• char timesys [72]
• char trefpos [72]
• char trefdir [72]
• char plephem [72]
• char timeunit [72]

Generated by Doxygen

60

• char dateref [72]
• double mjdref [2]
• double timeoffs
• char dateobs [72]
• char datebeg [72]
• char dateavg [72]
• char dateend [72]
• double mjdobs
• double mjdbeg
• double mjdavg
• double mjdend
• double jepoch
• double bepoch
• double tstart
• double tstop
• double xposure
• double telapse
• double timsyer
• double timrder
• double timedel
• double timepixr
• double obsgeo [6]
• char obsorbit [72]
• char radesys [72]
• double equinox
• char specsys [72]
• char ssysobs [72]
• double velosys
• double zsource
• char ssyssrc [72]
• double velangl
• struct auxprm ∗ aux
• int ntab
• int nwtb
• struct tabprm ∗ tab
• struct wtbarr ∗ wtb
• char lngtyp [8]
• char lattyp [8]
• int lng
• int lat
• int spec
• int cubeface
• int ∗ types
• struct linprm lin
• struct celprm cel
• struct spcprm spc
• struct wcserr ∗ err
• int m_flag
• int m_naxis
• double ∗ m_crpix
• double ∗ m_pc
• double ∗ m_cdelt
• double ∗ m_crval
• char(∗ m_cunit)[72]
• char((∗ m_ctype)[72]

Generated by Doxygen

18.15 wcsprm Struct Reference 61

• struct pvcard ∗ m_pv
• struct pscard ∗ m_ps
• double ∗ m_cd
• double ∗ m_crota
• int ∗ m_colax
• char(∗ m_cname)[72]
• double ∗ m_crder
• double ∗ m_csyer
• double ∗ m_czphs
• double ∗ m_cperi
• struct auxprm ∗ m_aux
• struct tabprm ∗ m_tab
• struct wtbarr ∗ m_wtb

18.15.1 Detailed Description

The wcsprm struct contains information required to transform world coordinates. It consists of certain members
that must be set by the user (given) and others that are set by the WCSLIB routines (returned). While the addresses
of the arrays themselves may be set by wcsinit() if it (optionally) allocates memory, their contents must be set by the
user.

Some parameters that are given are not actually required for transforming coordinates. These are described as
"auxiliary"; the struct simply provides a place to store them, though they may be used by wcshdo() in constructing
a FITS header from a wcsprm struct. Some of the returned values are supplied for informational purposes and
others are for internal use only as indicated.

In practice, it is expected that a WCS parser would scan the FITS header to determine the number of coordinate
axes. It would then use wcsinit() to allocate memory for arrays in the wcsprm struct and set default values. Then
as it reread the header and identified each WCS keyrecord it would load the value into the relevant wcsprm array
element. This is essentially what wcspih() does - refer to the prologue of wcshdr.h. As the final step, wcsset() is
invoked, either directly or indirectly, to set the derived members of the wcsprm struct. wcsset() strips off trailing
blanks in all string members and null-fills the character array.

18.15.2 Field Documentation

18.15.2.1 flag int wcsprm::flag

(Given and returned) This flag must be set to zero whenever any of the following wcsprm struct members are set
or changed:

• wcsprm::naxis (q.v., not normally set by the user),

• wcsprm::crpix,

• wcsprm::pc,

• wcsprm::cdelt,

• wcsprm::crval,

• wcsprm::cunit,

Generated by Doxygen

62

• wcsprm::ctype,

• wcsprm::lonpole,

• wcsprm::latpole,

• wcsprm::restfrq,

• wcsprm::restwav,

• wcsprm::npv,

• wcsprm::pv,

• wcsprm::nps,

• wcsprm::ps,

• wcsprm::cd,

• wcsprm::crota,

• wcsprm::altlin,

• wcsprm::ntab,

• wcsprm::nwtb,

• wcsprm::tab,

• wcsprm::wtb.

This signals the initialization routine, wcsset(), to recompute the returned members of the linprm, celprm, spcprm,
and tabprm structs. wcsset() will reset flag to indicate that this has been done.

PLEASE NOTE: flag should be set to -1 when wcsinit() is called for the first time for a particular wcsprm struct in
order to initialize memory management. It must ONLY be used on the first initialization otherwise memory leaks
may result.

18.15.2.2 naxis int wcsprm::naxis

(Given or returned) Number of pixel and world coordinate elements.

If wcsinit() is used to initialize the linprm struct (as would normally be the case) then it will set naxis from the value
passed to it as a function argument. The user should not subsequently modify it.

18.15.2.3 crpix double ∗ wcsprm::crpix

(Given) Address of the first element of an array of double containing the coordinate reference pixel, CRPIXja.

18.15.2.4 pc double ∗ wcsprm::pc

(Given) Address of the first element of the PCi_ja (pixel coordinate) transformation matrix. The expected order is
struct wcsprm wcs;
wcs.pc = {PC1_1, PC1_2, PC2_1, PC2_2};

This may be constructed conveniently from a 2-D array via
double m[2][2] = {{PC1_1, PC1_2},

{PC2_1, PC2_2}};

which is equivalent to
double m[2][2];
m[0][0] = PC1_1;
m[0][1] = PC1_2;
m[1][0] = PC2_1;
m[1][1] = PC2_2;

The storage order for this 2-D array is the same as for the 1-D array, whence
wcs.pc = *m;

would be legitimate.

Generated by Doxygen

18.15 wcsprm Struct Reference 63

18.15.2.5 cdelt double ∗ wcsprm::cdelt

(Given) Address of the first element of an array of double containing the coordinate increments, CDELTia.

18.15.2.6 crval double ∗ wcsprm::crval

(Given) Address of the first element of an array of double containing the coordinate reference values, CRVALia.

18.15.2.7 cunit wcsprm::cunit

(Given) Address of the first element of an array of char[72] containing the CUNITia keyvalues which define the
units of measurement of the CRVALia, CDELTia, and CDi_ja keywords.

As CUNITia is an optional header keyword, cunit[][72] may be left blank but otherwise is expected to contain
a standard units specification as defined by WCS Paper I. Utility function wcsutrn(), described in wcsunits.h, is
available to translate commonly used non-standard units specifications but this must be done as a separate step
before invoking wcsset().

For celestial axes, if cunit[][72] is not blank, wcsset() uses wcsunits() to parse it and scale cdelt[], crval[], and cd[][∗]
to degrees. It then resets cunit[][72] to "deg".

For spectral axes, if cunit[][72] is not blank, wcsset() uses wcsunits() to parse it and scale cdelt[], crval[], and cd[][∗]
to SI units. It then resets cunit[][72] accordingly.

wcsset() ignores cunit[][72] for other coordinate types; cunit[][72] may be used to label coordinate values.

These variables accomodate the longest allowed string-valued FITS keyword, being limited to 68 characters, plus
the null-terminating character.

18.15.2.8 ctype wcsprm::ctype

(Given) Address of the first element of an array of char[72] containing the coordinate axis types, CTYPEia.

The ctype[][72] keyword values must be in upper case and there must be zero or one pair of matched celestial
axis types, and zero or one spectral axis. The ctype[][72] strings should be padded with blanks on the right and
null-terminated so that they are at least eight characters in length.

These variables accomodate the longest allowed string-valued FITS keyword, being limited to 68 characters, plus
the null-terminating character.

18.15.2.9 lonpole double wcsprm::lonpole

(Given and returned) The native longitude of the celestial pole, φp, given by LONPOLEa [deg] or by PVi_2a [deg]
attached to the longitude axis which takes precedence if defined, and ...

18.15.2.10 latpole double wcsprm::latpole

(Given and returned) ... the native latitude of the celestial pole, θp, given by LATPOLEa [deg] or by PVi_3a [deg]
attached to the longitude axis which takes precedence if defined.

lonpole and latpole may be left to default to values set by wcsinit() (see celprm::ref), but in any case they will be
reset by wcsset() to the values actually used. Note therefore that if the wcsprm struct is reused without resetting
them, whether directly or via wcsinit(), they will no longer have their default values.

Generated by Doxygen

64

18.15.2.11 restfrq double wcsprm::restfrq

(Given) The rest frequency [Hz], and/or ...

18.15.2.12 restwav double wcsprm::restwav

(Given) ... the rest wavelength in vacuo [m], only one of which need be given, the other should be set to zero.

18.15.2.13 npv int wcsprm::npv

(Given) The number of entries in the wcsprm::pv[] array.

18.15.2.14 npvmax int wcsprm::npvmax

(Given or returned) The length of the wcsprm::pv[] array.

npvmax will be set by wcsinit() if it allocates memory for wcsprm::pv[], otherwise it must be set by the user. See
also wcsnpv().

18.15.2.15 pv struct pvcard ∗ wcsprm::pv

(Given) Address of the first element of an array of length npvmax of pvcard structs.

As a FITS header parser encounters each PVi_ma keyword it should load it into a pvcard struct in the array and
increment npv. wcsset() interprets these as required.

Note that, if they were not given, wcsset() resets the entries for PVi_1a, PVi_2a, PVi_3a, and PVi_4a for longi-
tude axis i to match phi_0 and theta_0 (the native longitude and latitude of the reference point), LONPOLEa and
LATPOLEa respectively.

18.15.2.16 nps int wcsprm::nps

(Given) The number of entries in the wcsprm::ps[] array.

18.15.2.17 npsmax int wcsprm::npsmax

(Given or returned) The length of the wcsprm::ps[] array.

npsmax will be set by wcsinit() if it allocates memory for wcsprm::ps[], otherwise it must be set by the user. See
also wcsnps().

18.15.2.18 ps struct pscard ∗ wcsprm::ps

(Given) Address of the first element of an array of length npsmax of pscard structs.

As a FITS header parser encounters each PSi_ma keyword it should load it into a pscard struct in the array and
increment nps. wcsset() interprets these as required (currently no PSi_ma keyvalues are recognized).

Generated by Doxygen

18.15 wcsprm Struct Reference 65

18.15.2.19 cd double ∗ wcsprm::cd

(Given) For historical compatibility, the wcsprm struct supports two alternate specifications of the linear transfor-
mation matrix, those associated with the CDi_ja keywords, and ...

18.15.2.20 crota double ∗ wcsprm::crota

(Given) ... those associated with the CROTAi keywords. Although these may not formally co-exist with PCi_ja,
the approach taken here is simply to ignore them if given in conjunction with PCi_ja.

18.15.2.21 altlin int wcsprm::altlin

(Given) altlin is a bit flag that denotes which of the PCi_ja, CDi_ja and CROTAi keywords are present in the
header:

• Bit 0: PCi_ja is present.

• Bit 1: CDi_ja is present.

Matrix elements in the IRAF convention are equivalent to the product CDi_ja = CDELTia ∗ PCi_ja, but
the defaults differ from that of the PCi_ja matrix. If one or more CDi_ja keywords are present then all
unspecified CDi_ja default to zero. If no CDi_ja (or CROTAi) keywords are present, then the header is
assumed to be in PCi_ja form whether or not any PCi_ja keywords are present since this results in an
interpretation of CDELTia consistent with the original FITS specification.

While CDi_ja may not formally co-exist with PCi_ja, it may co-exist with CDELTia and CROTAi which
are to be ignored.

• Bit 2: CROTAi is present.

In the AIPS convention, CROTAi may only be associated with the latitude axis of a celestial axis pair. It
specifies a rotation in the image plane that is applied AFTER the CDELTia; any other CROTAi keywords
are ignored.

CROTAi may not formally co-exist with PCi_ja.

CROTAi and CDELTia may formally co-exist with CDi_ja but if so are to be ignored.

• Bit 3: PCi_ja + CDELTia was derived from CDi_ja by wcspcx().

This bit is set by wcspcx() when it derives PCi_ja and CDELTia from CDi_ja via an orthonormal decom-
position. In particular, it signals wcsset() not to replace PCi_ja by a copy of CDi_ja with CDELTia set to
unity.

CDi_ja and CROTAi keywords, if found, are to be stored in the wcsprm::cd and wcsprm::crota arrays which are
dimensioned similarly to wcsprm::pc and wcsprm::cdelt. FITS header parsers should use the following procedure:

• Whenever a PCi_ja keyword is encountered:
altlin |= 1;

• Whenever a CDi_ja keyword is encountered:
altlin |= 2;

• Whenever a CROTAi keyword is encountered:
altlin |= 4;

If none of these bits are set the PCi_ja representation results, i.e. wcsprm::pc and wcsprm::cdelt will be used as
given.

These alternate specifications of the linear transformation matrix are translated immediately to PCi_ja by wcsset()
and are invisible to the lower-level WCSLIB routines. In particular, unless bit 3 is also set, wcsset() resets
wcsprm::cdelt to unity if CDi_ja is present (and no PCi_ja).

If CROTAi are present but none is associated with the latitude axis (and no PCi_ja or CDi_ja), then wcsset()
reverts to a unity PCi_ja matrix.

Generated by Doxygen

66

18.15.2.22 velref int wcsprm::velref

(Given) AIPS velocity code VELREF, refer to spcaips().

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::velref is changed.

18.15.2.23 alt char wcsprm::alt

(Given, auxiliary) Character code for alternate coordinate descriptions (i.e. the 'a' in keyword names such as
CTYPEia). This is blank for the primary coordinate description, or one of the 26 upper-case letters, A-Z.

An array of four characters is provided for alignment purposes, only the first is used.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::alt is changed.

18.15.2.24 colnum int wcsprm::colnum

(Given, auxiliary) Where the coordinate representation is associated with an image-array column in a FITS binary
table, this variable may be used to record the relevant column number.

It should be set to zero for an image header or pixel list.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::colnum is changed.

18.15.2.25 colax int ∗ wcsprm::colax

(Given, auxiliary) Address of the first element of an array of int recording the column numbers for each axis in a
pixel list.

The array elements should be set to zero for an image header or image array in a binary table.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::colax is changed.

18.15.2.26 cname wcsprm::cname

(Given, auxiliary) The address of the first element of an array of char[72] containing the coordinate axis names,
CNAMEia.

These variables accomodate the longest allowed string-valued FITS keyword, being limited to 68 characters, plus
the null-terminating character.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::cname is changed.

18.15.2.27 crder double ∗ wcsprm::crder

(Given, auxiliary) Address of the first element of an array of double recording the random error in the coordinate
value, CRDERia.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::crder is changed.

Generated by Doxygen

18.15 wcsprm Struct Reference 67

18.15.2.28 csyer double ∗ wcsprm::csyer

(Given, auxiliary) Address of the first element of an array of double recording the systematic error in the coordinate
value, CSYERia.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::csyer is changed.

18.15.2.29 czphs double ∗ wcsprm::czphs

(Given, auxiliary) Address of the first element of an array of double recording the time at the zero point of a phase
axis, CZPHSia.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::czphs is changed.

18.15.2.30 cperi double ∗ wcsprm::cperi

(Given, auxiliary) Address of the first element of an array of double recording the period of a phase axis, CPERIia.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::cperi is changed.

18.15.2.31 wcsname char wcsprm::wcsname

(Given, auxiliary) The name given to the coordinate representation, WCSNAMEa. This variable accomodates the
longest allowed string-valued FITS keyword, being limited to 68 characters, plus the null-terminating character.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::wcsname is changed.

18.15.2.32 timesys char wcsprm::timesys

(Given, auxiliary) TIMESYS keyvalue, being the time scale (UTC, TAI, etc.) in which all other time-related auxiliary
header values are recorded. Also defines the time scale for an image axis with CTYPEia set to 'TIME'.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::timesys is changed.

18.15.2.33 trefpos char wcsprm::trefpos

(Given, auxiliary) TREFPOS keyvalue, being the location in space where the recorded time is valid.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::trefpos is changed.

18.15.2.34 trefdir char wcsprm::trefdir

(Given, auxiliary) TREFDIR keyvalue, being the reference direction used in calculating a pathlength delay.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::trefdir is changed.

18.15.2.35 plephem char wcsprm::plephem

(Given, auxiliary) PLEPHEM keyvalue, being the Solar System ephemeris used for calculating a pathlength delay.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::plephem is changed.

Generated by Doxygen

68

18.15.2.36 timeunit char wcsprm::timeunit

(Given, auxiliary) TIMEUNIT keyvalue, being the time units in which the following header values are expressed:
TSTART, TSTOP, TIMEOFFS, TIMSYER, TIMRDER, TIMEDEL. It also provides the default value for CUNITia
for time axes.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::timeunit is changed.

18.15.2.37 dateref char wcsprm::dateref

(Given, auxiliary) DATEREF keyvalue, being the date of a reference epoch relative to which other time measure-
ments refer.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::dateref is changed.

18.15.2.38 mjdref double wcsprm::mjdref

(Given, auxiliary) MJDREF keyvalue, equivalent to DATEREF expressed as a Modified Julian Date (MJD = JD -
2400000.5). The value is given as the sum of the two-element vector, allowing increased precision.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::mjdref is changed.

18.15.2.39 timeoffs double wcsprm::timeoffs

(Given, auxiliary) TIMEOFFS keyvalue, being a time offset, which may be used, for example, to provide a uniform
clock correction for times referenced to DATEREF.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::timeoffs is changed.

18.15.2.40 dateobs char wcsprm::dateobs

(Given, auxiliary) DATE-OBS keyvalue, being the date at the start of the observation unless otherwise explained in
the DATE-OBS keycomment, in ISO format, yyyy-mm-ddThh:mm:ss.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::dateobs is changed.

18.15.2.41 datebeg char wcsprm::datebeg

(Given, auxiliary) DATE-BEG keyvalue, being the date at the start of the observation in ISO format, yyyy-mm-
ddThh:mm:ss.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::datebeg is changed.

18.15.2.42 dateavg char wcsprm::dateavg

(Given, auxiliary) DATE-AVG keyvalue, being the date at a representative mid-point of the observation in ISO
format, yyyy-mm-ddThh:mm:ss.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::dateavg is changed.

Generated by Doxygen

18.15 wcsprm Struct Reference 69

18.15.2.43 dateend char wcsprm::dateend

(Given, auxiliary) DATE-END keyvalue, baing the date at the end of the observation in ISO format, yyyy-mm-
ddThh:mm:ss.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::dateend is changed.

18.15.2.44 mjdobs double wcsprm::mjdobs

(Given, auxiliary) MJD-OBS keyvalue, equivalent to DATE-OBS expressed as a Modified Julian Date (MJD = JD -
2400000.5).

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::mjdobs is changed.

18.15.2.45 mjdbeg double wcsprm::mjdbeg

(Given, auxiliary) MJD-BEG keyvalue, equivalent to DATE-BEG expressed as a Modified Julian Date (MJD = JD -
2400000.5).

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::mjdbeg is changed.

18.15.2.46 mjdavg double wcsprm::mjdavg

(Given, auxiliary) MJD-AVG keyvalue, equivalent to DATE-AVG expressed as a Modified Julian Date (MJD = JD -
2400000.5).

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::mjdavg is changed.

18.15.2.47 mjdend double wcsprm::mjdend

(Given, auxiliary) MJD-END keyvalue, equivalent to DATE-END expressed as a Modified Julian Date (MJD = JD -
2400000.5).

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::mjdend is changed.

18.15.2.48 jepoch double wcsprm::jepoch

(Given, auxiliary) JEPOCH keyvalue, equivalent to DATE-OBS expressed as a Julian epoch.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::jepoch is changed.

18.15.2.49 bepoch double wcsprm::bepoch

(Given, auxiliary) BEPOCH keyvalue, equivalent to DATE-OBS expressed as a Besselian epoch

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::bepoch is changed.

Generated by Doxygen

70

18.15.2.50 tstart double wcsprm::tstart

(Given, auxiliary) TSTART keyvalue, equivalent to DATE-BEG expressed as a time in units of TIMEUNIT relative
to DATEREF+TIMEOFFS.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::tstart is changed.

18.15.2.51 tstop double wcsprm::tstop

(Given, auxiliary) TSTOP keyvalue, equivalent to DATE-END expressed as a time in units of TIMEUNIT relative
to DATEREF+TIMEOFFS.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::tstop is changed.

18.15.2.52 xposure double wcsprm::xposure

(Given, auxiliary) XPOSURE keyvalue, being the effective exposure time in units of TIMEUNIT.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::xposure is changed.

18.15.2.53 telapse double wcsprm::telapse

(Given, auxiliary) TELAPSE keyvalue, equivalent to the elapsed time between DATE-BEG and DATE-END, in
units of TIMEUNIT.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::telapse is changed.

18.15.2.54 timsyer double wcsprm::timsyer

(Given, auxiliary) TIMSYER keyvalue, being the absolute error of the time values, in units of TIMEUNIT.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::timsyer is changed.

18.15.2.55 timrder double wcsprm::timrder

(Given, auxiliary) TIMRDER keyvalue, being the accuracy of time stamps relative to each other, in units of
TIMEUNIT.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::timrder is changed.

18.15.2.56 timedel double wcsprm::timedel

(Given, auxiliary) TIMEDEL keyvalue, being the resolution of the time stamps.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::timedel is changed.

18.15.2.57 timepixr double wcsprm::timepixr

(Given, auxiliary) TIMEPIXR keyvalue, being the relative position of the time stamps in binned time intervals, a
value between 0.0 and 1.0.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::timepixr is changed.

Generated by Doxygen

18.15 wcsprm Struct Reference 71

18.15.2.58 obsgeo double wcsprm::obsgeo

(Given, auxiliary) Location of the observer in a standard terrestrial reference frame. The first three give ITRS
Cartesian coordinates OBSGEO-X [m], OBSGEO-Y [m], OBSGEO-Z [m], and the second three give OBSGEO-L
[deg], OBSGEO-B [deg], OBSGEO-H [m], which are related through a standard transformation.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::obsgeo is changed.

18.15.2.59 obsorbit char wcsprm::obsorbit

(Given, auxiliary) OBSORBIT keyvalue, being the URI, URL, or name of an orbit ephemeris file giving spacecraft
coordinates relating to TREFPOS.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::obsorbit is changed.

18.15.2.60 radesys char wcsprm::radesys

(Given, auxiliary) The equatorial or ecliptic coordinate system type, RADESYSa.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::radesys is changed.

18.15.2.61 equinox double wcsprm::equinox

(Given, auxiliary) The equinox associated with dynamical equatorial or ecliptic coordinate systems, EQUINOXa (or
EPOCH in older headers). Not applicable to ICRS equatorial or ecliptic coordinates.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::equinox is changed.

18.15.2.62 specsys char wcsprm::specsys

(Given, auxiliary) Spectral reference frame (standard of rest), SPECSYSa.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::specsys is changed.

18.15.2.63 ssysobs char wcsprm::ssysobs

(Given, auxiliary) The spectral reference frame in which there is no differential variation in the spectral coordinate
across the field-of-view, SSYSOBSa.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::ssysobs is changed.

18.15.2.64 velosys double wcsprm::velosys

(Given, auxiliary) The relative radial velocity [m/s] between the observer and the selected standard of rest in the
direction of the celestial reference coordinate, VELOSYSa.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::velosys is changed.

Generated by Doxygen

72

18.15.2.65 zsource double wcsprm::zsource

(Given, auxiliary) The redshift, ZSOURCEa, of the source.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::zsource is changed.

18.15.2.66 ssyssrc char wcsprm::ssyssrc

(Given, auxiliary) The spectral reference frame (standard of rest), SSYSSRCa, in which wcsprm::zsource was
measured.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::ssyssrc is changed.

18.15.2.67 velangl double wcsprm::velangl

(Given, auxiliary) The angle [deg] that should be used to decompose an observed velocity into radial and transverse
components.

It is not necessary to reset the wcsprm struct (via wcsset()) when wcsprm::velangl is changed.

18.15.2.68 aux struct auxprm ∗ wcsprm::aux

(Given, auxiliary) This struct holds auxiliary coordinate system information of a specialist nature. While these
parameters may be widely recognized within particular fields of astronomy, they differ from the above auxiliary
parameters in not being defined by any of the FITS WCS standards. Collecting them together in a separate struct
that is allocated only when required helps to control bloat in the size of the wcsprm struct.

18.15.2.69 ntab int wcsprm::ntab

(Given) See wcsprm::tab.

18.15.2.70 nwtb int wcsprm::nwtb

(Given) See wcsprm::wtb.

18.15.2.71 tab struct tabprm ∗ wcsprm::tab

(Given) Address of the first element of an array of ntab tabprm structs for which memory has been allocated. These
are used to store tabular transformation parameters.

Although technically wcsprm::ntab and tab are "given", they will normally be set by invoking wcstab(), whether
directly or indirectly.

The tabprm structs contain some members that must be supplied and others that are derived. The information to
be supplied comes primarily from arrays stored in one or more FITS binary table extensions. These arrays, referred
to here as "wcstab arrays", are themselves located by parameters stored in the FITS image header.

Generated by Doxygen

18.15 wcsprm Struct Reference 73

18.15.2.72 wtb struct wtbarr ∗ wcsprm::wtb

(Given) Address of the first element of an array of nwtb wtbarr structs for which memory has been allocated. These
are used in extracting wcstab arrays from a FITS binary table.

Although technically wcsprm::nwtb and wtb are "given", they will normally be set by invoking wcstab(), whether
directly or indirectly.

18.15.2.73 lngtyp char wcsprm::lngtyp

(Returned) Four-character WCS celestial longitude and ...

18.15.2.74 lattyp char wcsprm::lattyp

(Returned) ... latitude axis types. e.g. "RA", "DEC", "GLON", "GLAT", etc. extracted from 'RA-', 'DEC-', 'GLON',
'GLAT', etc. in the first four characters of CTYPEia but with trailing dashes removed. (Declared as char[8] for
alignment reasons.)

18.15.2.75 lng int wcsprm::lng

(Returned) Index for the longitude coordinate, and ...

18.15.2.76 lat int wcsprm::lat

(Returned) ... index for the latitude coordinate, and ...

18.15.2.77 spec int wcsprm::spec

(Returned) ... index for the spectral coordinate in the imgcrd[][] and world[][] arrays in the API of wcsp2s(), wcss2p()
and wcsmix().

These may also serve as indices into the pixcrd[][] array provided that the PCi_ja matrix does not transpose axes.

18.15.2.78 cubeface int wcsprm::cubeface

(Returned) Index into the pixcrd[][] array for the CUBEFACE axis. This is used for quadcube projections where the
cube faces are stored on a separate axis (see wcs.h).

Generated by Doxygen

74

18.15.2.79 types int ∗ wcsprm::types

(Returned) Address of the first element of an array of int containing a four-digit type code for each axis.

• First digit (i.e. 1000s):

– 0: Non-specific coordinate type.

– 1: Stokes coordinate.

– 2: Celestial coordinate (including CUBEFACE).

– 3: Spectral coordinate.

– 4: Time coordinate.

• Second digit (i.e. 100s):

– 0: Linear axis.

– 1: Quantized axis (STOKES, CUBEFACE).

– 2: Non-linear celestial axis.

– 3: Non-linear spectral axis.

– 4: Logarithmic axis.

– 5: Tabular axis.

• Third digit (i.e. 10s):

– 0: Group number, e.g. lookup table number, being an index into the tabprm array (see above).

• The fourth digit is used as a qualifier depending on the axis type.

– For celestial axes:

* 0: Longitude coordinate.

* 1: Latitude coordinate.

* 2: CUBEFACE number.

– For lookup tables: the axis number in a multidimensional table.

CTYPEia in "4-3" form with unrecognized algorithm code will have its type set to -1 and generate an error.

18.15.2.80 lin struct linprm wcsprm::lin

(Returned) Linear transformation parameters (usage is described in the prologue to lin.h).

18.15.2.81 cel struct celprm wcsprm::cel

(Returned) Celestial transformation parameters (usage is described in the prologue to cel.h).

18.15.2.82 spc struct spcprm wcsprm::spc

(Returned) Spectral transformation parameters (usage is described in the prologue to spc.h).

18.15.2.83 err struct wcserr ∗ wcsprm::err

(Returned) If enabled, when an error status is returned, this struct contains detailed information about the error, see
wcserr_enable().

Generated by Doxygen

18.15 wcsprm Struct Reference 75

18.15.2.84 m_flag int wcsprm::m_flag

(For internal use only.)

18.15.2.85 m_naxis int wcsprm::m_naxis

(For internal use only.)

18.15.2.86 m_crpix double ∗ wcsprm::m_crpix

(For internal use only.)

18.15.2.87 m_pc double ∗ wcsprm::m_pc

(For internal use only.)

18.15.2.88 m_cdelt double ∗ wcsprm::m_cdelt

(For internal use only.)

18.15.2.89 m_crval double ∗ wcsprm::m_crval

(For internal use only.)

18.15.2.90 m_cunit wcsprm::m_cunit

(For internal use only.)

18.15.2.91 m_ctype wcsprm::m_ctype

(For internal use only.)

18.15.2.92 m_pv struct pvcard ∗ wcsprm::m_pv

(For internal use only.)

18.15.2.93 m_ps struct pscard ∗ wcsprm::m_ps

(For internal use only.)

18.15.2.94 m_cd double ∗ wcsprm::m_cd

(For internal use only.)

Generated by Doxygen

76

18.15.2.95 m_crota double ∗ wcsprm::m_crota

(For internal use only.)

18.15.2.96 m_colax int ∗ wcsprm::m_colax

(For internal use only.)

18.15.2.97 m_cname wcsprm::m_cname

(For internal use only.)

18.15.2.98 m_crder double ∗ wcsprm::m_crder

(For internal use only.)

18.15.2.99 m_csyer double ∗ wcsprm::m_csyer

(For internal use only.)

18.15.2.100 m_czphs double ∗ wcsprm::m_czphs

(For internal use only.)

18.15.2.101 m_cperi double ∗ wcsprm::m_cperi

(For internal use only.)

18.15.2.102 m_aux struct auxprm∗ wcsprm::m_aux

18.15.2.103 m_tab struct tabprm ∗ wcsprm::m_tab

(For internal use only.)

18.15.2.104 m_wtb struct wtbarr ∗ wcsprm::m_wtb

(For internal use only.)

18.16 wtbarr Struct Reference

Extraction of coordinate lookup tables from BINTABLE.

#include <getwcstab.h>

Generated by Doxygen

18.16 wtbarr Struct Reference 77

Data Fields

• int i
• int m
• int kind
• char extnam [72]
• int extver
• int extlev
• char ttype [72]
• long row
• int ndim
• int ∗ dimlen
• double ∗∗ arrayp

18.16.1 Detailed Description

Function wcstab(), which is invoked automatically by wcspih(), sets up an array of wtbarr structs to assist in extract-
ing coordinate lookup tables from a binary table extension (BINTABLE) and copying them into the tabprm structs
stored in wcsprm. Refer to the usage notes for wcspih() and wcstab() in wcshdr.h, and also the prologue to tab.h.

For C++ usage, because of a name space conflict with the wtbarr typedef defined in CFITSIO header fitsio.h, the
wtbarr struct is renamed to wtbarr_s by preprocessor macro substitution with scope limited to wtbarr.h itself, and
similarly in wcs.h.

18.16.2 Field Documentation

18.16.2.1 i int wtbarr::i

(Given) Image axis number.

18.16.2.2 m int wtbarr::m

(Given) wcstab array axis number for index vectors.

18.16.2.3 kind int wtbarr::kind

(Given) Character identifying the wcstab array type:

• c: coordinate array,

• i: index vector.

18.16.2.4 extnam char wtbarr::extnam

(Given) EXTNAME identifying the binary table extension.

Generated by Doxygen

78

18.16.2.5 extver int wtbarr::extver

(Given) EXTVER identifying the binary table extension.

18.16.2.6 extlev int wtbarr::extlev

(Given) EXTLEV identifying the binary table extension.

18.16.2.7 ttype char wtbarr::ttype

(Given) TTYPEn identifying the column of the binary table that contains the wcstab array.

18.16.2.8 row long wtbarr::row

(Given) Table row number.

18.16.2.9 ndim int wtbarr::ndim

(Given) Expected dimensionality of the wcstab array.

18.16.2.10 dimlen int ∗ wtbarr::dimlen

(Given) Address of the first element of an array of int of length ndim into which the wcstab array axis lengths are to
be written.

18.16.2.11 arrayp double ∗∗ wtbarr::arrayp

(Given) Pointer to an array of double which is to be allocated by the user and into which the wcstab array is to be
written.

19 File Documentation

19.1 cel.h File Reference

#include "prj.h"

Data Structures

• struct celprm

Celestial transformation parameters.

Generated by Doxygen

19.1 cel.h File Reference 79

Macros

• #define CELLEN (sizeof(struct celprm)/sizeof(int))

Size of the celprm struct in int units.

• #define celini_errmsg cel_errmsg

Deprecated.

• #define celprt_errmsg cel_errmsg

Deprecated.

• #define celset_errmsg cel_errmsg

Deprecated.

• #define celx2s_errmsg cel_errmsg

Deprecated.

• #define cels2x_errmsg cel_errmsg

Deprecated.

Enumerations

• enum cel_errmsg_enum {
CELERR_SUCCESS = 0 , CELERR_NULL_POINTER = 1 , CELERR_BAD_PARAM = 2 , CELERR_BAD_COORD_TRANS
= 3 ,
CELERR_ILL_COORD_TRANS = 4 , CELERR_BAD_PIX = 5 , CELERR_BAD_WORLD = 6 }

Functions

• int celini (struct celprm ∗cel)

Default constructor for the celprm struct.

• int celfree (struct celprm ∗cel)

Destructor for the celprm struct.

• int celsize (const struct celprm ∗cel, int sizes[2])

Compute the size of a celprm struct.

• int celprt (const struct celprm ∗cel)

Print routine for the celprm struct.

• int celperr (const struct celprm ∗cel, const char ∗prefix)

Print error messages from a celprm struct.

• int celset (struct celprm ∗cel)

Setup routine for the celprm struct.

• int celx2s (struct celprm ∗cel, int nx, int ny, int sxy, int sll, const double x[], const double y[], double phi[],
double theta[], double lng[], double lat[], int stat[])

Pixel-to-world celestial transformation.

• int cels2x (struct celprm ∗cel, int nlng, int nlat, int sll, int sxy, const double lng[], const double lat[], double
phi[], double theta[], double x[], double y[], int stat[])

World-to-pixel celestial transformation.

Variables

• const char ∗ cel_errmsg []

Generated by Doxygen

80

19.1.1 Detailed Description

Routines in this suite implement the part of the FITS World Coordinate System (WCS) standard that deals with
celestial coordinates, as described in
"Representations of world coordinates in FITS",
Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)
"Representations of celestial coordinates in FITS",
Calabretta, M.R., & Greisen, E.W. 2002, A&A, 395, 1077 (WCS Paper II)

These routines define methods to be used for computing celestial world coordinates from intermediate world coor-
dinates (a linear transformation of image pixel coordinates), and vice versa. They are based on the celprm struct
which contains all information needed for the computations. This struct contains some elements that must be set by
the user, and others that are maintained by these routines, somewhat like a C++ class but with no encapsulation.

Routine celini() is provided to initialize the celprm struct with default values, celfree() reclaims any memory that may
have been allocated to store an error message, celsize() computes its total size including allocated memory, and
celprt() prints its contents.

celperr() prints the error message(s), if any, stored in a celprm struct and the prjprm struct that it contains.

A setup routine, celset(), computes intermediate values in the celprm struct from parameters in it that were supplied
by the user. The struct always needs to be set up by celset() but it need not be called explicitly - refer to the
explanation of celprm::flag.

celx2s() and cels2x() implement the WCS celestial coordinate transformations. In fact, they are high level driver
routines for the lower level spherical coordinate rotation and projection routines described in sph.h and prj.h.

19.1.2 Macro Definition Documentation

19.1.2.1 CELLEN #define CELLEN (sizeof(struct celprm)/sizeof(int))

Size of the celprm struct in int units, used by the Fortran wrappers.

19.1.2.2 celini_errmsg #define celini_errmsg cel_errmsg

Deprecated Added for backwards compatibility, use cel_errmsg directly now instead.

19.1.2.3 celprt_errmsg #define celprt_errmsg cel_errmsg

Deprecated Added for backwards compatibility, use cel_errmsg directly now instead.

Generated by Doxygen

19.1 cel.h File Reference 81

19.1.2.4 celset_errmsg #define celset_errmsg cel_errmsg

Deprecated Added for backwards compatibility, use cel_errmsg directly now instead.

19.1.2.5 celx2s_errmsg #define celx2s_errmsg cel_errmsg

Deprecated Added for backwards compatibility, use cel_errmsg directly now instead.

19.1.2.6 cels2x_errmsg #define cels2x_errmsg cel_errmsg

Deprecated Added for backwards compatibility, use cel_errmsg directly now instead.

19.1.3 Enumeration Type Documentation

19.1.3.1 cel_errmsg_enum enum cel_errmsg_enum

Enumerator

CELERR_SUCCESS
CELERR_NULL_POINTER

CELERR_BAD_PARAM
CELERR_BAD_COORD_TRANS

CELERR_ILL_COORD_TRANS
CELERR_BAD_PIX

CELERR_BAD_WORLD

19.1.4 Function Documentation

19.1.4.1 celini() int celini (

struct celprm ∗ cel)

celini() sets all members of a celprm struct to default values. It should be used to initialize every celprm struct.

PLEASE NOTE: If the celprm struct has already been initialized, then before reinitializing, it celfree() should be
used to free any memory that may have been allocated to store an error message. A memory leak may otherwise
result.

Generated by Doxygen

82

Parameters

out cel Celestial transformation parameters.

Returns

Status return value:

• 0: Success.

• 1: Null celprm pointer passed.

19.1.4.2 celfree() int celfree (

struct celprm ∗ cel)

celfree() frees any memory that may have been allocated to store an error message in the celprm struct.

Parameters

in cel Celestial transformation parameters.

Returns

Status return value:

• 0: Success.

• 1: Null celprm pointer passed.

19.1.4.3 celsize() int celsize (

const struct celprm ∗ cel,

int sizes[2])

celsize() computes the full size of a celprm struct, including allocated memory.

Parameters

in cel Celestial transformation parameters.
If NULL, the base size of the struct and the allocated size are both set to zero.

out sizes The first element is the base size of the struct as returned by sizeof(struct celprm). The
second element is the total allocated size, in bytes. This figure includes memory allocated for
the constituent struct, celprm::err.
It is not an error for the struct not to have been set up via celset().

Returns

Status return value:

Generated by Doxygen

19.1 cel.h File Reference 83

• 0: Success.

19.1.4.4 celprt() int celprt (

const struct celprm ∗ cel)

celprt() prints the contents of a celprm struct using wcsprintf(). Mainly intended for diagnostic purposes.

Parameters

in cel Celestial transformation parameters.

Returns

Status return value:

• 0: Success.

• 1: Null celprm pointer passed.

19.1.4.5 celperr() int celperr (

const struct celprm ∗ cel,

const char ∗ prefix)

celperr() prints the error message(s), if any, stored in a celprm struct and the prjprm struct that it contains. If there
are no errors then nothing is printed. It uses wcserr_prt(), q.v.

Parameters

in cel Coordinate transformation parameters.

in prefix If non-NULL, each output line will be prefixed with this string.

Returns

Status return value:

• 0: Success.

• 1: Null celprm pointer passed.

19.1.4.6 celset() int celset (

struct celprm ∗ cel)

celset() sets up a celprm struct according to information supplied within it.

Note that this routine need not be called directly; it will be invoked by celx2s() and cels2x() if celprm::flag is anything
other than a predefined magic value.

Generated by Doxygen

84

Parameters

in,out cel Celestial transformation parameters.

Returns

Status return value:

• 0: Success.

• 1: Null celprm pointer passed.

• 2: Invalid projection parameters.

• 3: Invalid coordinate transformation parameters.

• 4: Ill-conditioned coordinate transformation parameters.

For returns > 1, a detailed error message is set in celprm::err if enabled, see wcserr_enable().

19.1.4.7 celx2s() int celx2s (

struct celprm ∗ cel,

int nx,

int ny,

int sxy,

int sll,

const double x[],

const double y[],

double phi[],

double theta[],

double lng[],

double lat[],

int stat[])

celx2s() transforms (x, y) coordinates in the plane of projection to celestial coordinates (α, δ).

Parameters

in,out cel Celestial transformation parameters.

in nx,ny Vector lengths.

in sxy,sll Vector strides.

in x,y Projected coordinates in pseudo "degrees".

out phi,theta Longitude and latitude (φ, θ) in the native coordinate system of the projection [deg].

out lng,lat Celestial longitude and latitude (α, δ) of the projected point [deg].

out stat Status return value for each vector element:

• 0: Success.

• 1: Invalid value of (x, y).

Returns

Status return value:

Generated by Doxygen

19.1 cel.h File Reference 85

• 0: Success.

• 1: Null celprm pointer passed.

• 2: Invalid projection parameters.

• 3: Invalid coordinate transformation parameters.

• 4: Ill-conditioned coordinate transformation parameters.

• 5: One or more of the (x, y) coordinates were invalid, as indicated by the stat vector.

For returns > 1, a detailed error message is set in celprm::err if enabled, see wcserr_enable().

19.1.4.8 cels2x() int cels2x (

struct celprm ∗ cel,

int nlng,

int nlat,

int sll,

int sxy,

const double lng[],

const double lat[],

double phi[],

double theta[],

double x[],

double y[],

int stat[])

cels2x() transforms celestial coordinates (α, δ) to (x, y) coordinates in the plane of projection.

Parameters

in,out cel Celestial transformation parameters.

in nlng,nlat Vector lengths.

in sll,sxy Vector strides.

in lng,lat Celestial longitude and latitude (α, δ) of the projected point [deg].

out phi,theta Longitude and latitude (φ, θ) in the native coordinate system of the projection [deg].

out x,y Projected coordinates in pseudo "degrees".

out stat Status return value for each vector element:

• 0: Success.

• 1: Invalid value of (α, δ).

Returns

Status return value:

• 0: Success.

• 1: Null celprm pointer passed.

• 2: Invalid projection parameters.

• 3: Invalid coordinate transformation parameters.

• 4: Ill-conditioned coordinate transformation parameters.

• 6: One or more of the (α, δ) coordinates were invalid, as indicated by the stat vector.

For returns > 1, a detailed error message is set in celprm::err if enabled, see wcserr_enable().

Generated by Doxygen

86

19.1.5 Variable Documentation

19.1.5.1 cel_errmsg const char∗ cel_errmsg[] [extern]

19.2 cel.h

Go to the documentation of this file.
1 /*==
2 WCSLIB 7.11 - an implementation of the FITS WCS standard.
3 Copyright (C) 1995-2022, Mark Calabretta
4
5 This file is part of WCSLIB.
6
7 WCSLIB is free software: you can redistribute it and/or modify it under the
8 terms of the GNU Lesser General Public License as published by the Free
9 Software Foundation, either version 3 of the License, or (at your option)
10 any later version.
11
12 WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
15 more details.
16
17 You should have received a copy of the GNU Lesser General Public License
18 along with WCSLIB. If not, see http://www.gnu.org/licenses.
19
20 Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
21 http://www.atnf.csiro.au/people/Mark.Calabretta
22 $Id: cel.h,v 7.11 2022/04/26 06:13:52 mcalabre Exp $
23 *===
24 *
25 * WCSLIB 7.11 - C routines that implement the FITS World Coordinate System
26 * (WCS) standard. Refer to the README file provided with WCSLIB for an
27 * overview of the library.
28 *
29 *
30 * Summary of the cel routines
31 * ---------------------------
32 * Routines in this suite implement the part of the FITS World Coordinate
33 * System (WCS) standard that deals with celestial coordinates, as described in
34 *
35 = "Representations of world coordinates in FITS",
36 = Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)
37 =
38 = "Representations of celestial coordinates in FITS",
39 = Calabretta, M.R., & Greisen, E.W. 2002, A&A, 395, 1077 (WCS Paper II)
40 *
41 * These routines define methods to be used for computing celestial world
42 * coordinates from intermediate world coordinates (a linear transformation
43 * of image pixel coordinates), and vice versa. They are based on the celprm
44 * struct which contains all information needed for the computations. This
45 * struct contains some elements that must be set by the user, and others that
46 * are maintained by these routines, somewhat like a C++ class but with no
47 * encapsulation.
48 *
49 * Routine celini() is provided to initialize the celprm struct with default
50 * values, celfree() reclaims any memory that may have been allocated to store
51 * an error message, celsize() computes its total size including allocated
52 * memory, and celprt() prints its contents.
53 *
54 * celperr() prints the error message(s), if any, stored in a celprm struct and
55 * the prjprm struct that it contains.
56 *
57 * A setup routine, celset(), computes intermediate values in the celprm struct
58 * from parameters in it that were supplied by the user. The struct always
59 * needs to be set up by celset() but it need not be called explicitly - refer
60 * to the explanation of celprm::flag.
61 *
62 * celx2s() and cels2x() implement the WCS celestial coordinate
63 * transformations. In fact, they are high level driver routines for the lower
64 * level spherical coordinate rotation and projection routines described in
65 * sph.h and prj.h.
66 *
67 *
68 * celini() - Default constructor for the celprm struct
69 * --

Generated by Doxygen

19.2 cel.h 87

70 * celini() sets all members of a celprm struct to default values. It should
71 * be used to initialize every celprm struct.
72 *
73 * PLEASE NOTE: If the celprm struct has already been initialized, then before
74 * reinitializing, it celfree() should be used to free any memory that may have
75 * been allocated to store an error message. A memory leak may otherwise
76 * result.
77 *
78 * Returned:
79 * cel struct celprm*
80 * Celestial transformation parameters.
81 *
82 * Function return value:
83 * int Status return value:
84 * 0: Success.
85 * 1: Null celprm pointer passed.
86 *
87 *
88 * celfree() - Destructor for the celprm struct
89 * --
90 * celfree() frees any memory that may have been allocated to store an error
91 * message in the celprm struct.
92 *
93 * Given:
94 * cel struct celprm*
95 * Celestial transformation parameters.
96 *
97 * Function return value:
98 * int Status return value:
99 * 0: Success.
100 * 1: Null celprm pointer passed.
101 *
102 *
103 * celsize() - Compute the size of a celprm struct
104 * ---
105 * celsize() computes the full size of a celprm struct, including allocated
106 * memory.
107 *
108 * Given:
109 * cel const struct celprm*
110 * Celestial transformation parameters.
111 *
112 * If NULL, the base size of the struct and the allocated
113 * size are both set to zero.
114 *
115 * Returned:
116 * sizes int[2] The first element is the base size of the struct as
117 * returned by sizeof(struct celprm). The second element
118 * is the total allocated size, in bytes. This figure
119 * includes memory allocated for the constituent struct,
120 * celprm::err.
121 *
122 * It is not an error for the struct not to have been set
123 * up via celset().
124 *
125 * Function return value:
126 * int Status return value:
127 * 0: Success.
128 *
129 *
130 * celprt() - Print routine for the celprm struct
131 * --
132 * celprt() prints the contents of a celprm struct using wcsprintf(). Mainly
133 * intended for diagnostic purposes.
134 *
135 * Given:
136 * cel const struct celprm*
137 * Celestial transformation parameters.
138 *
139 * Function return value:
140 * int Status return value:
141 * 0: Success.
142 * 1: Null celprm pointer passed.
143 *
144 *
145 * celperr() - Print error messages from a celprm struct
146 * ---
147 * celperr() prints the error message(s), if any, stored in a celprm struct and
148 * the prjprm struct that it contains. If there are no errors then nothing is
149 * printed. It uses wcserr_prt(), q.v.
150 *
151 * Given:
152 * cel const struct celprm*
153 * Coordinate transformation parameters.
154 *
155 * prefix const char *
156 * If non-NULL, each output line will be prefixed with

Generated by Doxygen

88

157 * this string.
158 *
159 * Function return value:
160 * int Status return value:
161 * 0: Success.
162 * 1: Null celprm pointer passed.
163 *
164 *
165 * celset() - Setup routine for the celprm struct
166 * --
167 * celset() sets up a celprm struct according to information supplied within
168 * it.
169 *
170 * Note that this routine need not be called directly; it will be invoked by
171 * celx2s() and cels2x() if celprm::flag is anything other than a predefined
172 * magic value.
173 *
174 * Given and returned:
175 * cel struct celprm*
176 * Celestial transformation parameters.
177 *
178 * Function return value:
179 * int Status return value:
180 * 0: Success.
181 * 1: Null celprm pointer passed.
182 * 2: Invalid projection parameters.
183 * 3: Invalid coordinate transformation parameters.
184 * 4: Ill-conditioned coordinate transformation
185 * parameters.
186 *
187 * For returns > 1, a detailed error message is set in
188 * celprm::err if enabled, see wcserr_enable().
189 *
190 *
191 * celx2s() - Pixel-to-world celestial transformation
192 * --
193 * celx2s() transforms (x,y) coordinates in the plane of projection to
194 * celestial coordinates (lng,lat).
195 *
196 * Given and returned:
197 * cel struct celprm*
198 * Celestial transformation parameters.
199 *
200 * Given:
201 * nx,ny int Vector lengths.
202 *
203 * sxy,sll int Vector strides.
204 *
205 * x,y const double[]
206 * Projected coordinates in pseudo "degrees".
207 *
208 * Returned:
209 * phi,theta double[] Longitude and latitude (phi,theta) in the native
210 * coordinate system of the projection [deg].
211 *
212 * lng,lat double[] Celestial longitude and latitude (lng,lat) of the
213 * projected point [deg].
214 *
215 * stat int[] Status return value for each vector element:
216 * 0: Success.
217 * 1: Invalid value of (x,y).
218 *
219 * Function return value:
220 * int Status return value:
221 * 0: Success.
222 * 1: Null celprm pointer passed.
223 * 2: Invalid projection parameters.
224 * 3: Invalid coordinate transformation parameters.
225 * 4: Ill-conditioned coordinate transformation
226 * parameters.
227 * 5: One or more of the (x,y) coordinates were
228 * invalid, as indicated by the stat vector.
229 *
230 * For returns > 1, a detailed error message is set in
231 * celprm::err if enabled, see wcserr_enable().
232 *
233 *
234 * cels2x() - World-to-pixel celestial transformation
235 * --
236 * cels2x() transforms celestial coordinates (lng,lat) to (x,y) coordinates in
237 * the plane of projection.
238 *
239 * Given and returned:
240 * cel struct celprm*
241 * Celestial transformation parameters.
242 *
243 * Given:

Generated by Doxygen

19.2 cel.h 89

244 * nlng,nlat int Vector lengths.
245 *
246 * sll,sxy int Vector strides.
247 *
248 * lng,lat const double[]
249 * Celestial longitude and latitude (lng,lat) of the
250 * projected point [deg].
251 *
252 * Returned:
253 * phi,theta double[] Longitude and latitude (phi,theta) in the native
254 * coordinate system of the projection [deg].
255 *
256 * x,y double[] Projected coordinates in pseudo "degrees".
257 *
258 * stat int[] Status return value for each vector element:
259 * 0: Success.
260 * 1: Invalid value of (lng,lat).
261 *
262 * Function return value:
263 * int Status return value:
264 * 0: Success.
265 * 1: Null celprm pointer passed.
266 * 2: Invalid projection parameters.
267 * 3: Invalid coordinate transformation parameters.
268 * 4: Ill-conditioned coordinate transformation
269 * parameters.
270 * 6: One or more of the (lng,lat) coordinates were
271 * invalid, as indicated by the stat vector.
272 *
273 * For returns > 1, a detailed error message is set in
274 * celprm::err if enabled, see wcserr_enable().
275 *
276 *
277 * celprm struct - Celestial transformation parameters
278 * ---
279 * The celprm struct contains information required to transform celestial
280 * coordinates. It consists of certain members that must be set by the user
281 * ("given") and others that are set by the WCSLIB routines ("returned"). Some
282 * of the latter are supplied for informational purposes and others are for
283 * internal use only.
284 *
285 * Returned celprm struct members must not be modified by the user.
286 *
287 * int flag
288 * (Given and returned) This flag must be set to zero whenever any of the
289 * following celprm struct members are set or changed:
290 *
291 * - celprm::offset,
292 * - celprm::phi0,
293 * - celprm::theta0,
294 * - celprm::ref[4],
295 * - celprm::prj:
296 * - prjprm::code,
297 * - prjprm::r0,
298 * - prjprm::pv[],
299 * - prjprm::phi0,
300 * - prjprm::theta0.
301 *
302 * This signals the initialization routine, celset(), to recompute the
303 * returned members of the celprm struct. celset() will reset flag to
304 * indicate that this has been done.
305 *
306 * int offset
307 * (Given) If true (non-zero), an offset will be applied to (x,y) to
308 * force (x,y) = (0,0) at the fiducial point, (phi_0,theta_0).
309 * Default is 0 (false).
310 *
311 * double phi0
312 * (Given) The native longitude, phi_0 [deg], and ...
313 *
314 * double theta0
315 * (Given) ... the native latitude, theta_0 [deg], of the fiducial point,
316 * i.e. the point whose celestial coordinates are given in
317 * celprm::ref[1:2]. If undefined (set to a magic value by prjini()) the
318 * initialization routine, celset(), will set this to a projection-specific
319 * default.
320 *
321 * double ref[4]
322 * (Given) The first pair of values should be set to the celestial
323 * longitude and latitude of the fiducial point [deg] - typically right
324 * ascension and declination. These are given by the CRVALia keywords in
325 * FITS.
326 *
327 * (Given and returned) The second pair of values are the native longitude,
328 * phi_p [deg], and latitude, theta_p [deg], of the celestial pole (the
329 * latter is the same as the celestial latitude of the native pole,
330 * delta_p) and these are given by the FITS keywords LONPOLEa and LATPOLEa

Generated by Doxygen

90

331 * (or by PVi_2a and PVi_3a attached to the longitude axis which take
332 * precedence if defined).
333 *
334 * LONPOLEa defaults to phi_0 (see above) if the celestial latitude of the
335 * fiducial point of the projection is greater than or equal to the native
336 * latitude, otherwise phi_0 + 180 [deg]. (This is the condition for the
337 * celestial latitude to increase in the same direction as the native
338 * latitude at the fiducial point.) ref[2] may be set to UNDEFINED (from
339 * wcsmath.h) or 999.0 to indicate that the correct default should be
340 * substituted.
341 *
342 * theta_p, the native latitude of the celestial pole (or equally the
343 * celestial latitude of the native pole, delta_p) is often determined
344 * uniquely by CRVALia and LONPOLEa in which case LATPOLEa is ignored.
345 * However, in some circumstances there are two valid solutions for theta_p
346 * and LATPOLEa is used to choose between them. LATPOLEa is set in ref[3]
347 * and the solution closest to this value is used to reset ref[3]. It is
348 * therefore legitimate, for example, to set ref[3] to +90.0 to choose the
349 * more northerly solution - the default if the LATPOLEa keyword is omitted
350 * from the FITS header. For the special case where the fiducial point of
351 * the projection is at native latitude zero, its celestial latitude is
352 * zero, and LONPOLEa = +/- 90.0 then the celestial latitude of the native
353 * pole is not determined by the first three reference values and LATPOLEa
354 * specifies it completely.
355 *
356 * The returned value, celprm::latpreq, specifies how LATPOLEa was actually
357 * used.
358 *
359 * struct prjprm prj
360 * (Given and returned) Projection parameters described in the prologue to
361 * prj.h.
362 *
363 * double euler[5]
364 * (Returned) Euler angles and associated intermediaries derived from the
365 * coordinate reference values. The first three values are the Z-, X-, and
366 * Z’-Euler angles [deg], and the remaining two are the cosine and sine of
367 * the X-Euler angle.
368 *
369 * int latpreq
370 * (Returned) For informational purposes, this indicates how the LATPOLEa
371 * keyword was used
372 * - 0: Not required, theta_p (== delta_p) was determined uniquely by the
373 * CRVALia and LONPOLEa keywords.
374 * - 1: Required to select between two valid solutions of theta_p.
375 * - 2: theta_p was specified solely by LATPOLEa.
376 *
377 * int isolat
378 * (Returned) True if the spherical rotation preserves the magnitude of the
379 * latitude, which occurs iff the axes of the native and celestial
380 * coordinates are coincident. It signals an opportunity to cache
381 * intermediate calculations common to all elements in a vector
382 * computation.
383 *
384 * struct wcserr *err
385 * (Returned) If enabled, when an error status is returned, this struct
386 * contains detailed information about the error, see wcserr_enable().
387 *
388 * void *padding
389 * (An unused variable inserted for alignment purposes only.)
390 *
391 * Global variable: const char *cel_errmsg[] - Status return messages
392 * --
393 * Status messages to match the status value returned from each function.
394 *
395 *===*/
396
397 #ifndef WCSLIB_CEL
398 #define WCSLIB_CEL
399
400 #include "prj.h"
401
402 #ifdef __cplusplus
403 extern "C" {
404 #endif
405
406
407 extern const char *cel_errmsg[];
408
409 enum cel_errmsg_enum {
410 CELERR_SUCCESS = 0, // Success.
411 CELERR_NULL_POINTER = 1, // Null celprm pointer passed.
412 CELERR_BAD_PARAM = 2, // Invalid projection parameters.
413 CELERR_BAD_COORD_TRANS = 3, // Invalid coordinate transformation
414 // parameters.
415 CELERR_ILL_COORD_TRANS = 4, // Ill-conditioned coordinated transformation
416 // parameters.
417 CELERR_BAD_PIX = 5, // One or more of the (x,y) coordinates were

Generated by Doxygen

19.3 dis.h File Reference 91

418 // invalid.
419 CELERR_BAD_WORLD = 6 // One or more of the (lng,lat) coordinates
420 // were invalid.
421 };
422
423 struct celprm {
424 // Initialization flag (see the prologue above).
425 //--
426 int flag; // Set to zero to force initialization.
427
428 // Parameters to be provided (see the prologue above).
429 //--
430 int offset; // Force (x,y) = (0,0) at (phi_0,theta_0).
431 double phi0, theta0; // Native coordinates of fiducial point.
432 double ref[4]; // Celestial coordinates of fiducial
433 // point and native coordinates of
434 // celestial pole.
435
436 struct prjprm prj; // Projection parameters (see prj.h).
437
438 // Information derived from the parameters supplied.
439 //--
440 double euler[5]; // Euler angles and functions thereof.
441 int latpreq; // LATPOLEa requirement.
442 int isolat; // True if |latitude| is preserved.
443
444 // Error handling
445 //--
446 struct wcserr *err;
447
448 // Private
449 //--
450 void *padding; // (Dummy inserted for alignment purposes.)
451 };
452
453 // Size of the celprm struct in int units, used by the Fortran wrappers.
454 #define CELLEN (sizeof(struct celprm)/sizeof(int))
455
456
457 int celini(struct celprm *cel);
458
459 int celfree(struct celprm *cel);
460
461 int celsize(const struct celprm *cel, int sizes[2]);
462
463 int celprt(const struct celprm *cel);
464
465 int celperr(const struct celprm *cel, const char *prefix);
466
467 int celset(struct celprm *cel);
468
469 int celx2s(struct celprm *cel, int nx, int ny, int sxy, int sll,
470 const double x[], const double y[],
471 double phi[], double theta[], double lng[], double lat[],
472 int stat[]);
473
474 int cels2x(struct celprm *cel, int nlng, int nlat, int sll, int sxy,
475 const double lng[], const double lat[],
476 double phi[], double theta[], double x[], double y[],
477 int stat[]);
478
479
480 // Deprecated.
481 #define celini_errmsg cel_errmsg
482 #define celprt_errmsg cel_errmsg
483 #define celset_errmsg cel_errmsg
484 #define celx2s_errmsg cel_errmsg
485 #define cels2x_errmsg cel_errmsg
486
487 #ifdef __cplusplus
488 }
489 #endif
490
491 #endif // WCSLIB_CEL

19.3 dis.h File Reference

Data Structures

• struct dpkey

Store for DPja and DQia keyvalues.

Generated by Doxygen

92

• struct disprm

Distortion parameters.

Macros

• #define DISP2X_ARGS
• #define DISX2P_ARGS
• #define DPLEN (sizeof(struct dpkey)/sizeof(int))
• #define DISLEN (sizeof(struct disprm)/sizeof(int))

Enumerations

• enum dis_errmsg_enum {
DISERR_SUCCESS = 0 , DISERR_NULL_POINTER = 1 , DISERR_MEMORY = 2 , DISERR_BAD_PARAM
= 3 ,
DISERR_DISTORT = 4 , DISERR_DEDISTORT = 5 }

Functions

• int disndp (int n)

Memory allocation for DPja and DQia.

• int dpfill (struct dpkey ∗dp, const char ∗keyword, const char ∗field, int j, int type, int i, double f)

Fill the contents of a dpkey struct.

• int dpkeyi (const struct dpkey ∗dp)

Get the data value in a dpkey struct as int.

• double dpkeyd (const struct dpkey ∗dp)

Get the data value in a dpkey struct as double.

• int disini (int alloc, int naxis, struct disprm ∗dis)

Default constructor for the disprm struct.

• int disinit (int alloc, int naxis, struct disprm ∗dis, int ndpmax)

Default constructor for the disprm struct.

• int discpy (int alloc, const struct disprm ∗dissrc, struct disprm ∗disdst)

Copy routine for the disprm struct.

• int disfree (struct disprm ∗dis)

Destructor for the disprm struct.

• int dissize (const struct disprm ∗dis, int sizes[2])

Compute the size of a disprm struct.

• int disprt (const struct disprm ∗dis)

Print routine for the disprm struct.

• int disperr (const struct disprm ∗dis, const char ∗prefix)

Print error messages from a disprm struct.

• int dishdo (struct disprm ∗dis)

write FITS headers using TPD.

• int disset (struct disprm ∗dis)

Setup routine for the disprm struct.

• int disp2x (struct disprm ∗dis, const double rawcrd[], double discrd[])

Apply distortion function.

• int disx2p (struct disprm ∗dis, const double discrd[], double rawcrd[])

Apply de-distortion function.

• int diswarp (struct disprm ∗dis, const double pixblc[], const double pixtrc[], const double pixsamp[], int
∗nsamp, double maxdis[], double ∗maxtot, double avgdis[], double ∗avgtot, double rmsdis[], double ∗rmstot)

Compute measures of distortion.

Generated by Doxygen

19.3 dis.h File Reference 93

Variables

• const char ∗ dis_errmsg []

Status return messages.

19.3.1 Detailed Description

Routines in this suite implement extensions to the FITS World Coordinate System (WCS) standard proposed by
"Representations of distortions in FITS world coordinate systems",
Calabretta, M.R. et al. (WCS Paper IV, draft dated 2004/04/22),
available from http://www.atnf.csiro.au/people/Mark.Calabretta

In brief, a distortion function may occupy one of two positions in the WCS algorithm chain. Prior distortions precede
the linear transformation matrix, whether it be PCi_ja or CDi_ja, and sequent distortions follow it. WCS Paper
IV defines FITS keywords used to specify parameters for predefined distortion functions. The following are used for
prior distortions:
CPDISja ...(string-valued, identifies the distortion function)
DPja ...(record-valued, parameters)
CPERRja ...(floating-valued, maximum value)

Their counterparts for sequent distortions are CQDISia, DQia, and CQERRia. An additional floating-valued
keyword, DVERRa, records the maximum value of the combined distortions.

DPja and DQia are "record-valued". Syntactically, the keyvalues are standard FITS strings, but they are to be
interpreted in a special way. The general form is
DPja = ’<field-specifier>: <float>’

where the field-specifier consists of a sequence of fields separated by periods, and the ': ' between the field-specifier
and the floating-point value is part of the record syntax. For example:
DP1 = ’AXIS.1: 1’

Certain field-specifiers are defined for all distortion functions, while others are defined only for particular distortions.
Refer to WCS Paper IV for further details. wcspih() parses all distortion keywords and loads them into a disprm
struct for analysis by disset() which knows (or possibly does not know) how to interpret them. Of the Paper IV
distortion functions, only the general Polynomial distortion is currently implemented here.

TPV - the TPV "projection":
The distortion function component of the TPV celestial "projection" is also supported. The TPV projection, originally
proposed in a draft of WCS Paper II, consists of a TAN projection with sequent polynomial distortion, the coefficients
of which are encoded in PVi_ma keyrecords. Full details may be found at the registry of FITS conventions:
http://fits.gsfc.nasa.gov/registry/tpvwcs/tpv.html

Internally, wcsset() changes TPV to a TAN projection, translates the PVi_ma keywords to DQia and loads them
into a disprm struct. These DQia keyrecords have the form
DQia = ’TPV.m: <value>’

where i, a, m, and the value for each DQia match each PVi_ma. Consequently, WCSLIB would handle a
FITS header containing these keywords, along with CQDISia = 'TPV' and the required DQia.NAXES and
DQia.AXIS.ihat keywords.

Note that, as defined, TPV assumes that CDi_ja is used to define the linear transformation. The section on
historical idiosyncrasies (below) cautions about translating CDi_ja to PCi_ja plus CDELTia in this case.

SIP - Simple Imaging Polynomial:
These routines also support the Simple Imaging Polynomial (SIP), whose design was influenced by early drafts of
WCS Paper IV. It is described in detail in
http://fits.gsfc.nasa.gov/registry/sip.html

SIP, which is defined only as a prior distortion for 2-D celestial images, has the interesting feature that it records
an approximation to the inverse polynomial distortion function. This is used by disx2p() to provide an initial estimate

Generated by Doxygen

94

for its more precise iterative inversion. The special-purpose keywords used by SIP are parsed and translated by
wcspih() as follows:
A_p_q = <value> -> DP1 = ’SIP.FWD.p_q: <value>’
AP_p_q = <value> -> DP1 = ’SIP.REV.p_q: <value>’
B_p_q = <value> -> DP2 = ’SIP.FWD.p_q: <value>’
BP_p_q = <value> -> DP2 = ’SIP.REV.p_q: <value>’
A_DMAX = <value> -> DPERR1 = <value>
B_DMAX = <value> -> DPERR2 = <value>

SIP's A_ORDER and B_ORDER keywords are not used. WCSLIB would recognise a FITS header containing the
above keywords, along with CPDISja = 'SIP' and the required DPja.NAXES keywords.

DSS - Digitized Sky Survey:
The Digitized Sky Survey resulted from the production of the Guide Star Catalogue for the Hubble Space Telescope.
Plate solutions based on a polynomial distortion function were encoded in FITS using non-standard keywords. Sect.
5.2 of WCS Paper IV describes how DSS coordinates may be translated to a sequent Polynomial distortion using
two auxiliary variables. That translation is based on optimising the non-distortion component of the plate solution.

Following Paper IV, wcspih() translates the non-distortion component of DSS coordinates to standard WCS key-
words (CRPIXja, PCi_ja, CRVALia, etc), and fills a wcsprm struct with their values. It encodes the DSS
polynomial coefficients as
AMDXm = <value> -> DQ1 = ’AMD.m: <value>’
AMDYm = <value> -> DQ2 = ’AMD.m: <value>’

WCSLIB would recognise a FITS header containing the above keywords, along with CQDISia = 'DSS' and the
required DQia.NAXES keywords.

WAT - the TNX and ZPX "projections":
The TNX and ZPX "projections" add a polynomial distortion function to the standard TAN and ZPN projections
respectively. Unusually, the polynomial may be expressed as the sum of Chebyshev or Legendre polynomials, or
as a simple sum of monomials, as described in
http://fits.gsfc.nasa.gov/registry/tnx/tnx-doc.html
http://fits.gsfc.nasa.gov/registry/zpxwcs/zpx.html

The polynomial coefficients are encoded in special-purpose WATi_n keywords as a set of continued strings, thus
providing the name for this distortion type. WATi_n are parsed and translated by wcspih() into the following set:
DQi = ’WAT.POLY: <value>’
DQi = ’WAT.XMIN: <value>’
DQi = ’WAT.XMAX: <value>’
DQi = ’WAT.YMIN: <value>’
DQi = ’WAT.YMAX: <value>’
DQi = ’WAT.CHBY.m_n: <value>’ or
DQi = ’WAT.LEGR.m_n: <value>’ or
DQi = ’WAT.MONO.m_n: <value>’

along with CQDISia = 'WAT' and the required DPja.NAXES keywords. For ZPX, the ZPN projection parameters
are also encoded in WATi_n, and wcspih() translates these to standard PVi_ma.

Note that, as defined, TNX and ZPX assume that CDi_ja is used to define the linear transformation. The section
on historical idiosyncrasies (below) cautions about translating CDi_ja to PCi_ja plus CDELTia in this case.

TPD - Template Polynomial Distortion:
The "Template Polynomial Distortion" (TPD) is a superset of the TPV, SIP, DSS, and WAT (TNX & ZPX) polynomial
distortions that also supports 1-D usage and inversions. Like TPV, SIP, and DSS, the form of the polynomial is
fixed (the "template") and only the coefficients for the required terms are set non-zero. TPD generalizes TPV in
going to 9th degree, SIP by accomodating TPV's linear and radial terms, and DSS in both respects. While in
theory the degree of the WAT polynomial distortion in unconstrained, in practice it is limited to values that can be
handled by TPD.

Within WCSLIB, TPV, SIP, DSS, and WAT are all implemented as special cases of TPD. Indeed, TPD was devel-
oped precisely for that purpose. WAT distortions expressed as the sum of Chebyshev or Legendre polynomials are
expanded for TPD as a simple sum of monomials. Moreover, the general Polynomial distortion is translated and
implemented internally as TPD whenever possible.

Generated by Doxygen

19.3 dis.h File Reference 95

However, WCSLIB also recognizes 'TPD' as a distortion function in its own right (i.e. a recognized value of
CPDISja or CQDISia), for use as both prior and sequent distortions. Its DPja and DQia keyrecords have
the form
DPja = ’TPD.FWD.m: <value>’
DPja = ’TPD.REV.m: <value>’

for the forward and reverse distortion functions. Moreover, like the general Polynomial distortion, TPD supports
auxiliary variables, though only as a linear transformation of pixel coordinates (p1,p2):
x = a0 + a1*p1 + a2*p2
y = b0 + b1*p1 + b2*p2

where the coefficients of the auxiliary variables (x,y) are recorded as
DPja = ’AUX.1.COEFF.0: a0’ ...default 0.0
DPja = ’AUX.1.COEFF.1: a1’ ...default 1.0
DPja = ’AUX.1.COEFF.2: a2’ ...default 0.0
DPja = ’AUX.2.COEFF.0: b0’ ...default 0.0
DPja = ’AUX.2.COEFF.1: b1’ ...default 0.0
DPja = ’AUX.2.COEFF.2: b2’ ...default 1.0

Though nowhere near as powerful, in typical applications TPD is considerably faster than the general Polynomial
distortion. As TPD has a finite and not too large number of possible terms (60), the coefficients for each can be
stored (by disset()) in a fixed location in the disprm::dparm[] array. A large part of the speedup then arises from
evaluating the polynomial using Horner's scheme.

Separate implementations for polynomials of each degree, and conditionals for 1-D polynomials and 2-D polynomi-
als with and without the radial variable, ensure that unused terms mostly do not impose a significant computational
overhead.

The TPD terms are as follows
0: 1 4: xx 12: xxxx 24: xxxxxx 40: xxxxxxxx

5: xy 13: xxxy 25: xxxxxy 41: xxxxxxxy
1: x 6: yy 14: xxyy 26: xxxxyy 42: xxxxxxyy
2: y 15: xyyy 27: xxxyyy 43: xxxxxyyy
3: r 7: xxx 16: yyyy 28: xxyyyy 44: xxxxyyyy

8: xxy 29: xyyyyy 45: xxxyyyyy
9: xyy 17: xxxxx 30: yyyyyy 46: xxyyyyyy
10: yyy 18: xxxxy 47: xyyyyyyy
11: rrr 19: xxxyy 31: xxxxxxx 48: yyyyyyyy

20: xxyyy 32: xxxxxxy
21: xyyyy 33: xxxxxyy 49: xxxxxxxxx
22: yyyyy 34: xxxxyyy 50: xxxxxxxxy
23: rrrrr 35: xxxyyyy 51: xxxxxxxyy

36: xxyyyyy 52: xxxxxxyyy
37: xyyyyyy 53: xxxxxyyyy
38: yyyyyyy 54: xxxxyyyyy
39: rrrrrrr 55: xxxyyyyyy

56: xxyyyyyyy
57: xyyyyyyyy
58: yyyyyyyyy
59: rrrrrrrrr

where r =
√

(x2 + y2). Note that even powers of r are excluded since they can be accomodated by powers of
(x2 + y2).

Note here that "x" refers to the axis to which the distortion function is attached, with "y" being the complementary
axis. So, for example, with longitude on axis 1 and latitude on axis 2, for TPD attached to axis 1, "x" refers to axis 1
and "y" to axis 2. For TPD attached to axis 2, "x" refers to axis 2, and "y" to axis 1.

TPV uses all terms up to 39. The m in its PVi_ma keywords translates directly to the TPD coefficient number.

SIP uses all terms except for 0, 3, 11, 23, 39, and 59, with terms 1 and 2 only used for the inverse. Its A_p_q, etc.
keywords must be translated using a map.

DSS uses terms 0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 17, 19, and 21. The presence of a non-zero constant term arises
through the use of auxiliary variables with origin offset from the reference point of the TAN projection. However, in
the translation given by WCS Paper IV, the distortion polynomial is zero, or very close to zero, at the reference pixel
itself. The mapping between DSS's AMDXm (or AMDYm) keyvalues and TPD coefficients, while still simple, is not
quite as straightforward as for TPV and SIP.

Generated by Doxygen

96

WAT uses all but the radial terms, namely 3, 11, 23, 39, and 59. While the mapping between WAT's monomial
coefficients and TPD is fairly simple, for its expression in terms of a sum of Chebyshev or Legendre polynomials it
is much less so.

Historical idiosyncrasies:
In addition to the above, some historical distortion functions have further idiosyncrasies that must be taken into
account when translating them to TPD.

WCS Paper IV specifies that a distortion function returns a correction to be added to pixel coordinates (prior distor-
tion) or intermediate pixel coordinates (sequent distortion). The correction is meant to be small so that ignoring the
distortion function, i.e. setting the correction to zero, produces a commensurately small error.

However, rather than an additive correction, some historical distortion functions (TPV, DSS) define a polynomial
that returns the corrected coordinates directly.

The difference between the two approaches is readily accounted for simply by adding or subtracting 1 from the
coefficient of the first degree term of the polynomial. However, it opens the way for considerable confusion.

Additional to the formalism of WCS Paper IV, both the Polynomial and TPD distortion functions recognise a keyword
DPja = ’DOCORR: 0’

which is meant to apply generally to indicate that the distortion function returns the corrected coordinates directly.
Any other value for DOCORR (or its absence) indicates that the distortion function returns an additive correction.

WCS Paper IV also specifies that the independent variables of a distortion function are pixel coordinates (prior
distortion) or intermediate pixel coordinates (sequent distortion).

On the contrary, the independent variables of the SIP polynomial are pixel coordinate offsets from the reference
pixel. This is readily handled via the renormalisation parameters
DPja = ’OFFSET.jhat: <value>’

where the value corresponds to CRPIXja.

Likewise, because TPV, TNX, and ZPX are defined in terms of CDi_ja, the independent variables of the poly-
nomial are intermediate world coordinates rather than intermediate pixel coordinates. Because sequent distortions
are always applied before CDELTia, if CDi_ja is translated to PCi_ja plus CDELTia, then either CDELTia
must be unity, or the distortion polynomial coefficients must be adjusted to account for the change of scale.

Summary of the dis routines:
These routines apply the distortion functions defined by the extension to the FITS WCS standard proposed in Paper
IV. They are based on the disprm struct which contains all information needed for the computations. The struct
contains some members that must be set by the user, and others that are maintained by these routines, somewhat
like a C++ class but with no encapsulation.

dpfill(), dpkeyi(), and dpkeyd() are provided to manage the dpkey struct.

disndp(), disini(), disinit(), discpy(), and disfree() are provided to manage the disprm struct, dissize() computes its
total size including allocated memory, and disprt() prints its contents.

disperr() prints the error message(s) (if any) stored in a disprm struct.

wcshdo() normally writes SIP and TPV headers in their native form if at all possible. However, dishdo() may be
used to set a flag that tells it to write the header in the form of the TPD translation used internally.

A setup routine, disset(), computes intermediate values in the disprm struct from parameters in it that were supplied
by the user. The struct always needs to be set up by disset(), though disset() need not be called explicitly - refer to
the explanation of disprm::flag.

disp2x() and disx2p() implement the WCS distortion functions, disp2x() using separate functions, such as dispoly()
and tpd7(), to do the computation.

An auxiliary routine, diswarp(), computes various measures of the distortion over a specified range of coordinates.

PLEASE NOTE:

Generated by Doxygen

19.3 dis.h File Reference 97

19.3.2 Macro Definition Documentation

19.3.2.1 DISP2X_ARGS #define DISP2X_ARGS

Value:
int inverse, const int iparm[], const double dparm[], \
int ncrd, const double rawcrd[], double *discrd

19.3.2.2 DISX2P_ARGS #define DISX2P_ARGS

Value:
int inverse, const int iparm[], const double dparm[], \
int ncrd, const double discrd[], double *rawcrd

19.3.2.3 DPLEN #define DPLEN (sizeof(struct dpkey)/sizeof(int))

19.3.2.4 DISLEN #define DISLEN (sizeof(struct disprm)/sizeof(int))

19.3.3 Enumeration Type Documentation

19.3.3.1 dis_errmsg_enum enum dis_errmsg_enum

Enumerator

DISERR_SUCCESS
DISERR_NULL_POINTER

DISERR_MEMORY
DISERR_BAD_PARAM

DISERR_DISTORT
DISERR_DEDISTORT

19.3.4 Function Documentation

Generated by Doxygen

98

19.3.4.1 disndp() int disndp (

int n)

disndp() sets or gets the value of NDPMAX (default 256). This global variable controls the maximum number of
dpkey structs, for holding DPja or DQia keyvalues, that disini() should allocate space for. It is also used by disinit()
as the default value of ndpmax.

PLEASE NOTE: This function is not thread-safe.

Parameters

in n Value of NDPMAX; ignored if < 0. Use a value less than zero to get the current value.

Returns

Current value of NDPMAX.

19.3.4.2 dpfill() int dpfill (

struct dpkey ∗ dp,

const char ∗ keyword,

const char ∗ field,

int j,

int type,

int i,

double f)

dpfill() is a utility routine to aid in filling the contents of the dpkey struct. No checks are done on the validity of the
inputs.

WCS Paper IV specifies the syntax of a record-valued keyword as
keyword = ’<field-specifier>: <float>’

However, some DPja and DQia record values, such as those of DPja.NAXES and DPja.AXIS.j, are intrinsi-
cally integer-valued. While FITS header parsers are not expected to know in advance which of DPja and DQia
are integral and which are floating point, if the record's value parses as an integer (i.e. without decimal point or ex-
ponent), then preferably enter it into the dpkey struct as an integer. Either way, it doesn't matter as disset() accepts
either data type for all record values.

Parameters

in,out dp Store for DPja and DQia keyvalues.

in keyword

in field These arguments are concatenated with an intervening "." to construct the full record
field name, i.e. including the keyword name, DPja or DQia (but excluding the colon
delimiter which is NOT part of the name). Either may be given as a NULL pointer. Set
both NULL to omit setting this component of the struct.

in j Axis number (1-relative), i.e. the j in DPja or i in DQia. Can be given as 0, in which
case the axis number will be obtained from the keyword component of the field name
which must either have been given or preset.
If j is non-zero, and keyword was given, then the value of j will be used to fill in the axis
number.

in type Data type of the record's value

• 0: Integer,

• 1: Floating point.

in i For type == 0, the integer value of the record.

in f For type == 1, the floating point value of the record.

Generated by Doxygen

19.3 dis.h File Reference 99

Returns

Status return value:

• 0: Success.

19.3.4.3 dpkeyi() int dpkeyi (

const struct dpkey ∗ dp)

dpkeyi() returns the data value in a dpkey struct as an integer value.

Parameters

in,out dp Parsed contents of a DPja or DQia keyrecord.

Returns

The record's value as int.

19.3.4.4 dpkeyd() double dpkeyd (

const struct dpkey ∗ dp)

dpkeyd() returns the data value in a dpkey struct as a floating point value.

Parameters

in,out dp Parsed contents of a DPja or DQia keyrecord.

Returns

The record's value as double.

19.3.4.5 disini() int disini (

int alloc,

int naxis,

struct disprm ∗ dis)

disini() is a thin wrapper on disinit(). It invokes it with ndpmax set to -1 which causes it to use the value of the
global variable NDPMAX. It is thereby potentially thread-unsafe if NDPMAX is altered dynamically via disndp(). Use
disinit() for a thread-safe alternative in this case.

Generated by Doxygen

100

19.3.4.6 disinit() int disinit (

int alloc,

int naxis,

struct disprm ∗ dis,

int ndpmax)

disinit() allocates memory for arrays in a disprm struct and sets all members of the struct to default values.

PLEASE NOTE: every disprm struct must be initialized by disinit(), possibly repeatedly. On the first invokation,
and only the first invokation, disprm::flag must be set to -1 to initialize memory management, regardless of whether
disinit() will actually be used to allocate memory.

Parameters

in alloc If true, allocate memory unconditionally for arrays in the disprm struct.
If false, it is assumed that pointers to these arrays have been set by the user except if
they are null pointers in which case memory will be allocated for them regardless. (In
other words, setting alloc true saves having to initalize these pointers to zero.)

in naxis The number of world coordinate axes, used to determine array sizes.

in,out dis Distortion function parameters. Note that, in order to initialize memory management
disprm::flag must be set to -1 when dis is initialized for the first time (memory leaks
may result if it had already been initialized).

in ndpmax The number of DPja or DQia keywords to allocate space for. If set to -1, the value of
the global variable NDPMAX will be used. This is potentially thread-unsafe if disndp()
is being used dynamically to alter its value.

Returns

Status return value:

• 0: Success.

• 1: Null disprm pointer passed.

• 2: Memory allocation failed.

For returns > 1, a detailed error message is set in disprm::err if enabled, see wcserr_enable().

19.3.4.7 discpy() int discpy (

int alloc,

const struct disprm ∗ dissrc,

struct disprm ∗ disdst)

discpy() does a deep copy of one disprm struct to another, using disinit() to allocate memory unconditionally for its
arrays if required. Only the "information to be provided" part of the struct is copied; a call to disset() is required to
initialize the remainder.

Parameters

in alloc If true, allocate memory unconditionally for arrays in the destination. Otherwise, it is
assumed that pointers to these arrays have been set by the user except if they are null
pointers in which case memory will be allocated for them regardless.

in dissrc Struct to copy from.

in,out disdst Struct to copy to. disprm::flag should be set to -1 if disdst was not previously initialized
(memory leaks may result if it was previously initialized).

Generated by Doxygen

19.3 dis.h File Reference 101

Returns

Status return value:

• 0: Success.

• 1: Null disprm pointer passed.

• 2: Memory allocation failed.

For returns > 1, a detailed error message is set in disprm::err if enabled, see wcserr_enable().

19.3.4.8 disfree() int disfree (

struct disprm ∗ dis)

disfree() frees memory allocated for the disprm arrays by disinit(). disinit() keeps a record of the memory it allocates
and disfree() will only attempt to free this.

PLEASE NOTE: disfree() must not be invoked on a disprm struct that was not initialized by disinit().

Parameters

in dis Distortion function parameters.

Returns

Status return value:

• 0: Success.

• 1: Null disprm pointer passed.

19.3.4.9 dissize() int dissize (

const struct disprm ∗ dis,

int sizes[2])

dissize() computes the full size of a disprm struct, including allocated memory.

Parameters

in dis Distortion function parameters.
If NULL, the base size of the struct and the allocated size are both set to zero.

out sizes The first element is the base size of the struct as returned by sizeof(struct disprm). The
second element is the total allocated size, in bytes, assuming that the allocation was done by
disini(). This figure includes memory allocated for members of constituent structs, such as
disprm::dp.
It is not an error for the struct not to have been set up via tabset(), which normally results in
additional memory allocation.

Generated by Doxygen

102

Returns

Status return value:

• 0: Success.

19.3.4.10 disprt() int disprt (

const struct disprm ∗ dis)

disprt() prints the contents of a disprm struct using wcsprintf(). Mainly intended for diagnostic purposes.

Parameters

in dis Distortion function parameters.

Returns

Status return value:

• 0: Success.

• 1: Null disprm pointer passed.

19.3.4.11 disperr() int disperr (

const struct disprm ∗ dis,

const char ∗ prefix)

disperr() prints the error message(s) (if any) stored in a disprm struct. If there are no errors then nothing is printed.
It uses wcserr_prt(), q.v.

Parameters

in dis Distortion function parameters.

in prefix If non-NULL, each output line will be prefixed with this string.

Returns

Status return value:

• 0: Success.

• 1: Null disprm pointer passed.

19.3.4.12 dishdo() int dishdo (

struct disprm ∗ dis)

dishdo() sets a flag that tells wcshdo() to write FITS headers in the form of the TPD translation used internally.
Normally SIP and TPV would be written in their native form if at all possible.

Generated by Doxygen

19.3 dis.h File Reference 103

Parameters

in,out dis Distortion function parameters.

Returns

Status return value:

• 0: Success.

• 1: Null disprm pointer passed.

• 3: No TPD translation.

19.3.4.13 disset() int disset (

struct disprm ∗ dis)

disset(), sets up the disprm struct according to information supplied within it - refer to the explanation of disprm::flag.

Note that this routine need not be called directly; it will be invoked by disp2x() and disx2p() if the disprm::flag is
anything other than a predefined magic value.

Parameters

in,out dis Distortion function parameters.

Returns

Status return value:

• 0: Success.

• 1: Null disprm pointer passed.

• 2: Memory allocation failed.

• 3: Invalid parameter.

For returns > 1, a detailed error message is set in disprm::err if enabled, see wcserr_enable().

19.3.4.14 disp2x() int disp2x (

struct disprm ∗ dis,

const double rawcrd[],

double discrd[])

disp2x() applies the distortion functions. By definition, the distortion is in the pixel-to-world direction.

Depending on the point in the algorithm chain at which it is invoked, disp2x() may transform pixel coordinates to
corrected pixel coordinates, or intermediate pixel coordinates to corrected intermediate pixel coordinates, or image
coordinates to corrected image coordinates.

Generated by Doxygen

104

19.3.4.15 disx2p() int disx2p (

struct disprm ∗ dis,

const double discrd[],

double rawcrd[])

disx2p() applies the inverse of the distortion functions. By definition, the de-distortion is in the world-to-pixel direc-
tion.

Depending on the point in the algorithm chain at which it is invoked, disx2p() may transform corrected pixel coordi-
nates to pixel coordinates, or corrected intermediate pixel coordinates to intermediate pixel coordinates, or corrected
image coordinates to image coordinates.

disx2p() iteratively solves for the inverse using disp2x(). It assumes that the distortion is small and the functions
are well-behaved, being continuous and with continuous derivatives. Also that, to first order in the neighbourhood
of the solution, discrd[j] ∼= a + b∗rawcrd[j], i.e. independent of rawcrd[i], where i != j. This is effectively equivalent
to assuming that the distortion functions are separable to first order. Furthermore, a is assumed to be small, and b
close to unity.

If disprm::disx2p() is defined, then disx2p() uses it to provide an initial estimate for its more precise iterative
inversion.

Parameters

in,out dis Distortion function parameters.

in discrd Array of coordinates.

out rawcrd Array of coordinates to which the inverse distortion functions have been applied.

Returns

Status return value:

• 0: Success.

• 1: Null disprm pointer passed.

• 2: Memory allocation failed.

• 3: Invalid parameter.

• 5: De-distort error.

For returns > 1, a detailed error message is set in disprm::err if enabled, see wcserr_enable().

19.3.4.16 diswarp() int diswarp (

struct disprm ∗ dis,

const double pixblc[],

const double pixtrc[],

const double pixsamp[],

int ∗ nsamp,

double maxdis[],

double ∗ maxtot,

double avgdis[],

double ∗ avgtot,

double rmsdis[],

double ∗ rmstot)

diswarp() computes various measures of the distortion over a specified range of coordinates.

Generated by Doxygen

19.3 dis.h File Reference 105

For prior distortions, the measures may be interpreted simply as an offset in pixel coordinates. For sequent dis-
tortions, the interpretation depends on the nature of the linear transformation matrix (PCi_ja or CDi_ja). If
the latter introduces a scaling, then the measures will also be scaled. Note also that the image domain, which is
rectangular in pixel coordinates, may be rotated, skewed, and/or stretched in intermediate pixel coordinates, and in
general cannot be defined using pixblc[] and pixtrc[].

PLEASE NOTE: the measures of total distortion may be essentially meaningless if there are multiple sequent
distortions with different scaling.

See also linwarp().

Parameters

in,out dis Distortion function parameters.

in pixblc Start of the range of pixel coordinates (for prior distortions), or intermediate pixel
coordinates (for sequent distortions). May be specified as a NULL pointer which is
interpreted as (1,1,...).

in pixtrc End of the range of pixel coordinates (prior) or intermediate pixel coordinates
(sequent).

in pixsamp If positive or zero, the increment on the particular axis, starting at pixblc[]. Zero is
interpreted as a unit increment. pixsamp may also be specified as a NULL pointer
which is interpreted as all zeroes, i.e. unit increments on all axes.
If negative, the grid size on the particular axis (the absolute value being rounded to
the nearest integer). For example, if pixsamp is (-128.0,-128.0,...) then each axis will
be sampled at 128 points between pixblc[] and pixtrc[] inclusive. Use caution when
using this option on non-square images.

out nsamp The number of pixel coordinates sampled.
Can be specified as a NULL pointer if not required.

out maxdis For each individual distortion function, the maximum absolute value of the distortion.
Can be specified as a NULL pointer if not required.

out maxtot For the combination of all distortion functions, the maximum absolute value of the
distortion.
Can be specified as a NULL pointer if not required.

out avgdis For each individual distortion function, the mean value of the distortion.
Can be specified as a NULL pointer if not required.

out avgtot For the combination of all distortion functions, the mean value of the distortion.
Can be specified as a NULL pointer if not required.

out rmsdis For each individual distortion function, the root mean square deviation of the
distortion.
Can be specified as a NULL pointer if not required.

out rmstot For the combination of all distortion functions, the root mean square deviation of the
distortion.
Can be specified as a NULL pointer if not required.

Returns

Status return value:

• 0: Success.

• 1: Null disprm pointer passed.

• 2: Memory allocation failed.

• 3: Invalid parameter.

• 4: Distort error.

Generated by Doxygen

106

19.3.5 Variable Documentation

19.3.5.1 dis_errmsg const char ∗ dis_errmsg[] [extern]

Error messages to match the status value returned from each function.

19.4 dis.h

Go to the documentation of this file.
1 /*==
2 WCSLIB 7.11 - an implementation of the FITS WCS standard.
3 Copyright (C) 1995-2022, Mark Calabretta
4
5 This file is part of WCSLIB.
6
7 WCSLIB is free software: you can redistribute it and/or modify it under the
8 terms of the GNU Lesser General Public License as published by the Free
9 Software Foundation, either version 3 of the License, or (at your option)
10 any later version.
11
12 WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
15 more details.
16
17 You should have received a copy of the GNU Lesser General Public License
18 along with WCSLIB. If not, see http://www.gnu.org/licenses.
19
20 Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
21 http://www.atnf.csiro.au/people/Mark.Calabretta
22 $Id: dis.h,v 7.11 2022/04/26 06:13:52 mcalabre Exp $
23 *===
24 *
25 * WCSLIB 7.11 - C routines that implement the FITS World Coordinate System
26 * (WCS) standard. Refer to the README file provided with WCSLIB for an
27 * overview of the library.
28 *
29 *
30 * Summary of the dis routines
31 * ---------------------------
32 * Routines in this suite implement extensions to the FITS World Coordinate
33 * System (WCS) standard proposed by
34 *
35 = "Representations of distortions in FITS world coordinate systems",
36 = Calabretta, M.R. et al. (WCS Paper IV, draft dated 2004/04/22),
37 = available from http://www.atnf.csiro.au/people/Mark.Calabretta
38 *
39 * In brief, a distortion function may occupy one of two positions in the WCS
40 * algorithm chain. Prior distortions precede the linear transformation
41 * matrix, whether it be PCi_ja or CDi_ja, and sequent distortions follow it.
42 * WCS Paper IV defines FITS keywords used to specify parameters for predefined
43 * distortion functions. The following are used for prior distortions:
44 *
45 = CPDISja ...(string-valued, identifies the distortion function)
46 = DPja ...(record-valued, parameters)
47 = CPERRja ...(floating-valued, maximum value)
48 *
49 * Their counterparts for sequent distortions are CQDISia, DQia, and CQERRia.
50 * An additional floating-valued keyword, DVERRa, records the maximum value of
51 * the combined distortions.
52 *
53 * DPja and DQia are "record-valued". Syntactically, the keyvalues are
54 * standard FITS strings, but they are to be interpreted in a special way.
55 * The general form is
56 *
57 = DPja = ’<field-specifier>: <float>’
58 *
59 * where the field-specifier consists of a sequence of fields separated by
60 * periods, and the ’: ’ between the field-specifier and the floating-point
61 * value is part of the record syntax. For example:
62 *
63 = DP1 = ’AXIS.1: 1’
64 *
65 * Certain field-specifiers are defined for all distortion functions, while
66 * others are defined only for particular distortions. Refer to WCS Paper IV

Generated by Doxygen

19.4 dis.h 107

67 * for further details. wcspih() parses all distortion keywords and loads them
68 * into a disprm struct for analysis by disset() which knows (or possibly does
69 * not know) how to interpret them. Of the Paper IV distortion functions, only
70 * the general Polynomial distortion is currently implemented here.
71 *
72 * TPV - the TPV "projection":
73 * ---------------------------
74 * The distortion function component of the TPV celestial "projection" is also
75 * supported. The TPV projection, originally proposed in a draft of WCS Paper
76 * II, consists of a TAN projection with sequent polynomial distortion, the
77 * coefficients of which are encoded in PVi_ma keyrecords. Full details may be
78 * found at the registry of FITS conventions:
79 *
80 = http://fits.gsfc.nasa.gov/registry/tpvwcs/tpv.html
81 *
82 * Internally, wcsset() changes TPV to a TAN projection, translates the PVi_ma
83 * keywords to DQia and loads them into a disprm struct. These DQia keyrecords
84 * have the form
85 *
86 = DQia = ’TPV.m: <value>’
87 *
88 * where i, a, m, and the value for each DQia match each PVi_ma. Consequently,
89 * WCSLIB would handle a FITS header containing these keywords, along with
90 * CQDISia = ’TPV’ and the required DQia.NAXES and DQia.AXIS.ihat keywords.
91 *
92 * Note that, as defined, TPV assumes that CDi_ja is used to define the linear
93 * transformation. The section on historical idiosyncrasies (below) cautions
94 * about translating CDi_ja to PCi_ja plus CDELTia in this case.
95 *
96 * SIP - Simple Imaging Polynomial:
97 * --------------------------------
98 * These routines also support the Simple Imaging Polynomial (SIP), whose
99 * design was influenced by early drafts of WCS Paper IV. It is described in
100 * detail in
101 *
102 = http://fits.gsfc.nasa.gov/registry/sip.html
103 *
104 * SIP, which is defined only as a prior distortion for 2-D celestial images,
105 * has the interesting feature that it records an approximation to the inverse
106 * polynomial distortion function. This is used by disx2p() to provide an
107 * initial estimate for its more precise iterative inversion. The
108 * special-purpose keywords used by SIP are parsed and translated by wcspih()
109 * as follows:
110 *
111 = A_p_q = <value> -> DP1 = ’SIP.FWD.p_q: <value>’
112 = AP_p_q = <value> -> DP1 = ’SIP.REV.p_q: <value>’
113 = B_p_q = <value> -> DP2 = ’SIP.FWD.p_q: <value>’
114 = BP_p_q = <value> -> DP2 = ’SIP.REV.p_q: <value>’
115 = A_DMAX = <value> -> DPERR1 = <value>
116 = B_DMAX = <value> -> DPERR2 = <value>
117 *
118 * SIP’s A_ORDER and B_ORDER keywords are not used. WCSLIB would recognise a
119 * FITS header containing the above keywords, along with CPDISja = ’SIP’ and
120 * the required DPja.NAXES keywords.
121 *
122 * DSS - Digitized Sky Survey:
123 * ---------------------------
124 * The Digitized Sky Survey resulted from the production of the Guide Star
125 * Catalogue for the Hubble Space Telescope. Plate solutions based on a
126 * polynomial distortion function were encoded in FITS using non-standard
127 * keywords. Sect. 5.2 of WCS Paper IV describes how DSS coordinates may be
128 * translated to a sequent Polynomial distortion using two auxiliary variables.
129 * That translation is based on optimising the non-distortion component of the
130 * plate solution.
131 *
132 * Following Paper IV, wcspih() translates the non-distortion component of DSS
133 * coordinates to standard WCS keywords (CRPIXja, PCi_ja, CRVALia, etc), and
134 * fills a wcsprm struct with their values. It encodes the DSS polynomial
135 * coefficients as
136 *
137 = AMDXm = <value> -> DQ1 = ’AMD.m: <value>’
138 = AMDYm = <value> -> DQ2 = ’AMD.m: <value>’
139 *
140 * WCSLIB would recognise a FITS header containing the above keywords, along
141 * with CQDISia = ’DSS’ and the required DQia.NAXES keywords.
142 *
143 * WAT - the TNX and ZPX "projections":
144 * ------------------------------------
145 * The TNX and ZPX "projections" add a polynomial distortion function to the
146 * standard TAN and ZPN projections respectively. Unusually, the polynomial
147 * may be expressed as the sum of Chebyshev or Legendre polynomials, or as a
148 * simple sum of monomials, as described in
149 *
150 = http://fits.gsfc.nasa.gov/registry/tnx/tnx-doc.html
151 = http://fits.gsfc.nasa.gov/registry/zpxwcs/zpx.html
152 *
153 * The polynomial coefficients are encoded in special-purpose WATi_n keywords

Generated by Doxygen

108

154 * as a set of continued strings, thus providing the name for this distortion
155 * type. WATi_n are parsed and translated by wcspih() into the following set:
156 *
157 = DQi = ’WAT.POLY: <value>’
158 = DQi = ’WAT.XMIN: <value>’
159 = DQi = ’WAT.XMAX: <value>’
160 = DQi = ’WAT.YMIN: <value>’
161 = DQi = ’WAT.YMAX: <value>’
162 = DQi = ’WAT.CHBY.m_n: <value>’ or
163 = DQi = ’WAT.LEGR.m_n: <value>’ or
164 = DQi = ’WAT.MONO.m_n: <value>’
165 *
166 * along with CQDISia = ’WAT’ and the required DPja.NAXES keywords. For ZPX,
167 * the ZPN projection parameters are also encoded in WATi_n, and wcspih()
168 * translates these to standard PVi_ma.
169 *
170 * Note that, as defined, TNX and ZPX assume that CDi_ja is used to define the
171 * linear transformation. The section on historical idiosyncrasies (below)
172 * cautions about translating CDi_ja to PCi_ja plus CDELTia in this case.
173 *
174 * TPD - Template Polynomial Distortion:
175 * -------------------------------------
176 * The "Template Polynomial Distortion" (TPD) is a superset of the TPV, SIP,
177 * DSS, and WAT (TNX & ZPX) polynomial distortions that also supports 1-D usage
178 * and inversions. Like TPV, SIP, and DSS, the form of the polynomial is fixed
179 * (the "template") and only the coefficients for the required terms are set
180 * non-zero. TPD generalizes TPV in going to 9th degree, SIP by accomodating
181 * TPV’s linear and radial terms, and DSS in both respects. While in theory
182 * the degree of the WAT polynomial distortion in unconstrained, in practice it
183 * is limited to values that can be handled by TPD.
184 *
185 * Within WCSLIB, TPV, SIP, DSS, and WAT are all implemented as special cases
186 * of TPD. Indeed, TPD was developed precisely for that purpose. WAT
187 * distortions expressed as the sum of Chebyshev or Legendre polynomials are
188 * expanded for TPD as a simple sum of monomials. Moreover, the general
189 * Polynomial distortion is translated and implemented internally as TPD
190 * whenever possible.
191 *
192 * However, WCSLIB also recognizes ’TPD’ as a distortion function in its own
193 * right (i.e. a recognized value of CPDISja or CQDISia), for use as both prior
194 * and sequent distortions. Its DPja and DQia keyrecords have the form
195 *
196 = DPja = ’TPD.FWD.m: <value>’
197 = DPja = ’TPD.REV.m: <value>’
198 *
199 * for the forward and reverse distortion functions. Moreover, like the
200 * general Polynomial distortion, TPD supports auxiliary variables, though only
201 * as a linear transformation of pixel coordinates (p1,p2):
202 *
203 = x = a0 + a1*p1 + a2*p2
204 = y = b0 + b1*p1 + b2*p2
205 *
206 * where the coefficients of the auxiliary variables (x,y) are recorded as
207 *
208 = DPja = ’AUX.1.COEFF.0: a0’ ...default 0.0
209 = DPja = ’AUX.1.COEFF.1: a1’ ...default 1.0
210 = DPja = ’AUX.1.COEFF.2: a2’ ...default 0.0
211 = DPja = ’AUX.2.COEFF.0: b0’ ...default 0.0
212 = DPja = ’AUX.2.COEFF.1: b1’ ...default 0.0
213 = DPja = ’AUX.2.COEFF.2: b2’ ...default 1.0
214 *
215 * Though nowhere near as powerful, in typical applications TPD is considerably
216 * faster than the general Polynomial distortion. As TPD has a finite and not
217 * too large number of possible terms (60), the coefficients for each can be
218 * stored (by disset()) in a fixed location in the disprm::dparm[] array. A
219 * large part of the speedup then arises from evaluating the polynomial using
220 * Horner’s scheme.
221 *
222 * Separate implementations for polynomials of each degree, and conditionals
223 * for 1-D polynomials and 2-D polynomials with and without the radial
224 * variable, ensure that unused terms mostly do not impose a significant
225 * computational overhead.
226 *
227 * The TPD terms are as follows
228 *
229 = 0: 1 4: xx 12: xxxx 24: xxxxxx 40: xxxxxxxx
230 = 5: xy 13: xxxy 25: xxxxxy 41: xxxxxxxy
231 = 1: x 6: yy 14: xxyy 26: xxxxyy 42: xxxxxxyy
232 = 2: y 15: xyyy 27: xxxyyy 43: xxxxxyyy
233 = 3: r 7: xxx 16: yyyy 28: xxyyyy 44: xxxxyyyy
234 = 8: xxy 29: xyyyyy 45: xxxyyyyy
235 = 9: xyy 17: xxxxx 30: yyyyyy 46: xxyyyyyy
236 = 10: yyy 18: xxxxy 47: xyyyyyyy
237 = 11: rrr 19: xxxyy 31: xxxxxxx 48: yyyyyyyy
238 = 20: xxyyy 32: xxxxxxy
239 = 21: xyyyy 33: xxxxxyy 49: xxxxxxxxx
240 = 22: yyyyy 34: xxxxyyy 50: xxxxxxxxy

Generated by Doxygen

19.4 dis.h 109

241 = 23: rrrrr 35: xxxyyyy 51: xxxxxxxyy
242 = 36: xxyyyyy 52: xxxxxxyyy
243 = 37: xyyyyyy 53: xxxxxyyyy
244 = 38: yyyyyyy 54: xxxxyyyyy
245 = 39: rrrrrrr 55: xxxyyyyyy
246 = 56: xxyyyyyyy
247 = 57: xyyyyyyyy
248 = 58: yyyyyyyyy
249 = 59: rrrrrrrrr
250 *
251 * where r = sqrt(xx + yy). Note that even powers of r are excluded since they
252 * can be accomodated by powers of (xx + yy).
253 *
254 * Note here that "x" refers to the axis to which the distortion function is
255 * attached, with "y" being the complementary axis. So, for example, with
256 * longitude on axis 1 and latitude on axis 2, for TPD attached to axis 1, "x"
257 * refers to axis 1 and "y" to axis 2. For TPD attached to axis 2, "x" refers
258 * to axis 2, and "y" to axis 1.
259 *
260 * TPV uses all terms up to 39. The m in its PVi_ma keywords translates
261 * directly to the TPD coefficient number.
262 *
263 * SIP uses all terms except for 0, 3, 11, 23, 39, and 59, with terms 1 and 2
264 * only used for the inverse. Its A_p_q, etc. keywords must be translated
265 * using a map.
266 *
267 * DSS uses terms 0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 17, 19, and 21. The presence
268 * of a non-zero constant term arises through the use of auxiliary variables
269 * with origin offset from the reference point of the TAN projection. However,
270 * in the translation given by WCS Paper IV, the distortion polynomial is zero,
271 * or very close to zero, at the reference pixel itself. The mapping between
272 * DSS’s AMDXm (or AMDYm) keyvalues and TPD coefficients, while still simple,
273 * is not quite as straightforward as for TPV and SIP.
274 *
275 * WAT uses all but the radial terms, namely 3, 11, 23, 39, and 59. While the
276 * mapping between WAT’s monomial coefficients and TPD is fairly simple, for
277 * its expression in terms of a sum of Chebyshev or Legendre polynomials it is
278 * much less so.
279 *
280 * Historical idiosyncrasies:
281 * --------------------------
282 * In addition to the above, some historical distortion functions have further
283 * idiosyncrasies that must be taken into account when translating them to TPD.
284 *
285 * WCS Paper IV specifies that a distortion function returns a correction to be
286 * added to pixel coordinates (prior distortion) or intermediate pixel
287 * coordinates (sequent distortion). The correction is meant to be small so
288 * that ignoring the distortion function, i.e. setting the correction to zero,
289 * produces a commensurately small error.
290 *
291 * However, rather than an additive correction, some historical distortion
292 * functions (TPV, DSS) define a polynomial that returns the corrected
293 * coordinates directly.
294 *
295 * The difference between the two approaches is readily accounted for simply by
296 * adding or subtracting 1 from the coefficient of the first degree term of the
297 * polynomial. However, it opens the way for considerable confusion.
298 *
299 * Additional to the formalism of WCS Paper IV, both the Polynomial and TPD
300 * distortion functions recognise a keyword
301 *
302 = DPja = ’DOCORR: 0’
303 *
304 * which is meant to apply generally to indicate that the distortion function
305 * returns the corrected coordinates directly. Any other value for DOCORR (or
306 * its absence) indicates that the distortion function returns an additive
307 * correction.
308 *
309 * WCS Paper IV also specifies that the independent variables of a distortion
310 * function are pixel coordinates (prior distortion) or intermediate pixel
311 * coordinates (sequent distortion).
312 *
313 * On the contrary, the independent variables of the SIP polynomial are pixel
314 * coordinate offsets from the reference pixel. This is readily handled via
315 * the renormalisation parameters
316 *
317 = DPja = ’OFFSET.jhat: <value>’
318 *
319 * where the value corresponds to CRPIXja.
320 *
321 * Likewise, because TPV, TNX, and ZPX are defined in terms of CDi_ja, the
322 * independent variables of the polynomial are intermediate world coordinates
323 * rather than intermediate pixel coordinates. Because sequent distortions
324 * are always applied before CDELTia, if CDi_ja is translated to PCi_ja plus
325 * CDELTia, then either CDELTia must be unity, or the distortion polynomial
326 * coefficients must be adjusted to account for the change of scale.
327 *

Generated by Doxygen

110

328 * Summary of the dis routines:
329 * ----------------------------
330 * These routines apply the distortion functions defined by the extension to
331 * the FITS WCS standard proposed in Paper IV. They are based on the disprm
332 * struct which contains all information needed for the computations. The
333 * struct contains some members that must be set by the user, and others that
334 * are maintained by these routines, somewhat like a C++ class but with no
335 * encapsulation.
336 *
337 * dpfill(), dpkeyi(), and dpkeyd() are provided to manage the dpkey struct.
338 *
339 * disndp(), disini(), disinit(), discpy(), and disfree() are provided to
340 * manage the disprm struct, dissize() computes its total size including
341 * allocated memory, and disprt() prints its contents.
342 *
343 * disperr() prints the error message(s) (if any) stored in a disprm struct.
344 *
345 * wcshdo() normally writes SIP and TPV headers in their native form if at all
346 * possible. However, dishdo() may be used to set a flag that tells it to
347 * write the header in the form of the TPD translation used internally.
348 *
349 * A setup routine, disset(), computes intermediate values in the disprm struct
350 * from parameters in it that were supplied by the user. The struct always
351 * needs to be set up by disset(), though disset() need not be called
352 * explicitly - refer to the explanation of disprm::flag.
353 *
354 * disp2x() and disx2p() implement the WCS distortion functions, disp2x() using
355 * separate functions, such as dispoly() and tpd7(), to do the computation.
356 *
357 * An auxiliary routine, diswarp(), computes various measures of the distortion
358 * over a specified range of coordinates.
359 *
360 * PLEASE NOTE: Distortions are not yet handled by wcsbth(), or wcscompare().
361 *
362 *
363 * disndp() - Memory allocation for DPja and DQia
364 * --
365 * disndp() sets or gets the value of NDPMAX (default 256). This global
366 * variable controls the maximum number of dpkey structs, for holding DPja or
367 * DQia keyvalues, that disini() should allocate space for. It is also used by
368 * disinit() as the default value of ndpmax.
369 *
370 * PLEASE NOTE: This function is not thread-safe.
371 *
372 * Given:
373 * n int Value of NDPMAX; ignored if < 0. Use a value less
374 * than zero to get the current value.
375 *
376 * Function return value:
377 * int Current value of NDPMAX.
378 *
379 *
380 * dpfill() - Fill the contents of a dpkey struct
381 * --
382 * dpfill() is a utility routine to aid in filling the contents of the dpkey
383 * struct. No checks are done on the validity of the inputs.
384 *
385 * WCS Paper IV specifies the syntax of a record-valued keyword as
386 *
387 = keyword = ’<field-specifier>: <float>’
388 *
389 * However, some DPja and DQia record values, such as those of DPja.NAXES and
390 * DPja.AXIS.j, are intrinsically integer-valued. While FITS header parsers
391 * are not expected to know in advance which of DPja and DQia are integral and
392 * which are floating point, if the record’s value parses as an integer (i.e.
393 * without decimal point or exponent), then preferably enter it into the dpkey
394 * struct as an integer. Either way, it doesn’t matter as disset() accepts
395 * either data type for all record values.
396 *
397 * Given and returned:
398 * dp struct dpkey*
399 * Store for DPja and DQia keyvalues.
400 *
401 * Given:
402 * keyword const char *
403 * field const char *
404 * These arguments are concatenated with an intervening
405 * "." to construct the full record field name, i.e.
406 * including the keyword name, DPja or DQia (but
407 * excluding the colon delimiter which is NOT part of the
408 * name). Either may be given as a NULL pointer. Set
409 * both NULL to omit setting this component of the
410 * struct.
411 *
412 * j int Axis number (1-relative), i.e. the j in DPja or
413 * i in DQia. Can be given as 0, in which case the axis
414 * number will be obtained from the keyword component of

Generated by Doxygen

19.4 dis.h 111

415 * the field name which must either have been given or
416 * preset.
417 *
418 * If j is non-zero, and keyword was given, then the
419 * value of j will be used to fill in the axis number.
420 *
421 * type int Data type of the record’s value
422 * 0: Integer,
423 * 1: Floating point.
424 *
425 * i int For type == 0, the integer value of the record.
426 *
427 * f double For type == 1, the floating point value of the record.
428 *
429 * Function return value:
430 * int Status return value:
431 * 0: Success.
432 *
433 *
434 * dpkeyi() - Get the data value in a dpkey struct as int
435 * --
436 * dpkeyi() returns the data value in a dpkey struct as an integer value.
437 *
438 * Given and returned:
439 * dp const struct dpkey *
440 * Parsed contents of a DPja or DQia keyrecord.
441 *
442 * Function return value:
443 * int The record’s value as int.
444 *
445 *
446 * dpkeyd() - Get the data value in a dpkey struct as double
447 * ---
448 * dpkeyd() returns the data value in a dpkey struct as a floating point
449 * value.
450 *
451 * Given and returned:
452 * dp const struct dpkey *
453 * Parsed contents of a DPja or DQia keyrecord.
454 *
455 * Function return value:
456 * double The record’s value as double.
457 *
458 *
459 * disini() - Default constructor for the disprm struct
460 * --
461 * disini() is a thin wrapper on disinit(). It invokes it with ndpmax set
462 * to -1 which causes it to use the value of the global variable NDPMAX. It
463 * is thereby potentially thread-unsafe if NDPMAX is altered dynamically via
464 * disndp(). Use disinit() for a thread-safe alternative in this case.
465 *
466 *
467 * disinit() - Default constructor for the disprm struct
468 * --
469 * disinit() allocates memory for arrays in a disprm struct and sets all
470 * members of the struct to default values.
471 *
472 * PLEASE NOTE: every disprm struct must be initialized by disinit(), possibly
473 * repeatedly. On the first invokation, and only the first invokation,
474 * disprm::flag must be set to -1 to initialize memory management, regardless
475 * of whether disinit() will actually be used to allocate memory.
476 *
477 * Given:
478 * alloc int If true, allocate memory unconditionally for arrays in
479 * the disprm struct.
480 *
481 * If false, it is assumed that pointers to these arrays
482 * have been set by the user except if they are null
483 * pointers in which case memory will be allocated for
484 * them regardless. (In other words, setting alloc true
485 * saves having to initalize these pointers to zero.)
486 *
487 * naxis int The number of world coordinate axes, used to determine
488 * array sizes.
489 *
490 * Given and returned:
491 * dis struct disprm*
492 * Distortion function parameters. Note that, in order
493 * to initialize memory management disprm::flag must be
494 * set to -1 when dis is initialized for the first time
495 * (memory leaks may result if it had already been
496 * initialized).
497 *
498 * Given:
499 * ndpmax int The number of DPja or DQia keywords to allocate space
500 * for. If set to -1, the value of the global variable
501 * NDPMAX will be used. This is potentially

Generated by Doxygen

112

502 * thread-unsafe if disndp() is being used dynamically to
503 * alter its value.
504 *
505 * Function return value:
506 * int Status return value:
507 * 0: Success.
508 * 1: Null disprm pointer passed.
509 * 2: Memory allocation failed.
510 *
511 * For returns > 1, a detailed error message is set in
512 * disprm::err if enabled, see wcserr_enable().
513 *
514 *
515 * discpy() - Copy routine for the disprm struct
516 * ---
517 * discpy() does a deep copy of one disprm struct to another, using disinit()
518 * to allocate memory unconditionally for its arrays if required. Only the
519 * "information to be provided" part of the struct is copied; a call to
520 * disset() is required to initialize the remainder.
521 *
522 * Given:
523 * alloc int If true, allocate memory unconditionally for arrays in
524 * the destination. Otherwise, it is assumed that
525 * pointers to these arrays have been set by the user
526 * except if they are null pointers in which case memory
527 * will be allocated for them regardless.
528 *
529 * dissrc const struct disprm*
530 * Struct to copy from.
531 *
532 * Given and returned:
533 * disdst struct disprm*
534 * Struct to copy to. disprm::flag should be set to -1
535 * if disdst was not previously initialized (memory leaks
536 * may result if it was previously initialized).
537 *
538 * Function return value:
539 * int Status return value:
540 * 0: Success.
541 * 1: Null disprm pointer passed.
542 * 2: Memory allocation failed.
543 *
544 * For returns > 1, a detailed error message is set in
545 * disprm::err if enabled, see wcserr_enable().
546 *
547 *
548 * disfree() - Destructor for the disprm struct
549 * --
550 * disfree() frees memory allocated for the disprm arrays by disinit().
551 * disinit() keeps a record of the memory it allocates and disfree() will only
552 * attempt to free this.
553 *
554 * PLEASE NOTE: disfree() must not be invoked on a disprm struct that was not
555 * initialized by disinit().
556 *
557 * Given:
558 * dis struct disprm*
559 * Distortion function parameters.
560 *
561 * Function return value:
562 * int Status return value:
563 * 0: Success.
564 * 1: Null disprm pointer passed.
565 *
566 *
567 * dissize() - Compute the size of a disprm struct
568 * ---
569 * dissize() computes the full size of a disprm struct, including allocated
570 * memory.
571 *
572 * Given:
573 * dis const struct disprm*
574 * Distortion function parameters.
575 *
576 * If NULL, the base size of the struct and the allocated
577 * size are both set to zero.
578 *
579 * Returned:
580 * sizes int[2] The first element is the base size of the struct as
581 * returned by sizeof(struct disprm). The second element
582 * is the total allocated size, in bytes, assuming that
583 * the allocation was done by disini(). This figure
584 * includes memory allocated for members of constituent
585 * structs, such as disprm::dp.
586 *
587 * It is not an error for the struct not to have been set
588 * up via tabset(), which normally results in additional

Generated by Doxygen

19.4 dis.h 113

589 * memory allocation.
590 *
591 * Function return value:
592 * int Status return value:
593 * 0: Success.
594 *
595 *
596 * disprt() - Print routine for the disprm struct
597 * --
598 * disprt() prints the contents of a disprm struct using wcsprintf(). Mainly
599 * intended for diagnostic purposes.
600 *
601 * Given:
602 * dis const struct disprm*
603 * Distortion function parameters.
604 *
605 * Function return value:
606 * int Status return value:
607 * 0: Success.
608 * 1: Null disprm pointer passed.
609 *
610 *
611 * disperr() - Print error messages from a disprm struct
612 * ---
613 * disperr() prints the error message(s) (if any) stored in a disprm struct.
614 * If there are no errors then nothing is printed. It uses wcserr_prt(), q.v.
615 *
616 * Given:
617 * dis const struct disprm*
618 * Distortion function parameters.
619 *
620 * prefix const char *
621 * If non-NULL, each output line will be prefixed with
622 * this string.
623 *
624 * Function return value:
625 * int Status return value:
626 * 0: Success.
627 * 1: Null disprm pointer passed.
628 *
629 *
630 * dishdo() - write FITS headers using TPD
631 * ---------------------------------------
632 * dishdo() sets a flag that tells wcshdo() to write FITS headers in the form
633 * of the TPD translation used internally. Normally SIP and TPV would be
634 * written in their native form if at all possible.
635 *
636 * Given and returned:
637 * dis struct disprm*
638 * Distortion function parameters.
639 *
640 * Function return value:
641 * int Status return value:
642 * 0: Success.
643 * 1: Null disprm pointer passed.
644 * 3: No TPD translation.
645 *
646 *
647 * disset() - Setup routine for the disprm struct
648 * --
649 * disset(), sets up the disprm struct according to information supplied within
650 * it - refer to the explanation of disprm::flag.
651 *
652 * Note that this routine need not be called directly; it will be invoked by
653 * disp2x() and disx2p() if the disprm::flag is anything other than a
654 * predefined magic value.
655 *
656 * Given and returned:
657 * dis struct disprm*
658 * Distortion function parameters.
659 *
660 * Function return value:
661 * int Status return value:
662 * 0: Success.
663 * 1: Null disprm pointer passed.
664 * 2: Memory allocation failed.
665 * 3: Invalid parameter.
666 *
667 * For returns > 1, a detailed error message is set in
668 * disprm::err if enabled, see wcserr_enable().
669 *
670 *
671 * disp2x() - Apply distortion function
672 * ------------------------------------
673 * disp2x() applies the distortion functions. By definition, the distortion
674 * is in the pixel-to-world direction.
675 *

Generated by Doxygen

114

676 * Depending on the point in the algorithm chain at which it is invoked,
677 * disp2x() may transform pixel coordinates to corrected pixel coordinates, or
678 * intermediate pixel coordinates to corrected intermediate pixel coordinates,
679 * or image coordinates to corrected image coordinates.
680 *
681 *
682 * Given and returned:
683 * dis struct disprm*
684 * Distortion function parameters.
685 *
686 * Given:
687 * rawcrd const double[naxis]
688 * Array of coordinates.
689 *
690 * Returned:
691 * discrd double[naxis]
692 * Array of coordinates to which the distortion functions
693 * have been applied.
694 *
695 * Function return value:
696 * int Status return value:
697 * 0: Success.
698 * 1: Null disprm pointer passed.
699 * 2: Memory allocation failed.
700 * 3: Invalid parameter.
701 * 4: Distort error.
702 *
703 * For returns > 1, a detailed error message is set in
704 * disprm::err if enabled, see wcserr_enable().
705 *
706 *
707 * disx2p() - Apply de-distortion function
708 * ---------------------------------------
709 * disx2p() applies the inverse of the distortion functions. By definition,
710 * the de-distortion is in the world-to-pixel direction.
711 *
712 * Depending on the point in the algorithm chain at which it is invoked,
713 * disx2p() may transform corrected pixel coordinates to pixel coordinates, or
714 * corrected intermediate pixel coordinates to intermediate pixel coordinates,
715 * or corrected image coordinates to image coordinates.
716 *
717 * disx2p() iteratively solves for the inverse using disp2x(). It assumes
718 * that the distortion is small and the functions are well-behaved, being
719 * continuous and with continuous derivatives. Also that, to first order
720 * in the neighbourhood of the solution, discrd[j] ~= a + b*rawcrd[j], i.e.
721 * independent of rawcrd[i], where i != j. This is effectively equivalent to
722 * assuming that the distortion functions are separable to first order.
723 * Furthermore, a is assumed to be small, and b close to unity.
724 *
725 * If disprm::disx2p() is defined, then disx2p() uses it to provide an initial
726 * estimate for its more precise iterative inversion.
727 *
728 * Given and returned:
729 * dis struct disprm*
730 * Distortion function parameters.
731 *
732 * Given:
733 * discrd const double[naxis]
734 * Array of coordinates.
735 *
736 * Returned:
737 * rawcrd double[naxis]
738 * Array of coordinates to which the inverse distortion
739 * functions have been applied.
740 *
741 * Function return value:
742 * int Status return value:
743 * 0: Success.
744 * 1: Null disprm pointer passed.
745 * 2: Memory allocation failed.
746 * 3: Invalid parameter.
747 * 5: De-distort error.
748 *
749 * For returns > 1, a detailed error message is set in
750 * disprm::err if enabled, see wcserr_enable().
751 *
752 *
753 * diswarp() - Compute measures of distortion
754 * --
755 * diswarp() computes various measures of the distortion over a specified range
756 * of coordinates.
757 *
758 * For prior distortions, the measures may be interpreted simply as an offset
759 * in pixel coordinates. For sequent distortions, the interpretation depends
760 * on the nature of the linear transformation matrix (PCi_ja or CDi_ja). If
761 * the latter introduces a scaling, then the measures will also be scaled.
762 * Note also that the image domain, which is rectangular in pixel coordinates,

Generated by Doxygen

19.4 dis.h 115

763 * may be rotated, skewed, and/or stretched in intermediate pixel coordinates,
764 * and in general cannot be defined using pixblc[] and pixtrc[].
765 *
766 * PLEASE NOTE: the measures of total distortion may be essentially meaningless
767 * if there are multiple sequent distortions with different scaling.
768 *
769 * See also linwarp().
770 *
771 * Given and returned:
772 * dis struct disprm*
773 * Distortion function parameters.
774 *
775 * Given:
776 * pixblc const double[naxis]
777 * Start of the range of pixel coordinates (for prior
778 * distortions), or intermediate pixel coordinates (for
779 * sequent distortions). May be specified as a NULL
780 * pointer which is interpreted as (1,1,...).
781 *
782 * pixtrc const double[naxis]
783 * End of the range of pixel coordinates (prior) or
784 * intermediate pixel coordinates (sequent).
785 *
786 * pixsamp const double[naxis]
787 * If positive or zero, the increment on the particular
788 * axis, starting at pixblc[]. Zero is interpreted as a
789 * unit increment. pixsamp may also be specified as a
790 * NULL pointer which is interpreted as all zeroes, i.e.
791 * unit increments on all axes.
792 *
793 * If negative, the grid size on the particular axis (the
794 * absolute value being rounded to the nearest integer).
795 * For example, if pixsamp is (-128.0,-128.0,...) then
796 * each axis will be sampled at 128 points between
797 * pixblc[] and pixtrc[] inclusive. Use caution when
798 * using this option on non-square images.
799 *
800 * Returned:
801 * nsamp int* The number of pixel coordinates sampled.
802 *
803 * Can be specified as a NULL pointer if not required.
804 *
805 * maxdis double[naxis]
806 * For each individual distortion function, the
807 * maximum absolute value of the distortion.
808 *
809 * Can be specified as a NULL pointer if not required.
810 *
811 * maxtot double* For the combination of all distortion functions, the
812 * maximum absolute value of the distortion.
813 *
814 * Can be specified as a NULL pointer if not required.
815 *
816 * avgdis double[naxis]
817 * For each individual distortion function, the
818 * mean value of the distortion.
819 *
820 * Can be specified as a NULL pointer if not required.
821 *
822 * avgtot double* For the combination of all distortion functions, the
823 * mean value of the distortion.
824 *
825 * Can be specified as a NULL pointer if not required.
826 *
827 * rmsdis double[naxis]
828 * For each individual distortion function, the
829 * root mean square deviation of the distortion.
830 *
831 * Can be specified as a NULL pointer if not required.
832 *
833 * rmstot double* For the combination of all distortion functions, the
834 * root mean square deviation of the distortion.
835 *
836 * Can be specified as a NULL pointer if not required.
837 *
838 * Function return value:
839 * int Status return value:
840 * 0: Success.
841 * 1: Null disprm pointer passed.
842 * 2: Memory allocation failed.
843 * 3: Invalid parameter.
844 * 4: Distort error.
845 *
846 *
847 * disprm struct - Distortion parameters
848 * -------------------------------------
849 * The disprm struct contains all of the information required to apply a set of

Generated by Doxygen

116

850 * distortion functions. It consists of certain members that must be set by
851 * the user ("given") and others that are set by the WCSLIB routines
852 * ("returned"). While the addresses of the arrays themselves may be set by
853 * disinit() if it (optionally) allocates memory, their contents must be set by
854 * the user.
855 *
856 * int flag
857 * (Given and returned) This flag must be set to zero whenever any of the
858 * following members of the disprm struct are set or modified:
859 *
860 * - disprm::naxis,
861 * - disprm::dtype,
862 * - disprm::ndp,
863 * - disprm::dp.
864 *
865 * This signals the initialization routine, disset(), to recompute the
866 * returned members of the disprm struct. disset() will reset flag to
867 * indicate that this has been done.
868 *
869 * PLEASE NOTE: flag must be set to -1 when disinit() is called for the
870 * first time for a particular disprm struct in order to initialize memory
871 * management. It must ONLY be used on the first initialization otherwise
872 * memory leaks may result.
873 *
874 * int naxis
875 * (Given or returned) Number of pixel and world coordinate elements.
876 *
877 * If disinit() is used to initialize the disprm struct (as would normally
878 * be the case) then it will set naxis from the value passed to it as a
879 * function argument. The user should not subsequently modify it.
880 *
881 * char (*dtype)[72]
882 * (Given) Pointer to the first element of an array of char[72] containing
883 * the name of the distortion function for each axis.
884 *
885 * int ndp
886 * (Given) The number of entries in the disprm::dp[] array.
887 *
888 * int ndpmax
889 * (Given) The length of the disprm::dp[] array.
890 *
891 * ndpmax will be set by disinit() if it allocates memory for disprm::dp[],
892 * otherwise it must be set by the user. See also disndp().
893 *
894 * struct dpkey dp
895 * (Given) Address of the first element of an array of length ndpmax of
896 * dpkey structs.
897 *
898 * As a FITS header parser encounters each DPja or DQia keyword it should
899 * load it into a dpkey struct in the array and increment ndp. However,
900 * note that a single disprm struct must hold only DPja or DQia keyvalues,
901 * not both. disset() interprets them as required by the particular
902 * distortion function.
903 *
904 * double *maxdis
905 * (Given) Pointer to the first element of an array of double specifying
906 * the maximum absolute value of the distortion for each axis computed over
907 * the whole image.
908 *
909 * It is not necessary to reset the disprm struct (via disset()) when
910 * disprm::maxdis is changed.
911 *
912 * double totdis
913 * (Given) The maximum absolute value of the combination of all distortion
914 * functions specified as an offset in pixel coordinates computed over the
915 * whole image.
916 *
917 * It is not necessary to reset the disprm struct (via disset()) when
918 * disprm::totdis is changed.
919 *
920 * int *docorr
921 * (Returned) Pointer to the first element of an array of int containing
922 * flags that indicate the mode of correction for each axis.
923 *
924 * If docorr is zero, the distortion function returns the corrected
925 * coordinates directly. Any other value indicates that the distortion
926 * function computes a correction to be added to pixel coordinates (prior
927 * distortion) or intermediate pixel coordinates (sequent distortion).
928 *
929 * int *Nhat
930 * (Returned) Pointer to the first element of an array of int containing
931 * the number of coordinate axes that form the independent variables of the
932 * distortion function for each axis.
933 *
934 * int **axmap
935 * (Returned) Pointer to the first element of an array of int* containing
936 * pointers to the first elements of the axis mapping arrays for each axis.

Generated by Doxygen

19.4 dis.h 117

937 *
938 * An axis mapping associates the independent variables of a distortion
939 * function with the 0-relative image axis number. For example, consider
940 * an image with a spectrum on the first axis (axis 0), followed by RA
941 * (axis 1), Dec (axis2), and time (axis 3) axes. For a distortion in
942 * (RA,Dec) and no distortion on the spectral or time axes, the axis
943 * mapping arrays, axmap[j][], would be
944 *
945 = j=0: [-1, -1, -1, -1] ...no distortion on spectral axis,
946 = 1: [1, 2, -1, -1] ...RA distortion depends on RA and Dec,
947 = 2: [2, 1, -1, -1] ...Dec distortion depends on Dec and RA,
948 = 3: [-1, -1, -1, -1] ...no distortion on time axis,
949 *
950 * where -1 indicates that there is no corresponding independent
951 * variable.
952 *
953 * double **offset
954 * (Returned) Pointer to the first element of an array of double*
955 * containing pointers to the first elements of arrays of offsets used to
956 * renormalize the independent variables of the distortion function for
957 * each axis.
958 *
959 * The offsets are subtracted from the independent variables before
960 * scaling.
961 *
962 * double **scale
963 * (Returned) Pointer to the first element of an array of double*
964 * containing pointers to the first elements of arrays of scales used to
965 * renormalize the independent variables of the distortion function for
966 * each axis.
967 *
968 * The scale is applied to the independent variables after the offsets are
969 * subtracted.
970 *
971 * int **iparm
972 * (Returned) Pointer to the first element of an array of int*
973 * containing pointers to the first elements of the arrays of integer
974 * distortion parameters for each axis.
975 *
976 * double **dparm
977 * (Returned) Pointer to the first element of an array of double*
978 * containing pointers to the first elements of the arrays of floating
979 * point distortion parameters for each axis.
980 *
981 * int i_naxis
982 * (Returned) Dimension of the internal arrays (normally equal to naxis).
983 *
984 * int ndis
985 * (Returned) The number of distortion functions.
986 *
987 * struct wcserr *err
988 * (Returned) If enabled, when an error status is returned, this struct
989 * contains detailed information about the error, see wcserr_enable().
990 *
991 * int (**disp2x)(DISP2X_ARGS)
992 * (For internal use only.)
993 * int (**disx2p)(DISX2P_ARGS)
994 * (For internal use only.)
995 * double *tmpmem
996 * (For internal use only.)
997 * int m_flag
998 * (For internal use only.)
999 * int m_naxis
1000 * (For internal use only.)
1001 * char (*m_dtype)[72]
1002 * (For internal use only.)
1003 * double **m_dp
1004 * (For internal use only.)
1005 * double *m_maxdis
1006 * (For internal use only.)
1007 *
1008 *
1009 * dpkey struct - Store for DPja and DQia keyvalues
1010 * --
1011 * The dpkey struct is used to pass the parsed contents of DPja or DQia
1012 * keyrecords to disset() via the disprm struct. A disprm struct must hold
1013 * only DPja or DQia keyvalues, not both.
1014 *
1015 * All members of this struct are to be set by the user.
1016 *
1017 * char field[72]
1018 * (Given) The full field name of the record, including the keyword name.
1019 * Note that the colon delimiter separating the field name and the value in
1020 * record-valued keyvalues is not part of the field name. For example, in
1021 * the following:
1022 *
1023 = DP3A = ’AXIS.1: 2’

Generated by Doxygen

118

1024 *
1025 * the full record field name is "DP3A.AXIS.1", and the record’s value
1026 * is 2.
1027 *
1028 * int j
1029 * (Given) Axis number (1-relative), i.e. the j in DPja or i in DQia.
1030 *
1031 * int type
1032 * (Given) The data type of the record’s value
1033 * - 0: Integer (stored as an int),
1034 * - 1: Floating point (stored as a double).
1035 *
1036 * union value
1037 * (Given) A union comprised of
1038 * - dpkey::i,
1039 * - dpkey::f,
1040 *
1041 * the record’s value.
1042 *
1043 *
1044 * Global variable: const char *dis_errmsg[] - Status return messages
1045 * --
1046 * Error messages to match the status value returned from each function.
1047 *
1048 *===*/
1049
1050 #ifndef WCSLIB_DIS
1051 #define WCSLIB_DIS
1052
1053 #ifdef __cplusplus
1054 extern "C" {
1055 #endif
1056
1057
1058 extern const char *dis_errmsg[];
1059
1060 enum dis_errmsg_enum {
1061 DISERR_SUCCESS = 0, // Success.
1062 DISERR_NULL_POINTER = 1, // Null disprm pointer passed.
1063 DISERR_MEMORY = 2, // Memory allocation failed.
1064 DISERR_BAD_PARAM = 3, // Invalid parameter value.
1065 DISERR_DISTORT = 4, // Distortion error.
1066 DISERR_DEDISTORT = 5 // De-distortion error.
1067 };
1068
1069 // For use in declaring distortion function prototypes (= DISX2P_ARGS).
1070 #define DISP2X_ARGS int inverse, const int iparm[], const double dparm[], \
1071 int ncrd, const double rawcrd[], double *discrd
1072
1073 // For use in declaring de-distortion function prototypes (= DISP2X_ARGS).
1074 #define DISX2P_ARGS int inverse, const int iparm[], const double dparm[], \
1075 int ncrd, const double discrd[], double *rawcrd
1076
1077
1078 // Struct used for storing DPja and DQia keyvalues.
1079 struct dpkey {
1080 char field[72]; // Full record field name (no colon).
1081 int j; // Axis number, as in DPja (1-relative).
1082 int type; // Data type of value.
1083 union {
1084 int i; // Integer record value.
1085 double f; // Floating point record value.
1086 } value; // Record value.
1087 };
1088
1089 // Size of the dpkey struct in int units, used by the Fortran wrappers.
1090 #define DPLEN (sizeof(struct dpkey)/sizeof(int))
1091
1092
1093 struct disprm {
1094 // Initialization flag (see the prologue above).
1095 //--
1096 int flag; // Set to zero to force initialization.
1097
1098 // Parameters to be provided (see the prologue above).
1099 //--
1100 int naxis; // The number of pixel coordinate elements,
1101 // given by NAXIS.
1102 char (*dtype)[72]; // For each axis, the distortion type.
1103 int ndp; // Number of DPja or DQia keywords, and the
1104 int ndpmax; // number for which space was allocated.
1105 struct dpkey *dp; // DPja or DQia keyvalues (not both).
1106 double *maxdis; // For each axis, the maximum distortion.
1107 double totdis; // The maximum combined distortion.
1108
1109 // Information derived from the parameters supplied.
1110 //--

Generated by Doxygen

19.5 fitshdr.h File Reference 119

1111 int *docorr; // For each axis, the mode of correction.
1112 int *Nhat; // For each axis, the number of coordinate
1113 // axes that form the independent variables
1114 // of the distortion function.
1115 int **axmap; // For each axis, the axis mapping array.
1116 double **offset; // For each axis, renormalization offsets.
1117 double **scale; // For each axis, renormalization scales.
1118 int **iparm; // For each axis, the array of integer
1119 // distortion parameters.
1120 double **dparm; // For each axis, the array of floating
1121 // point distortion parameters.
1122 int i_naxis; // Dimension of the internal arrays.
1123 int ndis; // The number of distortion functions.
1124
1125 // Error handling, if enabled.
1126 //--
1127 struct wcserr *err;
1128
1129 // Private - the remainder are for internal use.
1130 //--
1131 int (**disp2x)(DISP2X_ARGS); // For each axis, pointers to the
1132 int (**disx2p)(DISX2P_ARGS); // distortion function and its inverse.
1133
1134 double *tmpmem;
1135
1136 int m_flag, m_naxis; // The remainder are for memory management.
1137 char (*m_dtype)[72];
1138 struct dpkey *m_dp;
1139 double *m_maxdis;
1140 };
1141
1142 // Size of the disprm struct in int units, used by the Fortran wrappers.
1143 #define DISLEN (sizeof(struct disprm)/sizeof(int))
1144
1145
1146 int disndp(int n);
1147
1148 int dpfill(struct dpkey *dp, const char *keyword, const char *field, int j,
1149 int type, int i, double f);
1150
1151 int dpkeyi(const struct dpkey *dp);
1152
1153 double dpkeyd(const struct dpkey *dp);
1154
1155 int disini(int alloc, int naxis, struct disprm *dis);
1156
1157 int disinit(int alloc, int naxis, struct disprm *dis, int ndpmax);
1158
1159 int discpy(int alloc, const struct disprm *dissrc, struct disprm *disdst);
1160
1161 int disfree(struct disprm *dis);
1162
1163 int dissize(const struct disprm *dis, int sizes[2]);
1164
1165 int disprt(const struct disprm *dis);
1166
1167 int disperr(const struct disprm *dis, const char *prefix);
1168
1169 int dishdo(struct disprm *dis);
1170
1171 int disset(struct disprm *dis);
1172
1173 int disp2x(struct disprm *dis, const double rawcrd[], double discrd[]);
1174
1175 int disx2p(struct disprm *dis, const double discrd[], double rawcrd[]);
1176
1177 int diswarp(struct disprm *dis, const double pixblc[], const double pixtrc[],
1178 const double pixsamp[], int *nsamp,
1179 double maxdis[], double *maxtot,
1180 double avgdis[], double *avgtot,
1181 double rmsdis[], double *rmstot);
1182
1183 #ifdef __cplusplus
1184 }
1185 #endif
1186
1187 #endif // WCSLIB_DIS

19.5 fitshdr.h File Reference

#include "wcsconfig.h"

Generated by Doxygen

120

Data Structures

• struct fitskeyid

Keyword indexing.

• struct fitskey

Keyword/value information.

Macros

• #define FITSHDR_KEYWORD 0x01

Flag bit indicating illegal keyword syntax.

• #define FITSHDR_KEYVALUE 0x02

Flag bit indicating illegal keyvalue syntax.

• #define FITSHDR_COMMENT 0x04

Flag bit indicating illegal keycomment syntax.

• #define FITSHDR_KEYREC 0x08

Flag bit indicating illegal keyrecord.

• #define FITSHDR_CARD 0x08

Deprecated.

• #define FITSHDR_TRAILER 0x10

Flag bit indicating keyrecord following a valid END keyrecord.

• #define KEYIDLEN (sizeof(struct fitskeyid)/sizeof(int))
• #define KEYLEN (sizeof(struct fitskey)/sizeof(int))

Typedefs

• typedef int int64[3]

64-bit signed integer data type.

Enumerations

• enum fitshdr_errmsg_enum {
FITSHDRERR_SUCCESS = 0 , FITSHDRERR_NULL_POINTER = 1 , FITSHDRERR_MEMORY = 2 ,
FITSHDRERR_FLEX_PARSER = 3 ,
FITSHDRERR_DATA_TYPE = 4 }

Functions

• int fitshdr (const char header[], int nkeyrec, int nkeyids, struct fitskeyid keyids[], int ∗nreject, struct fitskey
∗∗keys)

FITS header parser routine.

Variables

• const char ∗ fitshdr_errmsg []

Status return messages.

Generated by Doxygen

19.5 fitshdr.h File Reference 121

19.5.1 Detailed Description

The Flexible Image Transport System (FITS), is a data format widely used in astronomy for data interchange and
archive. It is described in
"Definition of the Flexible Image Transport System (FITS), version 3.0",
Pence, W.D., Chiappetti, L., Page, C.G., Shaw, R.A., & Stobie, E. 2010,
A&A, 524, A42 - http://dx.doi.org/10.1051/0004-6361/201015362

See also http:
fitshdr() is a generic FITS header parser provided to handle keyrecords that are ignored by the WCS header parsers,
wcspih() and wcsbth(). Typically the latter may be set to remove WCS keyrecords from a header leaving fitshdr() to
handle the remainder.

19.5.2 Macro Definition Documentation

19.5.2.1 FITSHDR_KEYWORD #define FITSHDR_KEYWORD 0x01

Bit mask for the status flag bit-vector returned by fitshdr() indicating illegal keyword syntax.

19.5.2.2 FITSHDR_KEYVALUE #define FITSHDR_KEYVALUE 0x02

Bit mask for the status flag bit-vector returned by fitshdr() indicating illegal keyvalue syntax.

19.5.2.3 FITSHDR_COMMENT #define FITSHDR_COMMENT 0x04

Bit mask for the status flag bit-vector returned by fitshdr() indicating illegal keycomment syntax.

19.5.2.4 FITSHDR_KEYREC #define FITSHDR_KEYREC 0x08

Bit mask for the status flag bit-vector returned by fitshdr() indicating an illegal keyrecord, e.g. an END keyrecord
with trailing text.

19.5.2.5 FITSHDR_CARD #define FITSHDR_CARD 0x08

Deprecated Added for backwards compatibility, use FITSHDR_KEYREC instead.

19.5.2.6 FITSHDR_TRAILER #define FITSHDR_TRAILER 0x10

Bit mask for the status flag bit-vector returned by fitshdr() indicating a keyrecord following a valid END keyrecord.

19.5.2.7 KEYIDLEN #define KEYIDLEN (sizeof(struct fitskeyid)/sizeof(int))

Generated by Doxygen

122

19.5.2.8 KEYLEN #define KEYLEN (sizeof(struct fitskey)/sizeof(int))

19.5.3 Typedef Documentation

19.5.3.1 int64 int64

64-bit signed integer data type defined via preprocessor macro WCSLIB_INT64 which may be defined in
wcsconfig.h. For example
#define WCSLIB_INT64 long long int

This is typedef'd in fitshdr.h as
#ifdef WCSLIB_INT64

typedef WCSLIB_INT64 int64;
#else

typedef int int64[3];
#endif

See fitskey::type.

19.5.4 Enumeration Type Documentation

19.5.4.1 fitshdr_errmsg_enum enum fitshdr_errmsg_enum

Enumerator

FITSHDRERR_SUCCESS
FITSHDRERR_NULL_POINTER

FITSHDRERR_MEMORY
FITSHDRERR_FLEX_PARSER

FITSHDRERR_DATA_TYPE

19.5.5 Function Documentation

19.5.5.1 fitshdr() int fitshdr (

const char header[],

int nkeyrec,

int nkeyids,

struct fitskeyid keyids[],

int ∗ nreject,

struct fitskey ∗∗ keys)

fitshdr() parses a character array containing a FITS header, extracting all keywords and their values into an array
of fitskey structs.

Generated by Doxygen

19.5 fitshdr.h File Reference 123

Parameters

in header Character array containing the (entire) FITS header, for example, as might be obtained
conveniently via the CFITSIO routine fits_hdr2str().
Each header "keyrecord" (formerly "card image") consists of exactly 80 7-bit ASCII
printing characters in the range 0x20 to 0x7e (which excludes NUL, BS, TAB, LF, FF
and CR) especially noting that the keyrecords are NOT null-terminated.

in nkeyrec Number of keyrecords in header[].

in nkeyids Number of entries in keyids[].

in,out keyids While all keywords are extracted from the header, keyids[] provides a convienient way
of indexing them. The fitskeyid struct contains three members; fitskeyid::name must be
set by the user while fitskeyid::count and fitskeyid::idx are returned by fitshdr(). All
matched keywords will have their fitskey::keyno member negated.

out nreject Number of header keyrecords rejected for syntax errors.

out keys Pointer to an array of nkeyrec fitskey structs containing all keywords and keyvalues
extracted from the header.
Memory for the array is allocated by fitshdr() and this must be freed by the user. See
wcsdealloc().

Returns

Status return value:

• 0: Success.

• 1: Null fitskey pointer passed.

• 2: Memory allocation failed.

• 3: Fatal error returned by Flex parser.

• 4: Unrecognised data type.

Notes:

1. Keyword parsing is done in accordance with the syntax defined by NOST 100-2.0, noting the following points
in particular:

a Sect. 5.1.2.1 specifies that keywords be left-justified in columns 1-8, blank-filled with no embedded
spaces, composed only of the ASCII characters ABCDEFGHJKLMNOPQRSTUVWXYZ0123456789-←↩

_

fitshdr() accepts any characters in columns 1-8 but flags keywords that do not conform to standard
syntax.

b Sect. 5.1.2.2 defines the "value indicator" as the characters ''= '' occurring in columns 9 and 10. If
these are absent then the keyword has no value and columns 9-80 may contain any ASCII text (but see
note 2 for CONTINUE keyrecords). This is copied to the comment member of the fitskey struct.

c Sect. 5.1.2.3 states that a keyword may have a null (undefined) value if the value/comment field,
columns 11-80, consists entirely of spaces, possibly followed by a comment.

d Sect. 5.1.1 states that trailing blanks in a string keyvalue are not significant and the parser always
removes them. A string containing nothing but blanks will be replaced with a single blank.

Sect. 5.2.1 also states that a quote character (') in a string value is to be represented by two successive
quote characters and the parser removes the repeated quote.

e The parser recognizes free-format character (NOST 100-2.0, Sect. 5.2.1), integer (Sect. 5.2.3), and
floating-point values (Sect. 5.2.4) for all keywords.

Generated by Doxygen

124

f Sect. 5.2.3 offers no comment on the size of an integer keyvalue except indirectly in limiting it to 70
digits. The parser will translate an integer keyvalue to a 32-bit signed integer if it lies in the range -
2147483648 to +2147483647, otherwise it interprets it as a 64-bit signed integer if possible, or else a
"very long" integer (see fitskey::type).

g END not followed by 77 blanks is not considered to be a legitimate end keyrecord.

2. The parser supports a generalization of the OGIP Long String Keyvalue Convention (v1.0) whereby strings
may be continued onto successive header keyrecords. A keyrecord contains a segment of a continued string
if and only if

a it contains the pseudo-keyword CONTINUE,

b columns 9 and 10 are both blank,

c columns 11 to 80 contain what would be considered a valid string keyvalue, including optional key-
comment, if column 9 had contained '=',

d the previous keyrecord contained either a valid string keyvalue or a valid CONTINUE keyrecord.

If any of these conditions is violated, the keyrecord is considered in isolation.

Syntax errors in keycomments in a continued string are treated more permissively than usual; the '/' delimiter
may be omitted provided that parsing of the string keyvalue is not compromised. However, the FITSHDR_←↩

COMMENT status bit will be set for the keyrecord (see fitskey::status).

As for normal strings, trailing blanks in a continued string are not significant.

In the OGIP convention "the '&' character is used as the last non-blank character of the string to indicate that
the string is (probably) continued on the following keyword". This additional syntax is not required by fitshdr(),
but if '&' does occur as the last non-blank character of a continued string keyvalue then it will be removed,
along with any trailing blanks. However, blanks that occur before the '&' will be preserved.

19.5.6 Variable Documentation

19.5.6.1 fitshdr_errmsg const char ∗ fitshdr_errmsg[] [extern]

Error messages to match the status value returned from each function.

19.6 fitshdr.h

Go to the documentation of this file.
1 /*==
2 WCSLIB 7.11 - an implementation of the FITS WCS standard.
3 Copyright (C) 1995-2022, Mark Calabretta
4
5 This file is part of WCSLIB.
6
7 WCSLIB is free software: you can redistribute it and/or modify it under the
8 terms of the GNU Lesser General Public License as published by the Free
9 Software Foundation, either version 3 of the License, or (at your option)
10 any later version.
11
12 WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
15 more details.
16
17 You should have received a copy of the GNU Lesser General Public License
18 along with WCSLIB. If not, see http://www.gnu.org/licenses.
19
20 Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
21 http://www.atnf.csiro.au/people/Mark.Calabretta
22 $Id: fitshdr.h,v 7.11 2022/04/26 06:13:52 mcalabre Exp $
23 *===

Generated by Doxygen

19.6 fitshdr.h 125

24 *
25 * WCSLIB 7.11 - C routines that implement the FITS World Coordinate System
26 * (WCS) standard. Refer to the README file provided with WCSLIB for an
27 * overview of the library.
28 *
29 *
30 * Summary of the fitshdr routines
31 * -------------------------------
32 * The Flexible Image Transport System (FITS), is a data format widely used in
33 * astronomy for data interchange and archive. It is described in
34 *
35 = "Definition of the Flexible Image Transport System (FITS), version 3.0",
36 = Pence, W.D., Chiappetti, L., Page, C.G., Shaw, R.A., & Stobie, E. 2010,
37 = A&A, 524, A42 - http://dx.doi.org/10.1051/0004-6361/201015362
38 *
39 * See also http://fits.gsfc.nasa.gov
40 *
41 * fitshdr() is a generic FITS header parser provided to handle keyrecords that
42 * are ignored by the WCS header parsers, wcspih() and wcsbth(). Typically the
43 * latter may be set to remove WCS keyrecords from a header leaving fitshdr()
44 * to handle the remainder.
45 *
46 *
47 * fitshdr() - FITS header parser routine
48 * --------------------------------------
49 * fitshdr() parses a character array containing a FITS header, extracting
50 * all keywords and their values into an array of fitskey structs.
51 *
52 * Given:
53 * header const char []
54 * Character array containing the (entire) FITS header,
55 * for example, as might be obtained conveniently via the
56 * CFITSIO routine fits_hdr2str().
57 *
58 * Each header "keyrecord" (formerly "card image")
59 * consists of exactly 80 7-bit ASCII printing characters
60 * in the range 0x20 to 0x7e (which excludes NUL, BS,
61 * TAB, LF, FF and CR) especially noting that the
62 * keyrecords are NOT null-terminated.
63 *
64 * nkeyrec int Number of keyrecords in header[].
65 *
66 * nkeyids int Number of entries in keyids[].
67 *
68 * Given and returned:
69 * keyids struct fitskeyid []
70 * While all keywords are extracted from the header,
71 * keyids[] provides a convienient way of indexing them.
72 * The fitskeyid struct contains three members;
73 * fitskeyid::name must be set by the user while
74 * fitskeyid::count and fitskeyid::idx are returned by
75 * fitshdr(). All matched keywords will have their
76 * fitskey::keyno member negated.
77 *
78 * Returned:
79 * nreject int* Number of header keyrecords rejected for syntax
80 * errors.
81 *
82 * keys struct fitskey**
83 * Pointer to an array of nkeyrec fitskey structs
84 * containing all keywords and keyvalues extracted from
85 * the header.
86 *
87 * Memory for the array is allocated by fitshdr() and
88 * this must be freed by the user. See wcsdealloc().
89 *
90 * Function return value:
91 * int Status return value:
92 * 0: Success.
93 * 1: Null fitskey pointer passed.
94 * 2: Memory allocation failed.
95 * 3: Fatal error returned by Flex parser.
96 * 4: Unrecognised data type.
97 *
98 * Notes:
99 * 1: Keyword parsing is done in accordance with the syntax defined by
100 * NOST 100-2.0, noting the following points in particular:
101 *
102 * a: Sect. 5.1.2.1 specifies that keywords be left-justified in columns
103 * 1-8, blank-filled with no embedded spaces, composed only of the
104 * ASCII characters ABCDEFGHJKLMNOPQRSTUVWXYZ0123456789-_
105 *
106 * fitshdr() accepts any characters in columns 1-8 but flags keywords
107 * that do not conform to standard syntax.
108 *
109 * b: Sect. 5.1.2.2 defines the "value indicator" as the characters "= "
110 * occurring in columns 9 and 10. If these are absent then the

Generated by Doxygen

126

111 * keyword has no value and columns 9-80 may contain any ASCII text
112 * (but see note 2 for CONTINUE keyrecords). This is copied to the
113 * comment member of the fitskey struct.
114 *
115 * c: Sect. 5.1.2.3 states that a keyword may have a null (undefined)
116 * value if the value/comment field, columns 11-80, consists entirely
117 * of spaces, possibly followed by a comment.
118 *
119 * d: Sect. 5.1.1 states that trailing blanks in a string keyvalue are
120 * not significant and the parser always removes them. A string
121 * containing nothing but blanks will be replaced with a single
122 * blank.
123 *
124 * Sect. 5.2.1 also states that a quote character (’) in a string
125 * value is to be represented by two successive quote characters and
126 * the parser removes the repeated quote.
127 *
128 * e: The parser recognizes free-format character (NOST 100-2.0,
129 * Sect. 5.2.1), integer (Sect. 5.2.3), and floating-point values
130 * (Sect. 5.2.4) for all keywords.
131 *
132 * f: Sect. 5.2.3 offers no comment on the size of an integer keyvalue
133 * except indirectly in limiting it to 70 digits. The parser will
134 * translate an integer keyvalue to a 32-bit signed integer if it
135 * lies in the range -2147483648 to +2147483647, otherwise it
136 * interprets it as a 64-bit signed integer if possible, or else a
137 * "very long" integer (see fitskey::type).
138 *
139 * g: END not followed by 77 blanks is not considered to be a legitimate
140 * end keyrecord.
141 *
142 * 2: The parser supports a generalization of the OGIP Long String Keyvalue
143 * Convention (v1.0) whereby strings may be continued onto successive
144 * header keyrecords. A keyrecord contains a segment of a continued
145 * string if and only if
146 *
147 * a: it contains the pseudo-keyword CONTINUE,
148 *
149 * b: columns 9 and 10 are both blank,
150 *
151 * c: columns 11 to 80 contain what would be considered a valid string
152 * keyvalue, including optional keycomment, if column 9 had contained
153 * ’=’,
154 *
155 * d: the previous keyrecord contained either a valid string keyvalue or
156 * a valid CONTINUE keyrecord.
157 *
158 * If any of these conditions is violated, the keyrecord is considered in
159 * isolation.
160 *
161 * Syntax errors in keycomments in a continued string are treated more
162 * permissively than usual; the ’/’ delimiter may be omitted provided that
163 * parsing of the string keyvalue is not compromised. However, the
164 * FITSHDR_COMMENT status bit will be set for the keyrecord (see
165 * fitskey::status).
166 *
167 * As for normal strings, trailing blanks in a continued string are not
168 * significant.
169 *
170 * In the OGIP convention "the ’&’ character is used as the last non-blank
171 * character of the string to indicate that the string is (probably)
172 * continued on the following keyword". This additional syntax is not
173 * required by fitshdr(), but if ’&’ does occur as the last non-blank
174 * character of a continued string keyvalue then it will be removed, along
175 * with any trailing blanks. However, blanks that occur before the ’&’
176 * will be preserved.
177 *
178 *
179 * fitskeyid struct - Keyword indexing
180 * -----------------------------------
181 * fitshdr() uses the fitskeyid struct to return indexing information for
182 * specified keywords. The struct contains three members, the first of which,
183 * fitskeyid::name, must be set by the user with the remainder returned by
184 * fitshdr().
185 *
186 * char name[12]:
187 * (Given) Name of the required keyword. This is to be set by the user;
188 * the ’.’ character may be used for wildcarding. Trailing blanks will be
189 * replaced with nulls.
190 *
191 * int count:
192 * (Returned) The number of matches found for the keyword.
193 *
194 * int idx[2]:
195 * (Returned) Indices into keys[], the array of fitskey structs returned by
196 * fitshdr(). Note that these are 0-relative array indices, not keyrecord
197 * numbers.

Generated by Doxygen

19.6 fitshdr.h 127

198 *
199 * If the keyword is found in the header the first index will be set to the
200 * array index of its first occurrence, otherwise it will be set to -1.
201 *
202 * If multiples of the keyword are found, the second index will be set to
203 * the array index of its last occurrence, otherwise it will be set to -1.
204 *
205 *
206 * fitskey struct - Keyword/value information
207 * --
208 * fitshdr() returns an array of fitskey structs, each of which contains the
209 * result of parsing one FITS header keyrecord. All members of the fitskey
210 * struct are returned by fitshdr(), none are given by the user.
211 *
212 * int keyno
213 * (Returned) Keyrecord number (1-relative) in the array passed as input to
214 * fitshdr(). This will be negated if the keyword matched any specified in
215 * the keyids[] index.
216 *
217 * int keyid
218 * (Returned) Index into the first entry in keyids[] with which the
219 * keyrecord matches, else -1.
220 *
221 * int status
222 * (Returned) Status flag bit-vector for the header keyrecord employing the
223 * following bit masks defined as preprocessor macros:
224 *
225 * - FITSHDR_KEYWORD: Illegal keyword syntax.
226 * - FITSHDR_KEYVALUE: Illegal keyvalue syntax.
227 * - FITSHDR_COMMENT: Illegal keycomment syntax.
228 * - FITSHDR_KEYREC: Illegal keyrecord, e.g. an END keyrecord with
229 * trailing text.
230 * - FITSHDR_TRAILER: Keyrecord following a valid END keyrecord.
231 *
232 * The header keyrecord is syntactically correct if no bits are set.
233 *
234 * char keyword[12]
235 * (Returned) Keyword name, null-filled for keywords of less than eight
236 * characters (trailing blanks replaced by nulls).
237 *
238 * Use
239 *
240 = sprintf(dst, "%.8s", keyword)
241 *
242 * to copy it to a character array with null-termination, or
243 *
244 = sprintf(dst, "%8.8s", keyword)
245 *
246 * to blank-fill to eight characters followed by null-termination.
247 *
248 * int type
249 * (Returned) Keyvalue data type:
250 * - 0: No keyvalue (both the value and type are undefined).
251 * - 1: Logical, represented as int.
252 * - 2: 32-bit signed integer.
253 * - 3: 64-bit signed integer (see below).
254 * - 4: Very long integer (see below).
255 * - 5: Floating point (stored as double).
256 * - 6: Integer complex (stored as double[2]).
257 * - 7: Floating point complex (stored as double[2]).
258 * - 8: String.
259 * - 8+10*n: Continued string (described below and in fitshdr() note 2).
260 *
261 * A negative type indicates that a syntax error was encountered when
262 * attempting to parse a keyvalue of the particular type.
263 *
264 * Comments on particular data types:
265 * - 64-bit signed integers lie in the range
266 *
267 = (-9223372036854775808 <= int64 < -2147483648) ||
268 = (+2147483647 < int64 <= +9223372036854775807)
269 *
270 * A native 64-bit data type may be defined via preprocessor macro
271 * WCSLIB_INT64 defined in wcsconfig.h, e.g. as ’long long int’; this
272 * will be typedef’d to ’int64’ here. If WCSLIB_INT64 is not set, then
273 * int64 is typedef’d to int[3] instead and fitskey::keyvalue is to be
274 * computed as
275 *
276 = ((keyvalue.k[2]) * 1000000000 +
277 = keyvalue.k[1]) * 1000000000 +
278 = keyvalue.k[0]
279 *
280 * and may reported via
281 *
282 = if (keyvalue.k[2]) {
283 = printf("%d%09d%09d", keyvalue.k[2], abs(keyvalue.k[1]),
284 = abs(keyvalue.k[0]));

Generated by Doxygen

128

285 = } else {
286 = printf("%d%09d", keyvalue.k[1], abs(keyvalue.k[0]));
287 = }
288 *
289 * where keyvalue.k[0] and keyvalue.k[1] range from -999999999 to
290 * +999999999.
291 *
292 * - Very long integers, up to 70 decimal digits in length, are encoded
293 * in keyvalue.l as an array of int[8], each of which stores 9 decimal
294 * digits. fitskey::keyvalue is to be computed as
295 *
296 = (((((((keyvalue.l[7]) * 1000000000 +
297 = keyvalue.l[6]) * 1000000000 +
298 = keyvalue.l[5]) * 1000000000 +
299 = keyvalue.l[4]) * 1000000000 +
300 = keyvalue.l[3]) * 1000000000 +
301 = keyvalue.l[2]) * 1000000000 +
302 = keyvalue.l[1]) * 1000000000 +
303 = keyvalue.l[0]
304 *
305 * - Continued strings are not reconstructed, they remain split over
306 * successive fitskey structs in the keys[] array returned by
307 * fitshdr(). fitskey::keyvalue data type, 8 + 10n, indicates the
308 * segment number, n, in the continuation.
309 *
310 * int padding
311 * (An unused variable inserted for alignment purposes only.)
312 *
313 * union keyvalue
314 * (Returned) A union comprised of
315 *
316 * - fitskey::i,
317 * - fitskey::k,
318 * - fitskey::l,
319 * - fitskey::f,
320 * - fitskey::c,
321 * - fitskey::s,
322 *
323 * used by the fitskey struct to contain the value associated with a
324 * keyword.
325 *
326 * int i
327 * (Returned) Logical (fitskey::type == 1) and 32-bit signed integer
328 * (fitskey::type == 2) data types in the fitskey::keyvalue union.
329 *
330 * int64 k
331 * (Returned) 64-bit signed integer (fitskey::type == 3) data type in the
332 * fitskey::keyvalue union.
333 *
334 * int l[8]
335 * (Returned) Very long integer (fitskey::type == 4) data type in the
336 * fitskey::keyvalue union.
337 *
338 * double f
339 * (Returned) Floating point (fitskey::type == 5) data type in the
340 * fitskey::keyvalue union.
341 *
342 * double c[2]
343 * (Returned) Integer and floating point complex (fitskey::type == 6 || 7)
344 * data types in the fitskey::keyvalue union.
345 *
346 * char s[72]
347 * (Returned) Null-terminated string (fitskey::type == 8) data type in the
348 * fitskey::keyvalue union.
349 *
350 * int ulen
351 * (Returned) Where a keycomment contains a units string in the standard
352 * form, e.g. [m/s], the ulen member indicates its length, inclusive of
353 * square brackets. Otherwise ulen is zero.
354 *
355 * char comment[84]
356 * (Returned) Keycomment, i.e. comment associated with the keyword or, for
357 * keyrecords rejected because of syntax errors, the compete keyrecord
358 * itself with null-termination.
359 *
360 * Comments are null-terminated with trailing spaces removed. Leading
361 * spaces are also removed from keycomments (i.e. those immediately
362 * following the ’/’ character), but not from COMMENT or HISTORY keyrecords
363 * or keyrecords without a value indicator ("= " in columns 9-80).
364 *
365 *
366 * Global variable: const char *fitshdr_errmsg[] - Status return messages
367 * --
368 * Error messages to match the status value returned from each function.
369 *
370 *===*/
371

Generated by Doxygen

19.7 getwcstab.h File Reference 129

372 #ifndef WCSLIB_FITSHDR
373 #define WCSLIB_FITSHDR
374
375 #include "wcsconfig.h"
376
377 #ifdef __cplusplus
378 extern "C" {
379 #endif
380
381 #define FITSHDR_KEYWORD 0x01
382 #define FITSHDR_KEYVALUE 0x02
383 #define FITSHDR_COMMENT 0x04
384 #define FITSHDR_KEYREC 0x08
385 #define FITSHDR_CARD 0x08 // Alias for backwards compatibility.
386 #define FITSHDR_TRAILER 0x10
387
388
389 extern const char *fitshdr_errmsg[];
390
391 enum fitshdr_errmsg_enum {
392 FITSHDRERR_SUCCESS = 0, // Success.
393 FITSHDRERR_NULL_POINTER = 1, // Null fitskey pointer passed.
394 FITSHDRERR_MEMORY = 2, // Memory allocation failed.
395 FITSHDRERR_FLEX_PARSER = 3, // Fatal error returned by Flex parser.
396 FITSHDRERR_DATA_TYPE = 4 // Unrecognised data type.
397 };
398
399 #ifdef WCSLIB_INT64
400 typedef WCSLIB_INT64 int64;
401 #else
402 typedef int int64[3];
403 #endif
404
405
406 // Struct used for indexing the keywords.
407 struct fitskeyid {
408 char name[12]; // Keyword name, null-terminated.
409 int count; // Number of occurrences of keyword.
410 int idx[2]; // Indices into fitskey array.
411 };
412
413 // Size of the fitskeyid struct in int units, used by the Fortran wrappers.
414 #define KEYIDLEN (sizeof(struct fitskeyid)/sizeof(int))
415
416
417 // Struct used for storing FITS keywords.
418 struct fitskey {
419 int keyno; // Header keyrecord sequence number (1-rel).
420 int keyid; // Index into fitskeyid[].
421 int status; // Header keyrecord status bit flags.
422 char keyword[12]; // Keyword name, null-filled.
423 int type; // Keyvalue type (see above).
424 int padding; // (Dummy inserted for alignment purposes.)
425 union {
426 int i; // 32-bit integer and logical values.
427 int64 k; // 64-bit integer values.
428 int l[8]; // Very long signed integer values.
429 double f; // Floating point values.
430 double c[2]; // Complex values.
431 char s[72]; // String values, null-terminated.
432 } keyvalue; // Keyvalue.
433 int ulen; // Length of units string.
434 char comment[84]; // Comment (or keyrecord), null-terminated.
435 };
436
437 // Size of the fitskey struct in int units, used by the Fortran wrappers.
438 #define KEYLEN (sizeof(struct fitskey)/sizeof(int))
439
440
441 int fitshdr(const char header[], int nkeyrec, int nkeyids,
442 struct fitskeyid keyids[], int *nreject, struct fitskey **keys);
443
444
445 #ifdef __cplusplus
446 }
447 #endif
448
449 #endif // WCSLIB_FITSHDR

19.7 getwcstab.h File Reference

#include <fitsio.h>

Generated by Doxygen

130

Data Structures

• struct wtbarr

Extraction of coordinate lookup tables from BINTABLE.

Functions

• int fits_read_wcstab (fitsfile ∗fptr, int nwtb, wtbarr ∗wtb, int ∗status)

FITS 'TAB' table reading routine.

19.7.1 Detailed Description

fits_read_wcstab(), an implementation of a FITS table reading routine for 'TAB' coordinates, is provided for CFITSIO
programmers. It has been incorporated into CFITSIO as of v3.006 with the definitions in this file, getwcstab.h, moved
into fitsio.h.

fits_read_wcstab() is not included in the WCSLIB object library but the source code is presented here as it may be
useful for programmers using an older version of CFITSIO than 3.006, or as a programming template for non-←↩

CFITSIO programmers.

19.7.2 Function Documentation

19.7.2.1 fits_read_wcstab() int fits_read_wcstab (

fitsfile ∗ fptr,

int nwtb,

wtbarr ∗ wtb,

int ∗ status)

fits_read_wcstab() extracts arrays from a binary table required in constructing 'TAB' coordinates.

Parameters

in fptr Pointer to the file handle returned, for example, by the fits_open_file() routine in
CFITSIO.

in nwtb Number of arrays to be read from the binary table(s).

in,out wtb Address of the first element of an array of wtbarr typedefs. This wtbarr typedef is defined
to match the wtbarr struct defined in WCSLIB. An array of such structs returned by the
WCSLIB function wcstab() as discussed in the notes below.

out status CFITSIO status value.

Returns

CFITSIO status value.

Notes:

Generated by Doxygen

19.8 getwcstab.h 131

1. In order to maintain WCSLIB and CFITSIO as independent libraries it is not permissible for any CFITSIO
library code to include WCSLIB header files, or vice versa. However, the CFITSIO function fits_read_←↩

wcstab() accepts an array of wtbarr structs defined in wcs.h within WCSLIB.

The problem therefore is to define the wtbarr struct within fitsio.h without including wcs.h, especially noting
that wcs.h will often (but not always) be included together with fitsio.h in an applications program that uses
fits_read_wcstab().

The solution adopted is for WCSLIB to define "struct wtbarr" while fitsio.h defines "typedef wtbarr" as an
untagged struct with identical members. This allows both wcs.h and fitsio.h to define a wtbarr data type
without conflict by virtue of the fact that structure tags and typedef names share different name spaces in C;
Appendix A, Sect. A11.1 (p227) of the K&R ANSI edition states that:
Identifiers fall into several name spaces that do not interfere with
one another; the same identifier may be used for different purposes,
even in the same scope, if the uses are in different name spaces.
These classes are: objects, functions, typedef names, and enum
constants; labels; tags of structures, unions, and enumerations; and
members of each structure or union individually.

Therefore, declarations within WCSLIB look like
struct wtbarr *w;

while within CFITSIO they are simply
wtbarr *w;

As suggested by the commonality of the names, these are really the same aggregate data type. However, in
passing a (struct wtbarr ∗) to fits_read_wcstab() a cast to (wtbarr ∗) is formally required.

When using WCSLIB and CFITSIO together in C++ the situation is complicated by the fact that typedefs and
structs share the same namespace; C++ Annotated Reference Manual, Sect. 7.1.3 (p105). In that case the
wtbarr struct in wcs.h is renamed by preprocessor macro substitution to wtbarr_s to distinguish it from the
typedef defined in fitsio.h. However, the scope of this macro substitution is limited to wcs.h itself and CFITSIO
programmer code, whether in C++ or C, should always use the wtbarr typedef.

19.8 getwcstab.h

Go to the documentation of this file.
1 /*==
2 WCSLIB 7.11 - an implementation of the FITS WCS standard.
3 Copyright (C) 1995-2022, Mark Calabretta
4
5 This file is part of WCSLIB.
6
7 WCSLIB is free software: you can redistribute it and/or modify it under the
8 terms of the GNU Lesser General Public License as published by the Free
9 Software Foundation, either version 3 of the License, or (at your option)
10 any later version.
11
12 WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
15 more details.
16
17 You should have received a copy of the GNU Lesser General Public License
18 along with WCSLIB. If not, see http://www.gnu.org/licenses.
19
20 Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
21 http://www.atnf.csiro.au/people/Mark.Calabretta
22 $Id: getwcstab.h,v 7.11 2022/04/26 06:13:52 mcalabre Exp $
23 *===
24 *
25 * WCSLIB 7.11 - C routines that implement the FITS World Coordinate System
26 * (WCS) standard. Refer to the README file provided with WCSLIB for an
27 * overview of the library.
28 *
29 * Summary of the getwcstab routines
30 * ---------------------------------
31 * fits_read_wcstab(), an implementation of a FITS table reading routine for
32 * ’TAB’ coordinates, is provided for CFITSIO programmers. It has been
33 * incorporated into CFITSIO as of v3.006 with the definitions in this file,
34 * getwcstab.h, moved into fitsio.h.
35 *
36 * fits_read_wcstab() is not included in the WCSLIB object library but the
37 * source code is presented here as it may be useful for programmers using an
38 * older version of CFITSIO than 3.006, or as a programming template for
39 * non-CFITSIO programmers.

Generated by Doxygen

132

40 *
41 *
42 * fits_read_wcstab() - FITS ’TAB’ table reading routine
43 * --
44 * fits_read_wcstab() extracts arrays from a binary table required in
45 * constructing ’TAB’ coordinates.
46 *
47 * Given:
48 * fptr fitsfile *
49 * Pointer to the file handle returned, for example, by
50 * the fits_open_file() routine in CFITSIO.
51 *
52 * nwtb int Number of arrays to be read from the binary table(s).
53 *
54 * Given and returned:
55 * wtb wtbarr * Address of the first element of an array of wtbarr
56 * typedefs. This wtbarr typedef is defined to match the
57 * wtbarr struct defined in WCSLIB. An array of such
58 * structs returned by the WCSLIB function wcstab() as
59 * discussed in the notes below.
60 *
61 * Returned:
62 * status int * CFITSIO status value.
63 *
64 * Function return value:
65 * int CFITSIO status value.
66 *
67 * Notes:
68 * 1: In order to maintain WCSLIB and CFITSIO as independent libraries it is
69 * not permissible for any CFITSIO library code to include WCSLIB header
70 * files, or vice versa. However, the CFITSIO function fits_read_wcstab()
71 * accepts an array of wtbarr structs defined in wcs.h within WCSLIB.
72 *
73 * The problem therefore is to define the wtbarr struct within fitsio.h
74 * without including wcs.h, especially noting that wcs.h will often (but
75 * not always) be included together with fitsio.h in an applications
76 * program that uses fits_read_wcstab().
77 *
78 * The solution adopted is for WCSLIB to define "struct wtbarr" while
79 * fitsio.h defines "typedef wtbarr" as an untagged struct with identical
80 * members. This allows both wcs.h and fitsio.h to define a wtbarr data
81 * type without conflict by virtue of the fact that structure tags and
82 * typedef names share different name spaces in C; Appendix A, Sect. A11.1
83 * (p227) of the K&R ANSI edition states that:
84 *
85 = Identifiers fall into several name spaces that do not interfere with
86 = one another; the same identifier may be used for different purposes,
87 = even in the same scope, if the uses are in different name spaces.
88 = These classes are: objects, functions, typedef names, and enum
89 = constants; labels; tags of structures, unions, and enumerations; and
90 = members of each structure or union individually.
91 *
92 * Therefore, declarations within WCSLIB look like
93 *
94 = struct wtbarr *w;
95 *
96 * while within CFITSIO they are simply
97 *
98 = wtbarr *w;
99 *
100 * As suggested by the commonality of the names, these are really the same
101 * aggregate data type. However, in passing a (struct wtbarr *) to
102 * fits_read_wcstab() a cast to (wtbarr *) is formally required.
103 *
104 * When using WCSLIB and CFITSIO together in C++ the situation is
105 * complicated by the fact that typedefs and structs share the same
106 * namespace; C++ Annotated Reference Manual, Sect. 7.1.3 (p105). In that
107 * case the wtbarr struct in wcs.h is renamed by preprocessor macro
108 * substitution to wtbarr_s to distinguish it from the typedef defined in
109 * fitsio.h. However, the scope of this macro substitution is limited to
110 * wcs.h itself and CFITSIO programmer code, whether in C++ or C, should
111 * always use the wtbarr typedef.
112 *
113 *
114 * wtbarr typedef
115 * --------------
116 * The wtbarr typedef is defined as a struct containing the following members:
117 *
118 * int i
119 * Image axis number.
120 *
121 * int m
122 * Array axis number for index vectors.
123 *
124 * int kind
125 * Character identifying the array type:
126 * - c: coordinate array,

Generated by Doxygen

19.9 lin.h File Reference 133

127 * - i: index vector.
128 *
129 * char extnam[72]
130 * EXTNAME identifying the binary table extension.
131 *
132 * int extver
133 * EXTVER identifying the binary table extension.
134 *
135 * int extlev
136 * EXTLEV identifying the binary table extension.
137 *
138 * char ttype[72]
139 * TTYPEn identifying the column of the binary table that contains the
140 * array.
141 *
142 * long row
143 * Table row number.
144 *
145 * int ndim
146 * Expected dimensionality of the array.
147 *
148 * int *dimlen
149 * Address of the first element of an array of int of length ndim into
150 * which the array axis lengths are to be written.
151 *
152 * double **arrayp
153 * Pointer to an array of double which is to be allocated by the user
154 * and into which the array is to be written.
155 *
156 *===*/
157
158 #ifndef WCSLIB_GETWCSTAB
159 #define WCSLIB_GETWCSTAB
160
161 #ifdef __cplusplus
162 extern "C" {
163 #endif
164
165 #include <fitsio.h>
166
167 typedef struct {
168 int i; // Image axis number.
169 int m; // Array axis number for index vectors.
170 int kind; // Array type, ’c’ (coord) or ’i’ (index).
171 char extnam[72]; // EXTNAME of binary table extension.
172 int extver; // EXTVER of binary table extension.
173 int extlev; // EXTLEV of binary table extension.
174 char ttype[72]; // TTYPEn of column containing the array.
175 long row; // Table row number.
176 int ndim; // Expected array dimensionality.
177 int *dimlen; // Where to write the array axis lengths.
178 double **arrayp; // Where to write the address of the array
179 // allocated to store the array.
180 } wtbarr;
181
182
183 int fits_read_wcstab(fitsfile *fptr, int nwtb, wtbarr *wtb, int *status);
184
185
186 #ifdef __cplusplus
187 }
188 #endif
189
190 #endif // WCSLIB_GETWCSTAB

19.9 lin.h File Reference

Data Structures

• struct linprm

Linear transformation parameters.

Macros

• #define LINLEN (sizeof(struct linprm)/sizeof(int))

Size of the linprm struct in int units.

Generated by Doxygen

134

• #define linini_errmsg lin_errmsg

Deprecated.
• #define lincpy_errmsg lin_errmsg

Deprecated.
• #define linfree_errmsg lin_errmsg

Deprecated.
• #define linprt_errmsg lin_errmsg

Deprecated.
• #define linset_errmsg lin_errmsg

Deprecated.
• #define linp2x_errmsg lin_errmsg

Deprecated.
• #define linx2p_errmsg lin_errmsg

Deprecated.

Enumerations

• enum lin_errmsg_enum {
LINERR_SUCCESS = 0 , LINERR_NULL_POINTER = 1 , LINERR_MEMORY = 2 , LINERR_SINGULAR_MTX
= 3 ,
LINERR_DISTORT_INIT = 4 , LINERR_DISTORT = 5 , LINERR_DEDISTORT = 6 }

Functions

• int linini (int alloc, int naxis, struct linprm ∗lin)

Default constructor for the linprm struct.
• int lininit (int alloc, int naxis, struct linprm ∗lin, int ndpmax)

Default constructor for the linprm struct.
• int lindis (int sequence, struct linprm ∗lin, struct disprm ∗dis)

Assign a distortion to a linprm struct.
• int lindist (int sequence, struct linprm ∗lin, struct disprm ∗dis, int ndpmax)

Assign a distortion to a linprm struct.
• int lincpy (int alloc, const struct linprm ∗linsrc, struct linprm ∗lindst)

Copy routine for the linprm struct.
• int linfree (struct linprm ∗lin)

Destructor for the linprm struct.
• int linsize (const struct linprm ∗lin, int sizes[2])

Compute the size of a linprm struct.
• int linprt (const struct linprm ∗lin)

Print routine for the linprm struct.
• int linperr (const struct linprm ∗lin, const char ∗prefix)

Print error messages from a linprm struct.
• int linset (struct linprm ∗lin)

Setup routine for the linprm struct.
• int linp2x (struct linprm ∗lin, int ncoord, int nelem, const double pixcrd[], double imgcrd[])

Pixel-to-world linear transformation.
• int linx2p (struct linprm ∗lin, int ncoord, int nelem, const double imgcrd[], double pixcrd[])

World-to-pixel linear transformation.
• int linwarp (struct linprm ∗lin, const double pixblc[], const double pixtrc[], const double pixsamp[], int ∗nsamp,

double maxdis[], double ∗maxtot, double avgdis[], double ∗avgtot, double rmsdis[], double ∗rmstot)

Compute measures of distortion.
• int matinv (int n, const double mat[], double inv[])

Matrix inversion.

Generated by Doxygen

19.9 lin.h File Reference 135

Variables

• const char ∗ lin_errmsg []

Status return messages.

19.9.1 Detailed Description

Routines in this suite apply the linear transformation defined by the FITS World Coordinate System (WCS) standard,
as described in
"Representations of world coordinates in FITS",
Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)

These routines are based on the linprm struct which contains all information needed for the computations. The
struct contains some members that must be set by the user, and others that are maintained by these routines,
somewhat like a C++ class but with no encapsulation.

Six routines, linini(), lininit(), lindis(), lindist() lincpy(), and linfree() are provided to manage the linprm struct, linsize()
computes its total size including allocated memory, and linprt() prints its contents.

linperr() prints the error message(s) (if any) stored in a linprm struct, and the disprm structs that it may contain.

A setup routine, linset(), computes intermediate values in the linprm struct from parameters in it that were supplied
by the user. The struct always needs to be set up by linset() but need not be called explicitly - refer to the explanation
of linprm::flag.

linp2x() and linx2p() implement the WCS linear transformations.

An auxiliary routine, linwarp(), computes various measures of the distortion over a specified range of pixel coordi-
nates.

An auxiliary matrix inversion routine, matinv(), is included. It uses LU-triangular factorization with scaled partial
pivoting.

19.9.2 Macro Definition Documentation

19.9.2.1 LINLEN #define LINLEN (sizeof(struct linprm)/sizeof(int))

Size of the linprm struct in int units, used by the Fortran wrappers.

19.9.2.2 linini_errmsg #define linini_errmsg lin_errmsg

Deprecated Added for backwards compatibility, use lin_errmsg directly now instead.

Generated by Doxygen

136

19.9.2.3 lincpy_errmsg #define lincpy_errmsg lin_errmsg

Deprecated Added for backwards compatibility, use lin_errmsg directly now instead.

19.9.2.4 linfree_errmsg #define linfree_errmsg lin_errmsg

Deprecated Added for backwards compatibility, use lin_errmsg directly now instead.

19.9.2.5 linprt_errmsg #define linprt_errmsg lin_errmsg

Deprecated Added for backwards compatibility, use lin_errmsg directly now instead.

19.9.2.6 linset_errmsg #define linset_errmsg lin_errmsg

Deprecated Added for backwards compatibility, use lin_errmsg directly now instead.

19.9.2.7 linp2x_errmsg #define linp2x_errmsg lin_errmsg

Deprecated Added for backwards compatibility, use lin_errmsg directly now instead.

19.9.2.8 linx2p_errmsg #define linx2p_errmsg lin_errmsg

Deprecated Added for backwards compatibility, use lin_errmsg directly now instead.

19.9.3 Enumeration Type Documentation

19.9.3.1 lin_errmsg_enum enum lin_errmsg_enum

Generated by Doxygen

19.9 lin.h File Reference 137

Enumerator

LINERR_SUCCESS
LINERR_NULL_POINTER

LINERR_MEMORY
LINERR_SINGULAR_MTX

LINERR_DISTORT_INIT
LINERR_DISTORT

LINERR_DEDISTORT

19.9.4 Function Documentation

19.9.4.1 linini() int linini (

int alloc,

int naxis,

struct linprm ∗ lin)

linini() is a thin wrapper on lininit(). It invokes it with ndpmax set to -1 which causes it to use the value of the
global variable NDPMAX. It is thereby potentially thread-unsafe if NDPMAX is altered dynamically via disndp(). Use
lininit() for a thread-safe alternative in this case.

19.9.4.2 lininit() int lininit (

int alloc,

int naxis,

struct linprm ∗ lin,

int ndpmax)

lininit() allocates memory for arrays in a linprm struct and sets all members of the struct to default values.

PLEASE NOTE: every linprm struct must be initialized by lininit(), possibly repeatedly. On the first invokation,
and only the first invokation, linprm::flag must be set to -1 to initialize memory management, regardless of whether
lininit() will actually be used to allocate memory.

Parameters

in alloc If true, allocate memory unconditionally for arrays in the linprm struct.
If false, it is assumed that pointers to these arrays have been set by the user except if
they are null pointers in which case memory will be allocated for them regardless. (In
other words, setting alloc true saves having to initalize these pointers to zero.)

in naxis The number of world coordinate axes, used to determine array sizes.

in,out lin Linear transformation parameters. Note that, in order to initialize memory
management linprm::flag should be set to -1 when lin is initialized for the first time
(memory leaks may result if it had already been initialized).

in ndpmax The number of DPja or DQia keywords to allocate space for. If set to -1, the value of
the global variable NDPMAX will be used. This is potentially thread-unsafe if disndp()
is being used dynamically to alter its value.

Generated by Doxygen

138

Returns

Status return value:

• 0: Success.

• 1: Null linprm pointer passed.

• 2: Memory allocation failed.

For returns > 1, a detailed error message is set in linprm::err if enabled, see wcserr_enable().

19.9.4.3 lindis() int lindis (

int sequence,

struct linprm ∗ lin,

struct disprm ∗ dis)

lindis() is a thin wrapper on lindist(). It invokes it with ndpmax set to -1 which causes the value of the global
variable NDPMAX to be used (by disinit()). It is thereby potentially thread-unsafe if NDPMAX is altered dynamically
via disndp(). Use lindist() for a thread-safe alternative in this case.

19.9.4.4 lindist() int lindist (

int sequence,

struct linprm ∗ lin,

struct disprm ∗ dis,

int ndpmax)

lindist() may be used to assign the address of a disprm struct to linprm::dispre or linprm::disseq. The linprm struct
must already have been initialized by lininit().

The disprm struct must have been allocated from the heap (e.g. using malloc(), calloc(), etc.). lindist() will immedi-
ately initialize it via a call to disini() using the value of linprm::naxis. Subsequently, it will be reinitialized by calls to
lininit(), and freed by linfree(), neither of which would happen if the disprm struct was assigned directly.

If the disprm struct had previously been assigned via lindist(), it will be freed before reassignment. It is also
permissable for a null disprm pointer to be assigned to disable the distortion correction.

Parameters

in sequence Is it a prior or sequent distortion?

• 1: Prior, the assignment is to linprm::dispre.

• 2: Sequent, the assignment is to linprm::disseq.

Anything else is an error.

in,out lin Linear transformation parameters.

in,out dis Distortion function parameters.

in ndpmax The number of DPja or DQia keywords to allocate space for. If set to -1, the value of
the global variable NDPMAX will be used. This is potentially thread-unsafe if disndp()
is being used dynamically to alter its value.

Generated by Doxygen

19.9 lin.h File Reference 139

Returns

Status return value:

• 0: Success.

• 1: Null linprm pointer passed.

• 4: Invalid sequence.

19.9.4.5 lincpy() int lincpy (

int alloc,

const struct linprm ∗ linsrc,

struct linprm ∗ lindst)

lincpy() does a deep copy of one linprm struct to another, using lininit() to allocate memory for its arrays if required.
Only the "information to be provided" part of the struct is copied; a call to linset() is required to initialize the remainder.

Parameters

in alloc If true, allocate memory for the crpix, pc, and cdelt arrays in the destination. Otherwise, it
is assumed that pointers to these arrays have been set by the user except if they are null
pointers in which case memory will be allocated for them regardless.

in linsrc Struct to copy from.

in,out lindst Struct to copy to. linprm::flag should be set to -1 if lindst was not previously initialized
(memory leaks may result if it was previously initialized).

Returns

Status return value:

• 0: Success.

• 1: Null linprm pointer passed.

• 2: Memory allocation failed.

For returns > 1, a detailed error message is set in linprm::err if enabled, see wcserr_enable().

19.9.4.6 linfree() int linfree (

struct linprm ∗ lin)

linfree() frees memory allocated for the linprm arrays by lininit() and/or linset(). lininit() keeps a record of the memory
it allocates and linfree() will only attempt to free this.

PLEASE NOTE: linfree() must not be invoked on a linprm struct that was not initialized by lininit().

Parameters

in lin Linear transformation parameters.

Generated by Doxygen

140

Returns

Status return value:

• 0: Success.

• 1: Null linprm pointer passed.

19.9.4.7 linsize() int linsize (

const struct linprm ∗ lin,

int sizes[2])

linsize() computes the full size of a linprm struct, including allocated memory.

Parameters

in lin Linear transformation parameters.
If NULL, the base size of the struct and the allocated size are both set to zero.

out sizes The first element is the base size of the struct as returned by sizeof(struct linprm).
The second element is the total size of memory allocated in the struct, in bytes, assuming that
the allocation was done by linini(). This figure includes memory allocated for members of
constituent structs, such as linprm::dispre.
It is not an error for the struct not to have been set up via linset(), which normally results in
additional memory allocation.

Returns

Status return value:

• 0: Success.

19.9.4.8 linprt() int linprt (

const struct linprm ∗ lin)

linprt() prints the contents of a linprm struct using wcsprintf(). Mainly intended for diagnostic purposes.

Parameters

in lin Linear transformation parameters.

Returns

Status return value:

• 0: Success.

• 1: Null linprm pointer passed.

Generated by Doxygen

19.9 lin.h File Reference 141

19.9.4.9 linperr() int linperr (

const struct linprm ∗ lin,

const char ∗ prefix)

linperr() prints the error message(s) (if any) stored in a linprm struct, and the disprm structs that it may contain. If
there are no errors then nothing is printed. It uses wcserr_prt(), q.v.

Parameters

in lin Coordinate transformation parameters.

in prefix If non-NULL, each output line will be prefixed with this string.

Returns

Status return value:

• 0: Success.

• 1: Null linprm pointer passed.

19.9.4.10 linset() int linset (

struct linprm ∗ lin)

linset(), if necessary, allocates memory for the linprm::piximg and linprm::imgpix arrays and sets up the linprm
struct according to information supplied within it - refer to the explanation of linprm::flag.

Note that this routine need not be called directly; it will be invoked by linp2x() and linx2p() if the linprm::flag is
anything other than a predefined magic value.

Parameters

in,out lin Linear transformation parameters.

Returns

Status return value:

• 0: Success.

• 1: Null linprm pointer passed.

• 2: Memory allocation failed.

• 3: PCi_ja matrix is singular.

For returns > 1, a detailed error message is set in linprm::err if enabled, see wcserr_enable().

19.9.4.11 linp2x() int linp2x (

struct linprm ∗ lin,

int ncoord,

int nelem,

Generated by Doxygen

142

const double pixcrd[],

double imgcrd[])

linp2x() transforms pixel coordinates to intermediate world coordinates.

Generated by Doxygen

19.9 lin.h File Reference 143

Parameters

in,out lin Linear transformation parameters.

in ncoord,nelem The number of coordinates, each of vector length nelem but containing lin.naxis
coordinate elements.

in pixcrd Array of pixel coordinates.

out imgcrd Array of intermediate world coordinates.

Returns

Status return value:

• 0: Success.

• 1: Null linprm pointer passed.

• 2: Memory allocation failed.

• 3: PCi_ja matrix is singular.

For returns > 1, a detailed error message is set in linprm::err if enabled, see wcserr_enable().

19.9.4.12 linx2p() int linx2p (

struct linprm ∗ lin,

int ncoord,

int nelem,

const double imgcrd[],

double pixcrd[])

linx2p() transforms intermediate world coordinates to pixel coordinates.

Parameters

in,out lin Linear transformation parameters.

in ncoord,nelem The number of coordinates, each of vector length nelem but containing lin.naxis
coordinate elements.

in imgcrd Array of intermediate world coordinates.

out pixcrd Array of pixel coordinates. Status return value:

• 0: Success.

• 1: Null linprm pointer passed.

• 2: Memory allocation failed.

• 3: PCi_ja matrix is singular.

For returns > 1, a detailed error message is set in linprm::err if enabled, see
wcserr_enable().

19.9.4.13 linwarp() int linwarp (

struct linprm ∗ lin,

Generated by Doxygen

144

const double pixblc[],

const double pixtrc[],

const double pixsamp[],

int ∗ nsamp,

double maxdis[],

double ∗ maxtot,

double avgdis[],

double ∗ avgtot,

double rmsdis[],

double ∗ rmstot)

linwarp() computes various measures of the distortion over a specified range of pixel coordinates.

All distortion measures are specified as an offset in pixel coordinates, as given directly by prior distortions. The offset
in intermediate pixel coordinates given by sequent distortions is translated back to pixel coordinates by applying the
inverse of the linear transformation matrix (PCi_ja or CDi_ja). The difference may be significant if the matrix
introduced a scaling.

If all distortions are prior, then linwarp() uses diswarp(), q.v.

Parameters

in,out lin Linear transformation parameters plus distortions.

in pixblc Start of the range of pixel coordinates (i.e. "bottom left-hand corner" in the
conventional FITS image display orientation). May be specified as a NULL pointer
which is interpreted as (1,1,...).

in pixtrc End of the range of pixel coordinates (i.e. "top right-hand corner" in the conventional
FITS image display orientation).

in pixsamp If positive or zero, the increment on the particular axis, starting at pixblc[]. Zero is
interpreted as a unit increment. pixsamp may also be specified as a NULL pointer
which is interpreted as all zeroes, i.e. unit increments on all axes.
If negative, the grid size on the particular axis (the absolute value being rounded to
the nearest integer). For example, if pixsamp is (-128.0,-128.0,...) then each axis will
be sampled at 128 points between pixblc[] and pixtrc[] inclusive. Use caution when
using this option on non-square images.

out nsamp The number of pixel coordinates sampled.
Can be specified as a NULL pointer if not required.

out maxdis For each individual distortion function, the maximum absolute value of the distortion.
Can be specified as a NULL pointer if not required.

out maxtot For the combination of all distortion functions, the maximum absolute value of the
distortion.
Can be specified as a NULL pointer if not required.

out avgdis For each individual distortion function, the mean value of the distortion.
Can be specified as a NULL pointer if not required.

out avgtot For the combination of all distortion functions, the mean value of the distortion.
Can be specified as a NULL pointer if not required.

out rmsdis For each individual distortion function, the root mean square deviation of the
distortion.
Can be specified as a NULL pointer if not required.

out rmstot For the combination of all distortion functions, the root mean square deviation of the
distortion.
Can be specified as a NULL pointer if not required.

Generated by Doxygen

19.10 lin.h 145

Returns

Status return value:

• 0: Success.

• 1: Null linprm pointer passed.

• 2: Memory allocation failed.

• 3: Invalid parameter.

• 4: Distort error.

19.9.4.14 matinv() matinv (

int n,

const double mat[],

double inv[])

matinv() performs matrix inversion using LU-triangular factorization with scaled partial pivoting.

Parameters

in n Order of the matrix (n× n).

in mat Matrix to be inverted, stored as mat[in+ j] where i and j are the row and column indices
respectively.

out inv Inverse of mat with the same storage convention.

Returns

Status return value:

• 0: Success.

• 2: Memory allocation failed.

• 3: Singular matrix.

19.9.5 Variable Documentation

19.9.5.1 lin_errmsg const char ∗ lin_errmsg[] [extern]

Error messages to match the status value returned from each function.

19.10 lin.h

Go to the documentation of this file.
1 /*==
2 WCSLIB 7.11 - an implementation of the FITS WCS standard.
3 Copyright (C) 1995-2022, Mark Calabretta
4
5 This file is part of WCSLIB.
6

Generated by Doxygen

146

7 WCSLIB is free software: you can redistribute it and/or modify it under the
8 terms of the GNU Lesser General Public License as published by the Free
9 Software Foundation, either version 3 of the License, or (at your option)
10 any later version.
11
12 WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
15 more details.
16
17 You should have received a copy of the GNU Lesser General Public License
18 along with WCSLIB. If not, see http://www.gnu.org/licenses.
19
20 Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
21 http://www.atnf.csiro.au/people/Mark.Calabretta
22 $Id: lin.h,v 7.11 2022/04/26 06:13:52 mcalabre Exp $
23 *===
24 *
25 * WCSLIB 7.11 - C routines that implement the FITS World Coordinate System
26 * (WCS) standard. Refer to the README file provided with WCSLIB for an
27 * overview of the library.
28 *
29 *
30 * Summary of the lin routines
31 * ---------------------------
32 * Routines in this suite apply the linear transformation defined by the FITS
33 * World Coordinate System (WCS) standard, as described in
34 *
35 = "Representations of world coordinates in FITS",
36 = Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)
37 *
38 * These routines are based on the linprm struct which contains all information
39 * needed for the computations. The struct contains some members that must be
40 * set by the user, and others that are maintained by these routines, somewhat
41 * like a C++ class but with no encapsulation.
42 *
43 * Six routines, linini(), lininit(), lindis(), lindist() lincpy(), and
44 * linfree() are provided to manage the linprm struct, linsize() computes its
45 * total size including allocated memory, and linprt() prints its contents.
46 *
47 * linperr() prints the error message(s) (if any) stored in a linprm struct,
48 * and the disprm structs that it may contain.
49 *
50 * A setup routine, linset(), computes intermediate values in the linprm struct
51 * from parameters in it that were supplied by the user. The struct always
52 * needs to be set up by linset() but need not be called explicitly - refer to
53 * the explanation of linprm::flag.
54 *
55 * linp2x() and linx2p() implement the WCS linear transformations.
56 *
57 * An auxiliary routine, linwarp(), computes various measures of the distortion
58 * over a specified range of pixel coordinates.
59 *
60 * An auxiliary matrix inversion routine, matinv(), is included. It uses
61 * LU-triangular factorization with scaled partial pivoting.
62 *
63 *
64 * linini() - Default constructor for the linprm struct
65 * --
66 * linini() is a thin wrapper on lininit(). It invokes it with ndpmax set
67 * to -1 which causes it to use the value of the global variable NDPMAX. It
68 * is thereby potentially thread-unsafe if NDPMAX is altered dynamically via
69 * disndp(). Use lininit() for a thread-safe alternative in this case.
70 *
71 *
72 * lininit() - Default constructor for the linprm struct
73 * ---
74 * lininit() allocates memory for arrays in a linprm struct and sets all
75 * members of the struct to default values.
76 *
77 * PLEASE NOTE: every linprm struct must be initialized by lininit(), possibly
78 * repeatedly. On the first invokation, and only the first invokation,
79 * linprm::flag must be set to -1 to initialize memory management, regardless
80 * of whether lininit() will actually be used to allocate memory.
81 *
82 * Given:
83 * alloc int If true, allocate memory unconditionally for arrays in
84 * the linprm struct.
85 *
86 * If false, it is assumed that pointers to these arrays
87 * have been set by the user except if they are null
88 * pointers in which case memory will be allocated for
89 * them regardless. (In other words, setting alloc true
90 * saves having to initalize these pointers to zero.)
91 *
92 * naxis int The number of world coordinate axes, used to determine
93 * array sizes.

Generated by Doxygen

19.10 lin.h 147

94 *
95 * Given and returned:
96 * lin struct linprm*
97 * Linear transformation parameters. Note that, in order
98 * to initialize memory management linprm::flag should be
99 * set to -1 when lin is initialized for the first time
100 * (memory leaks may result if it had already been
101 * initialized).
102 *
103 * Given:
104 * ndpmax int The number of DPja or DQia keywords to allocate space
105 * for. If set to -1, the value of the global variable
106 * NDPMAX will be used. This is potentially
107 * thread-unsafe if disndp() is being used dynamically to
108 * alter its value.
109 *
110 * Function return value:
111 * int Status return value:
112 * 0: Success.
113 * 1: Null linprm pointer passed.
114 * 2: Memory allocation failed.
115 *
116 * For returns > 1, a detailed error message is set in
117 * linprm::err if enabled, see wcserr_enable().
118 *
119 *
120 * lindis() - Assign a distortion to a linprm struct
121 * ---
122 * lindis() is a thin wrapper on lindist(). It invokes it with ndpmax set
123 * to -1 which causes the value of the global variable NDPMAX to be used (by
124 * disinit()). It is thereby potentially thread-unsafe if NDPMAX is altered
125 * dynamically via disndp(). Use lindist() for a thread-safe alternative in
126 * this case.
127 *
128 *
129 * lindist() - Assign a distortion to a linprm struct
130 * --
131 * lindist() may be used to assign the address of a disprm struct to
132 * linprm::dispre or linprm::disseq. The linprm struct must already have been
133 * initialized by lininit().
134 *
135 * The disprm struct must have been allocated from the heap (e.g. using
136 * malloc(), calloc(), etc.). lindist() will immediately initialize it via a
137 * call to disini() using the value of linprm::naxis. Subsequently, it will be
138 * reinitialized by calls to lininit(), and freed by linfree(), neither of
139 * which would happen if the disprm struct was assigned directly.
140 *
141 * If the disprm struct had previously been assigned via lindist(), it will be
142 * freed before reassignment. It is also permissable for a null disprm pointer
143 * to be assigned to disable the distortion correction.
144 *
145 * Given:
146 * sequence int Is it a prior or sequent distortion?
147 * 1: Prior, the assignment is to linprm::dispre.
148 * 2: Sequent, the assignment is to linprm::disseq.
149 *
150 * Anything else is an error.
151 *
152 * Given and returned:
153 * lin struct linprm*
154 * Linear transformation parameters.
155 *
156 * dis struct disprm*
157 * Distortion function parameters.
158 *
159 * Given:
160 * ndpmax int The number of DPja or DQia keywords to allocate space
161 * for. If set to -1, the value of the global variable
162 * NDPMAX will be used. This is potentially
163 * thread-unsafe if disndp() is being used dynamically to
164 * alter its value.
165 *
166 * Function return value:
167 * int Status return value:
168 * 0: Success.
169 * 1: Null linprm pointer passed.
170 * 4: Invalid sequence.
171 *
172 *
173 * lincpy() - Copy routine for the linprm struct
174 * ---
175 * lincpy() does a deep copy of one linprm struct to another, using lininit()
176 * to allocate memory for its arrays if required. Only the "information to be
177 * provided" part of the struct is copied; a call to linset() is required to
178 * initialize the remainder.
179 *
180 * Given:

Generated by Doxygen

148

181 * alloc int If true, allocate memory for the crpix, pc, and cdelt
182 * arrays in the destination. Otherwise, it is assumed
183 * that pointers to these arrays have been set by the
184 * user except if they are null pointers in which case
185 * memory will be allocated for them regardless.
186 *
187 * linsrc const struct linprm*
188 * Struct to copy from.
189 *
190 * Given and returned:
191 * lindst struct linprm*
192 * Struct to copy to. linprm::flag should be set to -1
193 * if lindst was not previously initialized (memory leaks
194 * may result if it was previously initialized).
195 *
196 * Function return value:
197 * int Status return value:
198 * 0: Success.
199 * 1: Null linprm pointer passed.
200 * 2: Memory allocation failed.
201 *
202 * For returns > 1, a detailed error message is set in
203 * linprm::err if enabled, see wcserr_enable().
204 *
205 *
206 * linfree() - Destructor for the linprm struct
207 * --
208 * linfree() frees memory allocated for the linprm arrays by lininit() and/or
209 * linset(). lininit() keeps a record of the memory it allocates and linfree()
210 * will only attempt to free this.
211 *
212 * PLEASE NOTE: linfree() must not be invoked on a linprm struct that was not
213 * initialized by lininit().
214 *
215 * Given:
216 * lin struct linprm*
217 * Linear transformation parameters.
218 *
219 * Function return value:
220 * int Status return value:
221 * 0: Success.
222 * 1: Null linprm pointer passed.
223 *
224 *
225 * linsize() - Compute the size of a linprm struct
226 * ---
227 * linsize() computes the full size of a linprm struct, including allocated
228 * memory.
229 *
230 * Given:
231 * lin const struct linprm*
232 * Linear transformation parameters.
233 *
234 * If NULL, the base size of the struct and the allocated
235 * size are both set to zero.
236 *
237 * Returned:
238 * sizes int[2] The first element is the base size of the struct as
239 * returned by sizeof(struct linprm).
240 *
241 * The second element is the total size of memory
242 * allocated in the struct, in bytes, assuming that the
243 * allocation was done by linini(). This figure includes
244 * memory allocated for members of constituent structs,
245 * such as linprm::dispre.
246 *
247 * It is not an error for the struct not to have been set
248 * up via linset(), which normally results in additional
249 * memory allocation.
250 *
251 * Function return value:
252 * int Status return value:
253 * 0: Success.
254 *
255 *
256 * linprt() - Print routine for the linprm struct
257 * --
258 * linprt() prints the contents of a linprm struct using wcsprintf(). Mainly
259 * intended for diagnostic purposes.
260 *
261 * Given:
262 * lin const struct linprm*
263 * Linear transformation parameters.
264 *
265 * Function return value:
266 * int Status return value:
267 * 0: Success.

Generated by Doxygen

19.10 lin.h 149

268 * 1: Null linprm pointer passed.
269 *
270 *
271 * linperr() - Print error messages from a linprm struct
272 * ---
273 * linperr() prints the error message(s) (if any) stored in a linprm struct,
274 * and the disprm structs that it may contain. If there are no errors then
275 * nothing is printed. It uses wcserr_prt(), q.v.
276 *
277 * Given:
278 * lin const struct linprm*
279 * Coordinate transformation parameters.
280 *
281 * prefix const char *
282 * If non-NULL, each output line will be prefixed with
283 * this string.
284 *
285 * Function return value:
286 * int Status return value:
287 * 0: Success.
288 * 1: Null linprm pointer passed.
289 *
290 *
291 * linset() - Setup routine for the linprm struct
292 * --
293 * linset(), if necessary, allocates memory for the linprm::piximg and
294 * linprm::imgpix arrays and sets up the linprm struct according to information
295 * supplied within it - refer to the explanation of linprm::flag.
296 *
297 * Note that this routine need not be called directly; it will be invoked by
298 * linp2x() and linx2p() if the linprm::flag is anything other than a
299 * predefined magic value.
300 *
301 * Given and returned:
302 * lin struct linprm*
303 * Linear transformation parameters.
304 *
305 * Function return value:
306 * int Status return value:
307 * 0: Success.
308 * 1: Null linprm pointer passed.
309 * 2: Memory allocation failed.
310 * 3: PCi_ja matrix is singular.
311 *
312 * For returns > 1, a detailed error message is set in
313 * linprm::err if enabled, see wcserr_enable().
314 *
315 *
316 * linp2x() - Pixel-to-world linear transformation
317 * ---
318 * linp2x() transforms pixel coordinates to intermediate world coordinates.
319 *
320 * Given and returned:
321 * lin struct linprm*
322 * Linear transformation parameters.
323 *
324 * Given:
325 * ncoord,
326 * nelem int The number of coordinates, each of vector length nelem
327 * but containing lin.naxis coordinate elements.
328 *
329 * pixcrd const double[ncoord][nelem]
330 * Array of pixel coordinates.
331 *
332 * Returned:
333 * imgcrd double[ncoord][nelem]
334 * Array of intermediate world coordinates.
335 *
336 * Function return value:
337 * int Status return value:
338 * 0: Success.
339 * 1: Null linprm pointer passed.
340 * 2: Memory allocation failed.
341 * 3: PCi_ja matrix is singular.
342 *
343 * For returns > 1, a detailed error message is set in
344 * linprm::err if enabled, see wcserr_enable().
345 *
346 *
347 * linx2p() - World-to-pixel linear transformation
348 * ---
349 * linx2p() transforms intermediate world coordinates to pixel coordinates.
350 *
351 * Given and returned:
352 * lin struct linprm*
353 * Linear transformation parameters.
354 *

Generated by Doxygen

150

355 * Given:
356 * ncoord,
357 * nelem int The number of coordinates, each of vector length nelem
358 * but containing lin.naxis coordinate elements.
359 *
360 * imgcrd const double[ncoord][nelem]
361 * Array of intermediate world coordinates.
362 *
363 * Returned:
364 * pixcrd double[ncoord][nelem]
365 * Array of pixel coordinates.
366 *
367 * int Status return value:
368 * 0: Success.
369 * 1: Null linprm pointer passed.
370 * 2: Memory allocation failed.
371 * 3: PCi_ja matrix is singular.
372 *
373 * For returns > 1, a detailed error message is set in
374 * linprm::err if enabled, see wcserr_enable().
375 *
376 *
377 * linwarp() - Compute measures of distortion
378 * --
379 * linwarp() computes various measures of the distortion over a specified range
380 * of pixel coordinates.
381 *
382 * All distortion measures are specified as an offset in pixel coordinates,
383 * as given directly by prior distortions. The offset in intermediate pixel
384 * coordinates given by sequent distortions is translated back to pixel
385 * coordinates by applying the inverse of the linear transformation matrix
386 * (PCi_ja or CDi_ja). The difference may be significant if the matrix
387 * introduced a scaling.
388 *
389 * If all distortions are prior, then linwarp() uses diswarp(), q.v.
390 *
391 * Given and returned:
392 * lin struct linprm*
393 * Linear transformation parameters plus distortions.
394 *
395 * Given:
396 * pixblc const double[naxis]
397 * Start of the range of pixel coordinates (i.e. "bottom
398 * left-hand corner" in the conventional FITS image
399 * display orientation). May be specified as a NULL
400 * pointer which is interpreted as (1,1,...).
401 *
402 * pixtrc const double[naxis]
403 * End of the range of pixel coordinates (i.e. "top
404 * right-hand corner" in the conventional FITS image
405 * display orientation).
406 *
407 * pixsamp const double[naxis]
408 * If positive or zero, the increment on the particular
409 * axis, starting at pixblc[]. Zero is interpreted as a
410 * unit increment. pixsamp may also be specified as a
411 * NULL pointer which is interpreted as all zeroes, i.e.
412 * unit increments on all axes.
413 *
414 * If negative, the grid size on the particular axis (the
415 * absolute value being rounded to the nearest integer).
416 * For example, if pixsamp is (-128.0,-128.0,...) then
417 * each axis will be sampled at 128 points between
418 * pixblc[] and pixtrc[] inclusive. Use caution when
419 * using this option on non-square images.
420 *
421 * Returned:
422 * nsamp int* The number of pixel coordinates sampled.
423 *
424 * Can be specified as a NULL pointer if not required.
425 *
426 * maxdis double[naxis]
427 * For each individual distortion function, the
428 * maximum absolute value of the distortion.
429 *
430 * Can be specified as a NULL pointer if not required.
431 *
432 * maxtot double* For the combination of all distortion functions, the
433 * maximum absolute value of the distortion.
434 *
435 * Can be specified as a NULL pointer if not required.
436 *
437 * avgdis double[naxis]
438 * For each individual distortion function, the
439 * mean value of the distortion.
440 *
441 * Can be specified as a NULL pointer if not required.

Generated by Doxygen

19.10 lin.h 151

442 *
443 * avgtot double* For the combination of all distortion functions, the
444 * mean value of the distortion.
445 *
446 * Can be specified as a NULL pointer if not required.
447 *
448 * rmsdis double[naxis]
449 * For each individual distortion function, the
450 * root mean square deviation of the distortion.
451 *
452 * Can be specified as a NULL pointer if not required.
453 *
454 * rmstot double* For the combination of all distortion functions, the
455 * root mean square deviation of the distortion.
456 *
457 * Can be specified as a NULL pointer if not required.
458 *
459 * Function return value:
460 * int Status return value:
461 * 0: Success.
462 * 1: Null linprm pointer passed.
463 * 2: Memory allocation failed.
464 * 3: Invalid parameter.
465 * 4: Distort error.
466 *
467 *
468 * linprm struct - Linear transformation parameters
469 * --
470 * The linprm struct contains all of the information required to perform a
471 * linear transformation. It consists of certain members that must be set by
472 * the user ("given") and others that are set by the WCSLIB routines
473 * ("returned").
474 *
475 * int flag
476 * (Given and returned) This flag must be set to zero whenever any of the
477 * following members of the linprm struct are set or modified:
478 *
479 * - linprm::naxis (q.v., not normally set by the user),
480 * - linprm::pc,
481 * - linprm::cdelt,
482 * - linprm::dispre.
483 * - linprm::disseq.
484 *
485 * This signals the initialization routine, linset(), to recompute the
486 * returned members of the linprm struct. linset() will reset flag to
487 * indicate that this has been done.
488 *
489 * PLEASE NOTE: flag should be set to -1 when lininit() is called for the
490 * first time for a particular linprm struct in order to initialize memory
491 * management. It must ONLY be used on the first initialization otherwise
492 * memory leaks may result.
493 *
494 * int naxis
495 * (Given or returned) Number of pixel and world coordinate elements.
496 *
497 * If lininit() is used to initialize the linprm struct (as would normally
498 * be the case) then it will set naxis from the value passed to it as a
499 * function argument. The user should not subsequently modify it.
500 *
501 * double *crpix
502 * (Given) Pointer to the first element of an array of double containing
503 * the coordinate reference pixel, CRPIXja.
504 *
505 * It is not necessary to reset the linprm struct (via linset()) when
506 * linprm::crpix is changed.
507 *
508 * double *pc
509 * (Given) Pointer to the first element of the PCi_ja (pixel coordinate)
510 * transformation matrix. The expected order is
511 *
512 = struct linprm lin;
513 = lin.pc = {PC1_1, PC1_2, PC2_1, PC2_2};
514 *
515 * This may be constructed conveniently from a 2-D array via
516 *
517 = double m[2][2] = {{PC1_1, PC1_2},
518 = {PC2_1, PC2_2}};
519 *
520 * which is equivalent to
521 *
522 = double m[2][2];
523 = m[0][0] = PC1_1;
524 = m[0][1] = PC1_2;
525 = m[1][0] = PC2_1;
526 = m[1][1] = PC2_2;
527 *
528 * The storage order for this 2-D array is the same as for the 1-D array,

Generated by Doxygen

152

529 * whence
530 *
531 = lin.pc = *m;
532 *
533 * would be legitimate.
534 *
535 * double *cdelt
536 * (Given) Pointer to the first element of an array of double containing
537 * the coordinate increments, CDELTia.
538 *
539 * struct disprm *dispre
540 * (Given) Pointer to a disprm struct holding parameters for prior
541 * distortion functions, or a null (0x0) pointer if there are none.
542 *
543 * Function lindist() may be used to assign a disprm pointer to a linprm
544 * struct, allowing it to take control of any memory allocated for it, as
545 * in the following example:
546 *
547 = void add_distortion(struct linprm *lin)
548 = {
549 = struct disprm *dispre;
550 =
551 = dispre = malloc(sizeof(struct disprm));
552 = dispre->flag = -1;
553 = lindist(1, lin, dispre, ndpmax);
554 = :
555 = (Set up dispre.)
556 = :
557 =
558 = return;
559 = }
560 *
561 * Here, after the distortion function parameters etc. are copied into
562 * dispre, dispre is assigned using lindist() which takes control of the
563 * allocated memory. It will be freed later when linfree() is invoked on
564 * the linprm struct.
565 *
566 * Consider also the following erroneous code:
567 *
568 = void bad_code(struct linprm *lin)
569 = {
570 = struct disprm dispre;
571 =
572 = dispre.flag = -1;
573 = lindist(1, lin, &dispre, ndpmax); // WRONG.
574 = :
575 =
576 = return;
577 = }
578 *
579 * Here, dispre is declared as a struct, rather than a pointer. When the
580 * function returns, dispre will go out of scope and its memory will most
581 * likely be reused, thereby trashing its contents. Later, a segfault will
582 * occur when linfree() tries to free dispre’s stale address.
583 *
584 * struct disprm *disseq
585 * (Given) Pointer to a disprm struct holding parameters for sequent
586 * distortion functions, or a null (0x0) pointer if there are none.
587 *
588 * Refer to the comments and examples given for disprm::dispre.
589 *
590 * double *piximg
591 * (Returned) Pointer to the first element of the matrix containing the
592 * product of the CDELTia diagonal matrix and the PCi_ja matrix.
593 *
594 * double *imgpix
595 * (Returned) Pointer to the first element of the inverse of the
596 * linprm::piximg matrix.
597 *
598 * int i_naxis
599 * (Returned) The dimension of linprm::piximg and linprm::imgpix (normally
600 * equal to naxis).
601 *
602 * int unity
603 * (Returned) True if the linear transformation matrix is unity.
604 *
605 * int affine
606 * (Returned) True if there are no distortions.
607 *
608 * int simple
609 * (Returned) True if unity and no distortions.
610 *
611 * struct wcserr *err
612 * (Returned) If enabled, when an error status is returned, this struct
613 * contains detailed information about the error, see wcserr_enable().
614 *
615 * double *tmpcrd

Generated by Doxygen

19.10 lin.h 153

616 * (For internal use only.)
617 * int m_flag
618 * (For internal use only.)
619 * int m_naxis
620 * (For internal use only.)
621 * double *m_crpix
622 * (For internal use only.)
623 * double *m_pc
624 * (For internal use only.)
625 * double *m_cdelt
626 * (For internal use only.)
627 * struct disprm *m_dispre
628 * (For internal use only.)
629 * struct disprm *m_disseq
630 * (For internal use only.)
631 *
632 *
633 * Global variable: const char *lin_errmsg[] - Status return messages
634 * --
635 * Error messages to match the status value returned from each function.
636 *
637 *===*/
638
639 #ifndef WCSLIB_LIN
640 #define WCSLIB_LIN
641
642 #ifdef __cplusplus
643 extern "C" {
644 #endif
645
646
647 extern const char *lin_errmsg[];
648
649 enum lin_errmsg_enum {
650 LINERR_SUCCESS = 0, // Success.
651 LINERR_NULL_POINTER = 1, // Null linprm pointer passed.
652 LINERR_MEMORY = 2, // Memory allocation failed.
653 LINERR_SINGULAR_MTX = 3, // PCi_ja matrix is singular.
654 LINERR_DISTORT_INIT = 4, // Failed to initialise distortions.
655 LINERR_DISTORT = 5, // Distort error.
656 LINERR_DEDISTORT = 6 // De-distort error.
657 };
658
659 struct linprm {
660 // Initialization flag (see the prologue above).
661 //--
662 int flag; // Set to zero to force initialization.
663
664 // Parameters to be provided (see the prologue above).
665 //--
666 int naxis; // The number of axes, given by NAXIS.
667 double *crpix; // CRPIXja keywords for each pixel axis.
668 double *pc; // PCi_ja linear transformation matrix.
669 double *cdelt; // CDELTia keywords for each coord axis.
670 struct disprm *dispre; // Prior distortion parameters, if any.
671 struct disprm *disseq; // Sequent distortion parameters, if any.
672
673 // Information derived from the parameters supplied.
674 //--
675 double *piximg; // Product of CDELTia and PCi_ja matrices.
676 double *imgpix; // Inverse of the piximg matrix.
677 int i_naxis; // Dimension of piximg and imgpix.
678 int unity; // True if the PCi_ja matrix is unity.
679 int affine; // True if there are no distortions.
680 int simple; // True if unity and no distortions.
681
682 // Error handling, if enabled.
683 //--
684 struct wcserr *err;
685
686 // Private - the remainder are for internal use.
687 //--
688 double *tmpcrd;
689
690 int m_flag, m_naxis;
691 double *m_crpix, *m_pc, *m_cdelt;
692 struct disprm *m_dispre, *m_disseq;
693 };
694
695 // Size of the linprm struct in int units, used by the Fortran wrappers.
696 #define LINLEN (sizeof(struct linprm)/sizeof(int))
697
698
699 int linini(int alloc, int naxis, struct linprm *lin);
700
701 int lininit(int alloc, int naxis, struct linprm *lin, int ndpmax);
702

Generated by Doxygen

154

703 int lindis(int sequence, struct linprm *lin, struct disprm *dis);
704
705 int lindist(int sequence, struct linprm *lin, struct disprm *dis, int ndpmax);
706
707 int lincpy(int alloc, const struct linprm *linsrc, struct linprm *lindst);
708
709 int linfree(struct linprm *lin);
710
711 int linsize(const struct linprm *lin, int sizes[2]);
712
713 int linprt(const struct linprm *lin);
714
715 int linperr(const struct linprm *lin, const char *prefix);
716
717 int linset(struct linprm *lin);
718
719 int linp2x(struct linprm *lin, int ncoord, int nelem, const double pixcrd[],
720 double imgcrd[]);
721
722 int linx2p(struct linprm *lin, int ncoord, int nelem, const double imgcrd[],
723 double pixcrd[]);
724
725 int linwarp(struct linprm *lin, const double pixblc[], const double pixtrc[],
726 const double pixsamp[], int *nsamp,
727 double maxdis[], double *maxtot,
728 double avgdis[], double *avgtot,
729 double rmsdis[], double *rmstot);
730
731 int matinv(int n, const double mat[], double inv[]);
732
733
734 // Deprecated.
735 #define linini_errmsg lin_errmsg
736 #define lincpy_errmsg lin_errmsg
737 #define linfree_errmsg lin_errmsg
738 #define linprt_errmsg lin_errmsg
739 #define linset_errmsg lin_errmsg
740 #define linp2x_errmsg lin_errmsg
741 #define linx2p_errmsg lin_errmsg
742
743 #ifdef __cplusplus
744 }
745 #endif
746
747 #endif // WCSLIB_LIN

19.11 log.h File Reference

Enumerations

• enum log_errmsg_enum {
LOGERR_SUCCESS = 0 , LOGERR_NULL_POINTER = 1 , LOGERR_BAD_LOG_REF_VAL = 2 ,
LOGERR_BAD_X = 3 ,
LOGERR_BAD_WORLD = 4 }

Functions

• int logx2s (double crval, int nx, int sx, int slogc, const double x[], double logc[], int stat[])

Transform to logarithmic coordinates.

• int logs2x (double crval, int nlogc, int slogc, int sx, const double logc[], double x[], int stat[])

Transform logarithmic coordinates.

Variables

• const char ∗ log_errmsg []

Status return messages.

Generated by Doxygen

19.11 log.h File Reference 155

19.11.1 Detailed Description

Routines in this suite implement the part of the FITS World Coordinate System (WCS) standard that deals with
logarithmic coordinates, as described in

"Representations of world coordinates in FITS", Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS
Paper I)

"Representations of spectral coordinates in FITS", Greisen, E.W., Calabretta, M.R., Valdes, F.G., & Allen, S.L. 2006,
A&A, 446, 747 (WCS Paper III)

These routines define methods to be used for computing logarithmic world coordinates from intermediate world
coordinates (a linear transformation of image pixel coordinates), and vice versa.

logx2s() and logs2x() implement the WCS logarithmic coordinate transformations.

Argument checking:
The input log-coordinate values are only checked for values that would result in floating point exceptions and the
same is true for the log-coordinate reference value.

Accuracy:
No warranty is given for the accuracy of these routines (refer to the copyright notice); intending users must satisfy
for themselves their adequacy for the intended purpose. However, closure effectively to within double precision
rounding error was demonstrated by test routine tlog.c which accompanies this software.

19.11.2 Enumeration Type Documentation

19.11.2.1 log_errmsg_enum enum log_errmsg_enum

Enumerator

LOGERR_SUCCESS
LOGERR_NULL_POINTER

LOGERR_BAD_LOG_REF_VAL
LOGERR_BAD_X

LOGERR_BAD_WORLD

19.11.3 Function Documentation

19.11.3.1 logx2s() int logx2s (

double crval,

int nx,

int sx,

int slogc,

const double x[],

Generated by Doxygen

156

double logc[],

int stat[])

logx2s() transforms intermediate world coordinates to logarithmic coordinates.

Parameters

in,out crval Log-coordinate reference value (CRVALia).

in nx Vector length.

in sx Vector stride.
in slogc Vector stride.

in x Intermediate world coordinates, in SI units.

out logc Logarithmic coordinates, in SI units.

out stat Status return value status for each vector
element:

• 0: Success.

Returns

Status return value:

• 0: Success.

• 2: Invalid log-coordinate reference value.

19.11.3.2 logs2x() int logs2x (

double crval,

int nlogc,

int slogc,

int sx,

const double logc[],

double x[],

int stat[])

logs2x() transforms logarithmic world coordinates to intermediate world coordinates.

Parameters

in,out crval Log-coordinate reference value (CRVALia).

in nlogc Vector length.

in slogc Vector stride.

in sx Vector stride.
in logc Logarithmic coordinates, in SI units.

out x Intermediate world coordinates, in SI units.

out stat Status return value status for each vector
element:

• 0: Success.

• 1: Invalid value of logc.

Generated by Doxygen

19.12 log.h 157

Returns

Status return value:

• 0: Success.

• 2: Invalid log-coordinate reference value.

• 4: One or more of the world-coordinate values are incorrect, as indicated by the stat vector.

19.11.4 Variable Documentation

19.11.4.1 log_errmsg const char ∗ log_errmsg[] [extern]

Error messages to match the status value returned from each function.

19.12 log.h

Go to the documentation of this file.
1 /*==
2 WCSLIB 7.11 - an implementation of the FITS WCS standard.
3 Copyright (C) 1995-2022, Mark Calabretta
4
5 This file is part of WCSLIB.
6
7 WCSLIB is free software: you can redistribute it and/or modify it under the
8 terms of the GNU Lesser General Public License as published by the Free
9 Software Foundation, either version 3 of the License, or (at your option)
10 any later version.
11
12 WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
15 more details.
16
17 You should have received a copy of the GNU Lesser General Public License
18 along with WCSLIB. If not, see http://www.gnu.org/licenses.
19
20 Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
21 http://www.atnf.csiro.au/people/Mark.Calabretta
22 $Id: log.h,v 7.11 2022/04/26 06:13:52 mcalabre Exp $
23 *===
24 *
25 * WCSLIB 7.11 - C routines that implement the FITS World Coordinate System
26 * (WCS) standard. Refer to the README file provided with WCSLIB for an
27 * overview of the library.
28 *
29 *
30 * Summary of the log routines
31 * ---------------------------
32 * Routines in this suite implement the part of the FITS World Coordinate
33 * System (WCS) standard that deals with logarithmic coordinates, as described
34 * in
35 *
36 * "Representations of world coordinates in FITS",
37 * Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)
38 *
39 * "Representations of spectral coordinates in FITS",
40 * Greisen, E.W., Calabretta, M.R., Valdes, F.G., & Allen, S.L.
41 * 2006, A&A, 446, 747 (WCS Paper III)
42 *
43 * These routines define methods to be used for computing logarithmic world
44 * coordinates from intermediate world coordinates (a linear transformation of
45 * image pixel coordinates), and vice versa.
46 *
47 * logx2s() and logs2x() implement the WCS logarithmic coordinate
48 * transformations.
49 *
50 * Argument checking:
51 * ------------------
52 * The input log-coordinate values are only checked for values that would
53 * result in floating point exceptions and the same is true for the

Generated by Doxygen

158

54 * log-coordinate reference value.
55 *
56 * Accuracy:
57 * ---------
58 * No warranty is given for the accuracy of these routines (refer to the
59 * copyright notice); intending users must satisfy for themselves their
60 * adequacy for the intended purpose. However, closure effectively to within
61 * double precision rounding error was demonstrated by test routine tlog.c
62 * which accompanies this software.
63 *
64 *
65 * logx2s() - Transform to logarithmic coordinates
66 * ---
67 * logx2s() transforms intermediate world coordinates to logarithmic
68 * coordinates.
69 *
70 * Given and returned:
71 * crval double Log-coordinate reference value (CRVALia).
72 *
73 * Given:
74 * nx int Vector length.
75 *
76 * sx int Vector stride.
77 *
78 * slogc int Vector stride.
79 *
80 * x const double[]
81 * Intermediate world coordinates, in SI units.
82 *
83 * Returned:
84 * logc double[] Logarithmic coordinates, in SI units.
85 *
86 * stat int[] Status return value status for each vector element:
87 * 0: Success.
88 *
89 * Function return value:
90 * int Status return value:
91 * 0: Success.
92 * 2: Invalid log-coordinate reference value.
93 *
94 *
95 * logs2x() - Transform logarithmic coordinates
96 * --
97 * logs2x() transforms logarithmic world coordinates to intermediate world
98 * coordinates.
99 *
100 * Given and returned:
101 * crval double Log-coordinate reference value (CRVALia).
102 *
103 * Given:
104 * nlogc int Vector length.
105 *
106 * slogc int Vector stride.
107 *
108 * sx int Vector stride.
109 *
110 * logc const double[]
111 * Logarithmic coordinates, in SI units.
112 *
113 * Returned:
114 * x double[] Intermediate world coordinates, in SI units.
115 *
116 * stat int[] Status return value status for each vector element:
117 * 0: Success.
118 * 1: Invalid value of logc.
119 *
120 * Function return value:
121 * int Status return value:
122 * 0: Success.
123 * 2: Invalid log-coordinate reference value.
124 * 4: One or more of the world-coordinate values
125 * are incorrect, as indicated by the stat vector.
126 *
127 *
128 * Global variable: const char *log_errmsg[] - Status return messages
129 * --
130 * Error messages to match the status value returned from each function.
131 *
132 *===*/
133
134 #ifndef WCSLIB_LOG
135 #define WCSLIB_LOG
136
137 #ifdef __cplusplus
138 extern "C" {
139 #endif
140

Generated by Doxygen

19.13 prj.h File Reference 159

141 extern const char *log_errmsg[];
142
143 enum log_errmsg_enum {
144 LOGERR_SUCCESS = 0, // Success.
145 LOGERR_NULL_POINTER = 1, // Null pointer passed.
146 LOGERR_BAD_LOG_REF_VAL = 2, // Invalid log-coordinate reference value.
147 LOGERR_BAD_X = 3, // One or more of the x coordinates were
148 // invalid.
149 LOGERR_BAD_WORLD = 4 // One or more of the world coordinates were
150 // invalid.
151 };
152
153 int logx2s(double crval, int nx, int sx, int slogc, const double x[],
154 double logc[], int stat[]);
155
156 int logs2x(double crval, int nlogc, int slogc, int sx, const double logc[],
157 double x[], int stat[]);
158
159
160 #ifdef __cplusplus
161 }
162 #endif
163
164 #endif // WCSLIB_LOG

19.13 prj.h File Reference

Data Structures

• struct prjprm

Projection parameters.

Macros

• #define PVN 30

Total number of projection parameters.

• #define PRJX2S_ARGS

For use in declaring deprojection function prototypes.

• #define PRJS2X_ARGS

For use in declaring projection function prototypes.

• #define PRJLEN (sizeof(struct prjprm)/sizeof(int))

Size of the prjprm struct in int units.

• #define prjini_errmsg prj_errmsg

Deprecated.

• #define prjprt_errmsg prj_errmsg

Deprecated.

• #define prjset_errmsg prj_errmsg

Deprecated.

• #define prjx2s_errmsg prj_errmsg

Deprecated.

• #define prjs2x_errmsg prj_errmsg

Deprecated.

Enumerations

• enum prj_errmsg_enum {
PRJERR_SUCCESS = 0 , PRJERR_NULL_POINTER = 1 , PRJERR_BAD_PARAM = 2 , PRJERR_BAD_PIX
= 3 ,
PRJERR_BAD_WORLD = 4 }

Generated by Doxygen

160

Functions

• int prjini (struct prjprm ∗prj)

Default constructor for the prjprm struct.

• int prjfree (struct prjprm ∗prj)

Destructor for the prjprm struct.

• int prjsize (const struct prjprm ∗prj, int sizes[2])

Compute the size of a prjprm struct.

• int prjprt (const struct prjprm ∗prj)

Print routine for the prjprm struct.

• int prjperr (const struct prjprm ∗prj, const char ∗prefix)

Print error messages from a prjprm struct.

• int prjbchk (double tol, int nphi, int ntheta, int spt, double phi[], double theta[], int stat[])

Bounds checking on native coordinates.

• int prjset (struct prjprm ∗prj)

Generic setup routine for the prjprm struct.

• int prjx2s (PRJX2S_ARGS)

Generic Cartesian-to-spherical deprojection.

• int prjs2x (PRJS2X_ARGS)

Generic spherical-to-Cartesian projection.

• int azpset (struct prjprm ∗prj)

Set up a prjprm struct for the zenithal/azimuthal perspective (AZP) projection.

• int azpx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the zenithal/azimuthal perspective (AZP) projection.

• int azps2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the zenithal/azimuthal perspective (AZP) projection.

• int szpset (struct prjprm ∗prj)

Set up a prjprm struct for the slant zenithal perspective (SZP) projection.

• int szpx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the slant zenithal perspective (SZP) projection.

• int szps2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the slant zenithal perspective (SZP) projection.

• int tanset (struct prjprm ∗prj)

Set up a prjprm struct for the gnomonic (TAN) projection.

• int tanx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the gnomonic (TAN) projection.

• int tans2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the gnomonic (TAN) projection.

• int stgset (struct prjprm ∗prj)

Set up a prjprm struct for the stereographic (STG) projection.

• int stgx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the stereographic (STG) projection.

• int stgs2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the stereographic (STG) projection.

• int sinset (struct prjprm ∗prj)

Set up a prjprm struct for the orthographic/synthesis (SIN) projection.

• int sinx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the orthographic/synthesis (SIN) projection.

• int sins2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the orthographic/synthesis (SIN) projection.

• int arcset (struct prjprm ∗prj)

Generated by Doxygen

19.13 prj.h File Reference 161

Set up a prjprm struct for the zenithal/azimuthal equidistant (ARC) projection.

• int arcx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the zenithal/azimuthal equidistant (ARC) projection.

• int arcs2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the zenithal/azimuthal equidistant (ARC) projection.

• int zpnset (struct prjprm ∗prj)

Set up a prjprm struct for the zenithal/azimuthal polynomial (ZPN) projection.

• int zpnx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the zenithal/azimuthal polynomial (ZPN) projection.

• int zpns2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the zenithal/azimuthal polynomial (ZPN) projection.

• int zeaset (struct prjprm ∗prj)

Set up a prjprm struct for the zenithal/azimuthal equal area (ZEA) projection.

• int zeax2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the zenithal/azimuthal equal area (ZEA) projection.

• int zeas2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the zenithal/azimuthal equal area (ZEA) projection.

• int airset (struct prjprm ∗prj)

Set up a prjprm struct for Airy's (AIR) projection.

• int airx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for Airy's (AIR) projection.

• int airs2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for Airy's (AIR) projection.

• int cypset (struct prjprm ∗prj)

Set up a prjprm struct for the cylindrical perspective (CYP) projection.

• int cypx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the cylindrical perspective (CYP) projection.

• int cyps2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the cylindrical perspective (CYP) projection.

• int ceaset (struct prjprm ∗prj)

Set up a prjprm struct for the cylindrical equal area (CEA) projection.

• int ceax2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the cylindrical equal area (CEA) projection.

• int ceas2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the cylindrical equal area (CEA) projection.

• int carset (struct prjprm ∗prj)

Set up a prjprm struct for the plate carrée (CAR) projection.

• int carx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the plate carrée (CAR) projection.

• int cars2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the plate carrée (CAR) projection.

• int merset (struct prjprm ∗prj)

Set up a prjprm struct for Mercator's (MER) projection.

• int merx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for Mercator's (MER) projection.

• int mers2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for Mercator's (MER) projection.

• int sflset (struct prjprm ∗prj)

Set up a prjprm struct for the Sanson-Flamsteed (SFL) projection.

• int sflx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the Sanson-Flamsteed (SFL) projection.

Generated by Doxygen

162

• int sfls2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the Sanson-Flamsteed (SFL) projection.

• int parset (struct prjprm ∗prj)

Set up a prjprm struct for the parabolic (PAR) projection.

• int parx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the parabolic (PAR) projection.

• int pars2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the parabolic (PAR) projection.

• int molset (struct prjprm ∗prj)

Set up a prjprm struct for Mollweide's (MOL) projection.

• int molx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for Mollweide's (MOL) projection.

• int mols2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for Mollweide's (MOL) projection.

• int aitset (struct prjprm ∗prj)

Set up a prjprm struct for the Hammer-Aitoff (AIT) projection.

• int aitx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the Hammer-Aitoff (AIT) projection.

• int aits2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the Hammer-Aitoff (AIT) projection.

• int copset (struct prjprm ∗prj)

Set up a prjprm struct for the conic perspective (COP) projection.

• int copx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the conic perspective (COP) projection.

• int cops2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the conic perspective (COP) projection.

• int coeset (struct prjprm ∗prj)

Set up a prjprm struct for the conic equal area (COE) projection.

• int coex2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the conic equal area (COE) projection.

• int coes2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the conic equal area (COE) projection.

• int codset (struct prjprm ∗prj)

Set up a prjprm struct for the conic equidistant (COD) projection.

• int codx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the conic equidistant (COD) projection.

• int cods2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the conic equidistant (COD) projection.

• int cooset (struct prjprm ∗prj)

Set up a prjprm struct for the conic orthomorphic (COO) projection.

• int coox2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the conic orthomorphic (COO) projection.

• int coos2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the conic orthomorphic (COO) projection.

• int bonset (struct prjprm ∗prj)

Set up a prjprm struct for Bonne's (BON) projection.

• int bonx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for Bonne's (BON) projection.

• int bons2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for Bonne's (BON) projection.

• int pcoset (struct prjprm ∗prj)

Generated by Doxygen

19.13 prj.h File Reference 163

Set up a prjprm struct for the polyconic (PCO) projection.

• int pcox2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the polyconic (PCO) projection.

• int pcos2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the polyconic (PCO) projection.

• int tscset (struct prjprm ∗prj)

Set up a prjprm struct for the tangential spherical cube (TSC) projection.

• int tscx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the tangential spherical cube (TSC) projection.

• int tscs2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the tangential spherical cube (TSC) projection.

• int cscset (struct prjprm ∗prj)

Set up a prjprm struct for the COBE spherical cube (CSC) projection.

• int cscx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the COBE spherical cube (CSC) projection.

• int cscs2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the COBE spherical cube (CSC) projection.

• int qscset (struct prjprm ∗prj)

Set up a prjprm struct for the quadrilateralized spherical cube (QSC) projection.

• int qscx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the quadrilateralized spherical cube (QSC) projection.

• int qscs2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the quadrilateralized spherical cube (QSC) projection.

• int hpxset (struct prjprm ∗prj)

Set up a prjprm struct for the HEALPix (HPX) projection.

• int hpxx2s (PRJX2S_ARGS)

Cartesian-to-spherical transformation for the HEALPix (HPX) projection.

• int hpxs2x (PRJS2X_ARGS)

Spherical-to-Cartesian transformation for the HEALPix (HPX) projection.

• int xphset (struct prjprm ∗prj)
• int xphx2s (PRJX2S_ARGS)
• int xphs2x (PRJS2X_ARGS)

Variables

• const char ∗ prj_errmsg []

Status return messages.

• const int CONIC

Identifier for conic projections.

• const int CONVENTIONAL

Identifier for conventional projections.

• const int CYLINDRICAL

Identifier for cylindrical projections.

• const int POLYCONIC

Identifier for polyconic projections.

• const int PSEUDOCYLINDRICAL

Identifier for pseudocylindrical projections.

• const int QUADCUBE

Identifier for quadcube projections.

• const int ZENITHAL

Generated by Doxygen

164

Identifier for zenithal/azimuthal projections.

• const int HEALPIX

Identifier for the HEALPix projection.

• const char prj_categories [9][32]

Projection categories.

• const int prj_ncode

The number of recognized three-letter projection codes.

• const char prj_codes [28][4]

Recognized three-letter projection codes.

19.13.1 Detailed Description

Routines in this suite implement the spherical map projections defined by the FITS World Coordinate System (WCS)
standard, as described in
"Representations of world coordinates in FITS",
Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)
"Representations of celestial coordinates in FITS",
Calabretta, M.R., & Greisen, E.W. 2002, A&A, 395, 1077 (WCS Paper II)
"Mapping on the HEALPix grid",
Calabretta, M.R., & Roukema, B.F. 2007, MNRAS, 381, 865 (WCS Paper V)
"Representing the ’Butterfly’ Projection in FITS -- Projection Code XPH",
Calabretta, M.R., & Lowe, S.R. 2013, PASA, 30, e050 (WCS Paper VI)

These routines are based on the prjprm struct which contains all information needed for the computations. The
struct contains some members that must be set by the user, and others that are maintained by these routines,
somewhat like a C++ class but with no encapsulation.

Routine prjini() is provided to initialize the prjprm struct with default values, prjfree() reclaims any memory that may
have been allocated to store an error message, prjsize() computes its total size including allocated memory, and
prjprt() prints its contents.

prjperr() prints the error message(s) (if any) stored in a prjprm struct. prjbchk() performs bounds checking on native
spherical coordinates.

Setup routines for each projection with names of the form ???set(), where "???" is the down-cased three-letter
projection code, compute intermediate values in the prjprm struct from parameters in it that were supplied by the
user. The struct always needs to be set by the projection's setup routine but that need not be called explicitly - refer
to the explanation of prjprm::flag.

Each map projection is implemented via separate functions for the spherical projection, ???s2x(), and deprojection,
???x2s().

A set of driver routines, prjset(), prjx2s(), and prjs2x(), provides a generic interface to the specific projection routines
which they invoke via pointers-to-functions stored in the prjprm struct.

In summary, the routines are:

• prjini() Initialization routine for the prjprm struct.

• prjfree() Reclaim memory allocated for error messages.

• prjsize() Compute total size of a prjprm struct.

• prjprt() Print a prjprm struct.

• prjperr() Print error message (if any).

• prjbchk() Bounds checking on native coordinates.

Generated by Doxygen

19.13 prj.h File Reference 165

• prjset(), prjx2s(), prjs2x(): Generic driver routines

• azpset(), azpx2s(), azps2x(): AZP (zenithal/azimuthal perspective)

• szpset(), szpx2s(), szps2x(): SZP (slant zenithal perspective)

• tanset(), tanx2s(), tans2x(): TAN (gnomonic)

• stgset(), stgx2s(), stgs2x(): STG (stereographic)

• sinset(), sinx2s(), sins2x(): SIN (orthographic/synthesis)

• arcset(), arcx2s(), arcs2x(): ARC (zenithal/azimuthal equidistant)

• zpnset(), zpnx2s(), zpns2x(): ZPN (zenithal/azimuthal polynomial)

• zeaset(), zeax2s(), zeas2x(): ZEA (zenithal/azimuthal equal area)

• airset(), airx2s(), airs2x(): AIR (Airy)

• cypset(), cypx2s(), cyps2x(): CYP (cylindrical perspective)

• ceaset(), ceax2s(), ceas2x(): CEA (cylindrical equal area)

• carset(), carx2s(), cars2x(): CAR (Plate carée)

• merset(), merx2s(), mers2x(): MER (Mercator)

• sflset(), sflx2s(), sfls2x(): SFL (Sanson-Flamsteed)

• parset(), parx2s(), pars2x(): PAR (parabolic)

• molset(), molx2s(), mols2x(): MOL (Mollweide)

• aitset(), aitx2s(), aits2x(): AIT (Hammer-Aitoff)

• copset(), copx2s(), cops2x(): COP (conic perspective)

• coeset(), coex2s(), coes2x(): COE (conic equal area)

• codset(), codx2s(), cods2x(): COD (conic equidistant)

• cooset(), coox2s(), coos2x(): COO (conic orthomorphic)

• bonset(), bonx2s(), bons2x(): BON (Bonne)

• pcoset(), pcox2s(), pcos2x(): PCO (polyconic)

• tscset(), tscx2s(), tscs2x(): TSC (tangential spherical cube)

• cscset(), cscx2s(), cscs2x(): CSC (COBE spherical cube)

• qscset(), qscx2s(), qscs2x(): QSC (quadrilateralized spherical cube)

• hpxset(), hpxx2s(), hpxs2x(): HPX (HEALPix)

• xphset(), xphx2s(), xphs2x(): XPH (HEALPix polar, aka "butterfly")

Argument checking (projection routines):
The values of φ and θ (the native longitude and latitude) normally lie in the range [−180◦, 180◦] for φ, and
[−90◦, 90◦] for θ. However, all projection routines will accept any value of φ and will not normalize it.

The projection routines do not explicitly check that θ lies within the range [−90◦, 90◦]. They do check for any value
of θ that produces an invalid argument to the projection equations (e.g. leading to division by zero). The projection
routines for AZP, SZP, TAN, SIN, ZPN, and COP also return error 2 if (φ, θ) corresponds to the overlapped (far)
side of the projection but also return the corresponding value of (x, y). This strict bounds checking may be relaxed
at any time by setting prjprm::bounds%2 to 0 (rather than 1); the projections need not be reinitialized.

Generated by Doxygen

166

Argument checking (deprojection routines):
Error checking on the projected coordinates (x, y) is limited to that required to ascertain whether a solution exists.
Where a solution does exist, an optional check is made that the value of φ and θ obtained lie within the ranges
[−180◦, 180◦] for φ, and [−90◦, 90◦] for θ. This check, performed by prjbchk(), is enabled by default. It may be
disabled by setting prjprm::bounds%4 to 0 (rather than 1); the projections need not be reinitialized.

Accuracy:
No warranty is given for the accuracy of these routines (refer to the copyright notice); intending users must satisfy
for themselves their adequacy for the intended purpose. However, closure to a precision of at least 0◦.0000000001
of longitude and latitude has been verified for typical projection parameters on the 1◦ degree graticule of native
longitude and latitude (to within 5◦ of any latitude where the projection may diverge). Refer to the tprj1.c and tprj2.c
test routines that accompany this software.

19.13.2 Macro Definition Documentation

19.13.2.1 PVN #define PVN 30

The total number of projection parameters numbered 0 to PVN-1.

19.13.2.2 PRJX2S_ARGS #define PRJX2S_ARGS

Value:
struct prjprm *prj, int nx, int ny, int sxy, int spt, \
const double x[], const double y[], double phi[], double theta[], int stat[]

Preprocessor macro used for declaring deprojection function prototypes.

19.13.2.3 PRJS2X_ARGS #define PRJS2X_ARGS

Value:
struct prjprm *prj, int nx, int ny, int sxy, int spt, \
const double phi[], const double theta[], double x[], double y[], int stat[]

Preprocessor macro used for declaring projection function prototypes.

19.13.2.4 PRJLEN #define PRJLEN (sizeof(struct prjprm)/sizeof(int))

Size of the prjprm struct in int units, used by the Fortran wrappers.

19.13.2.5 prjini_errmsg #define prjini_errmsg prj_errmsg

Deprecated Added for backwards compatibility, use prj_errmsg directly now instead.

Generated by Doxygen

19.13 prj.h File Reference 167

19.13.2.6 prjprt_errmsg #define prjprt_errmsg prj_errmsg

Deprecated Added for backwards compatibility, use prj_errmsg directly now instead.

19.13.2.7 prjset_errmsg #define prjset_errmsg prj_errmsg

Deprecated Added for backwards compatibility, use prj_errmsg directly now instead.

19.13.2.8 prjx2s_errmsg #define prjx2s_errmsg prj_errmsg

Deprecated Added for backwards compatibility, use prj_errmsg directly now instead.

19.13.2.9 prjs2x_errmsg #define prjs2x_errmsg prj_errmsg

Deprecated Added for backwards compatibility, use prj_errmsg directly now instead.

19.13.3 Enumeration Type Documentation

19.13.3.1 prj_errmsg_enum enum prj_errmsg_enum

Enumerator

PRJERR_SUCCESS
PRJERR_NULL_POINTER

PRJERR_BAD_PARAM
PRJERR_BAD_PIX

PRJERR_BAD_WORLD

19.13.4 Function Documentation

Generated by Doxygen

168

19.13.4.1 prjini() int prjini (

struct prjprm ∗ prj)

prjini() sets all members of a prjprm struct to default values. It should be used to initialize every prjprm struct.

PLEASE NOTE: If the prjprm struct has already been initialized, then before reinitializing, it prjfree() should be used
to free any memory that may have been allocated to store an error message. A memory leak may otherwise result.

Parameters

out prj Projection parameters.

Returns

Status return value:

• 0: Success.

• 1: Null prjprm pointer passed.

19.13.4.2 prjfree() int prjfree (

struct prjprm ∗ prj)

prjfree() frees any memory that may have been allocated to store an error message in the prjprm struct.

Parameters

in prj Projection parameters.

Returns

Status return value:

• 0: Success.

• 1: Null prjprm pointer passed.

19.13.4.3 prjsize() int prjsize (

const struct prjprm ∗ prj,

int sizes[2])

prjsize() computes the full size of a prjprm struct, including allocated memory.

Parameters

in prj Projection parameters.
If NULL, the base size of the struct and the allocated size are both set to zero.

out sizes The first element is the base size of the struct as returned by sizeof(struct prjprm). The
second element is the total allocated size, in bytes. This figure includes memory allocated for
the constituent struct, prjprm::err.
It is not an error for the struct not to have been set up via prjset().

Generated by Doxygen

19.13 prj.h File Reference 169

Returns

Status return value:

• 0: Success.

19.13.4.4 prjprt() int prjprt (

const struct prjprm ∗ prj)

prjprt() prints the contents of a prjprm struct using wcsprintf(). Mainly intended for diagnostic purposes.

Parameters

in prj Projection parameters.

Returns

Status return value:

• 0: Success.

• 1: Null prjprm pointer passed.

19.13.4.5 prjperr() int prjperr (

const struct prjprm ∗ prj,

const char ∗ prefix)

prjperr() prints the error message(s) (if any) stored in a prjprm struct. If there are no errors then nothing is printed.
It uses wcserr_prt(), q.v.

Parameters

in prj Projection parameters.

in prefix If non-NULL, each output line will be prefixed with this string.

Returns

Status return value:

• 0: Success.

• 1: Null prjprm pointer passed.

19.13.4.6 prjbchk() int prjbchk (

double tol,

int nphi,

Generated by Doxygen

170

int ntheta,

int spt,

double phi[],

double theta[],

int stat[])

prjbchk() performs bounds checking on native spherical coordinates. As returned by the deprojection (x2s) routines,
native longitude is expected to lie in the closed interval [−180◦, 180◦], with latitude in [−90◦, 90◦].

A tolerance may be specified to provide a small allowance for numerical imprecision. Values that lie outside the
allowed range by not more than the specified tolerance will be adjusted back into range.

If prjprm::bounds&4 is set, as it is by prjini(), then prjbchk() will be invoked automatically by the Cartesian-to-
spherical deprojection (x2s) routines with an appropriate tolerance set for each projection.

Parameters

in tol Tolerance for the bounds check [deg].

in nphi,ntheta Vector lengths.

in spt Vector stride.

in,out phi,theta Native longitude and latitude (φ, θ) [deg].

out stat Status value for each vector element:

• 0: Valid value of (φ, θ).

• 1: Invalid value.

Returns

Status return value:

• 0: Success.

• 1: One or more of the (φ, θ) coordinates were, invalid, as indicated by the stat vector.

19.13.4.7 prjset() int prjset (

struct prjprm ∗ prj)

prjset() sets up a prjprm struct according to information supplied within it.

Note that this routine need not be called directly; it will be invoked by prjx2s() and prjs2x() if prj.flag is anything other
than a predefined magic value.

The one important distinction between prjset() and the setup routines for the specific projections is that the projec-
tion code must be defined in the prjprm struct in order for prjset() to identify the required projection. Once prjset()
has initialized the prjprm struct, prjx2s() and prjs2x() use the pointers to the specific projection and deprojection
routines contained therein.

Parameters

in,out prj Projection parameters.

Generated by Doxygen

19.13 prj.h File Reference 171

Returns

Status return value:

• 0: Success.

• 1: Null prjprm pointer passed.

• 2: Invalid projection parameters.

For returns > 1, a detailed error message is set in prjprm::err if enabled, see wcserr_enable().

19.13.4.8 prjx2s() int prjx2s (

PRJX2S_ARGS)

Deproject Cartesian (x, y) coordinates in the plane of projection to native spherical coordinates (φ, θ).

The projection is that specified by prjprm::code.

Parameters

in,out prj Projection parameters.

in nx,ny Vector lengths.

in sxy,spt Vector strides.

in x,y Projected coordinates.

out phi,theta Longitude and latitude (φ, θ) of the projected point in native spherical coordinates [deg].

out stat Status value for each vector element:

• 0: Success.

• 1: Invalid value of (x, y).

Returns

Status return value:

• 0: Success.

• 1: Null prjprm pointer passed.

• 2: Invalid projection parameters.

• 3: One or more of the (x, y) coordinates were invalid, as indicated by the stat vector.

For returns > 1, a detailed error message is set in prjprm::err if enabled, see wcserr_enable().

19.13.4.9 prjs2x() int prjs2x (

PRJS2X_ARGS)

Project native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of projection.

The projection is that specified by prjprm::code.

Generated by Doxygen

172

Parameters

in,out prj Projection parameters.

in nphi,ntheta Vector lengths.

in spt,sxy Vector strides.

in phi,theta Longitude and latitude (φ, θ) of the projected point in native spherical coordinates
[deg].

out x,y Projected coordinates.

out stat Status value for each vector element:

• 0: Success.

• 1: Invalid value of (φ, θ).

Returns

Status return value:

• 0: Success.

• 1: Null prjprm pointer passed.

• 2: Invalid projection parameters.

• 4: One or more of the (φ, θ) coordinates were, invalid, as indicated by the stat vector.

For returns > 1, a detailed error message is set in prjprm::err if enabled, see wcserr_enable().

19.13.4.10 azpset() int azpset (

struct prjprm ∗ prj)

azpset() sets up a prjprm struct for a zenithal/azimuthal perspective (AZP) projection.

See prjset() for a description of the API.

19.13.4.11 azpx2s() int azpx2s (

PRJX2S_ARGS)

azpx2s() deprojects Cartesian (x, y) coordinates in the plane of a zenithal/azimuthal perspective (AZP) projec-
tion to native spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

19.13.4.12 azps2x() int azps2x (

PRJS2X_ARGS)

azps2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a
zenithal/azimuthal perspective (AZP) projection.

See prjs2x() for a description of the API.

Generated by Doxygen

19.13 prj.h File Reference 173

19.13.4.13 szpset() int szpset (

struct prjprm ∗ prj)

szpset() sets up a prjprm struct for a slant zenithal perspective (SZP) projection.

See prjset() for a description of the API.

19.13.4.14 szpx2s() int szpx2s (

PRJX2S_ARGS)

szpx2s() deprojects Cartesian (x, y) coordinates in the plane of a slant zenithal perspective (SZP) projection to
native spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

19.13.4.15 szps2x() int szps2x (

PRJS2X_ARGS)

szps2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a slant zenithal
perspective (SZP) projection.

See prjs2x() for a description of the API.

19.13.4.16 tanset() int tanset (

struct prjprm ∗ prj)

tanset() sets up a prjprm struct for a gnomonic (TAN) projection.

See prjset() for a description of the API.

19.13.4.17 tanx2s() int tanx2s (

PRJX2S_ARGS)

tanx2s() deprojects Cartesian (x, y) coordinates in the plane of a gnomonic (TAN) projection to native spherical
coordinates (φ, θ).

See prjx2s() for a description of the API.

19.13.4.18 tans2x() int tans2x (

PRJS2X_ARGS)

tans2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a gnomonic
(TAN) projection.

See prjs2x() for a description of the API.

19.13.4.19 stgset() int stgset (

struct prjprm ∗ prj)

stgset() sets up a prjprm struct for a stereographic (STG) projection.

See prjset() for a description of the API.

Generated by Doxygen

174

19.13.4.20 stgx2s() int stgx2s (

PRJX2S_ARGS)

stgx2s() deprojects Cartesian (x, y) coordinates in the plane of a stereographic (STG) projection to native spher-
ical coordinates (φ, θ).

See prjx2s() for a description of the API.

19.13.4.21 stgs2x() int stgs2x (

PRJS2X_ARGS)

stgs2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a stereographic
(STG) projection.

See prjs2x() for a description of the API.

19.13.4.22 sinset() int sinset (

struct prjprm ∗ prj)

stgset() sets up a prjprm struct for an orthographic/synthesis (SIN) projection.

See prjset() for a description of the API.

19.13.4.23 sinx2s() int sinx2s (

PRJX2S_ARGS)

sinx2s() deprojects Cartesian (x, y) coordinates in the plane of an orthographic/synthesis (SIN) projection to
native spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

19.13.4.24 sins2x() int sins2x (

PRJS2X_ARGS)

sins2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of an ortho-
graphic/synthesis (SIN) projection.

See prjs2x() for a description of the API.

19.13.4.25 arcset() int arcset (

struct prjprm ∗ prj)

arcset() sets up a prjprm struct for a zenithal/azimuthal equidistant (ARC) projection.

See prjset() for a description of the API.

19.13.4.26 arcx2s() int arcx2s (

PRJX2S_ARGS)

arcx2s() deprojects Cartesian (x, y) coordinates in the plane of a zenithal/azimuthal equidistant (ARC) projection
to native spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

Generated by Doxygen

19.13 prj.h File Reference 175

19.13.4.27 arcs2x() int arcs2x (

PRJS2X_ARGS)

arcs2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a
zenithal/azimuthal equidistant (ARC) projection.

See prjs2x() for a description of the API.

19.13.4.28 zpnset() int zpnset (

struct prjprm ∗ prj)

zpnset() sets up a prjprm struct for a zenithal/azimuthal polynomial (ZPN) projection.

See prjset() for a description of the API.

19.13.4.29 zpnx2s() int zpnx2s (

PRJX2S_ARGS)

zpnx2s() deprojects Cartesian (x, y) coordinates in the plane of a zenithal/azimuthal polynomial (ZPN) projection
to native spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

19.13.4.30 zpns2x() int zpns2x (

PRJS2X_ARGS)

zpns2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a
zenithal/azimuthal polynomial (ZPN) projection.

See prjs2x() for a description of the API.

19.13.4.31 zeaset() int zeaset (

struct prjprm ∗ prj)

zeaset() sets up a prjprm struct for a zenithal/azimuthal equal area (ZEA) projection.

See prjset() for a description of the API.

19.13.4.32 zeax2s() int zeax2s (

PRJX2S_ARGS)

zeax2s() deprojects Cartesian (x, y) coordinates in the plane of a zenithal/azimuthal equal area (ZEA) projection
to native spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

19.13.4.33 zeas2x() int zeas2x (

PRJS2X_ARGS)

zeas2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a
zenithal/azimuthal equal area (ZEA) projection.

See prjs2x() for a description of the API.

Generated by Doxygen

176

19.13.4.34 airset() int airset (

struct prjprm ∗ prj)

airset() sets up a prjprm struct for an Airy (AIR) projection.

See prjset() for a description of the API.

19.13.4.35 airx2s() int airx2s (

PRJX2S_ARGS)

airx2s() deprojects Cartesian (x, y) coordinates in the plane of an Airy (AIR) projection to native spherical coordi-
nates (φ, θ).

See prjx2s() for a description of the API.

19.13.4.36 airs2x() int airs2x (

PRJS2X_ARGS)

airs2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of an Airy (AIR)
projection.

See prjs2x() for a description of the API.

19.13.4.37 cypset() int cypset (

struct prjprm ∗ prj)

cypset() sets up a prjprm struct for a cylindrical perspective (CYP) projection.

See prjset() for a description of the API.

19.13.4.38 cypx2s() int cypx2s (

PRJX2S_ARGS)

cypx2s() deprojects Cartesian (x, y) coordinates in the plane of a cylindrical perspective (CYP) projection to
native spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

19.13.4.39 cyps2x() int cyps2x (

PRJS2X_ARGS)

cyps2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a cylindrical
perspective (CYP) projection.

See prjs2x() for a description of the API.

19.13.4.40 ceaset() int ceaset (

struct prjprm ∗ prj)

ceaset() sets up a prjprm struct for a cylindrical equal area (CEA) projection.

See prjset() for a description of the API.

Generated by Doxygen

19.13 prj.h File Reference 177

19.13.4.41 ceax2s() int ceax2s (

PRJX2S_ARGS)

ceax2s() deprojects Cartesian (x, y) coordinates in the plane of a cylindrical equal area (CEA) projection to native
spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

19.13.4.42 ceas2x() int ceas2x (

PRJS2X_ARGS)

ceas2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a cylindrical
equal area (CEA) projection.

See prjs2x() for a description of the API.

19.13.4.43 carset() int carset (

struct prjprm ∗ prj)

carset() sets up a prjprm struct for a plate carrée (CAR) projection.

See prjset() for a description of the API.

19.13.4.44 carx2s() int carx2s (

PRJX2S_ARGS)

carx2s() deprojects Cartesian (x, y) coordinates in the plane of a plate carrée (CAR) projection to native spherical
coordinates (φ, θ).

See prjx2s() for a description of the API.

19.13.4.45 cars2x() int cars2x (

PRJS2X_ARGS)

cars2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a plate carrée
(CAR) projection.

See prjs2x() for a description of the API.

19.13.4.46 merset() int merset (

struct prjprm ∗ prj)

merset() sets up a prjprm struct for a Mercator (MER) projection.

See prjset() for a description of the API.

19.13.4.47 merx2s() int merx2s (

PRJX2S_ARGS)

merx2s() deprojects Cartesian (x, y) coordinates in the plane of a Mercator (MER) projection to native spherical
coordinates (φ, θ).

See prjx2s() for a description of the API.

Generated by Doxygen

178

19.13.4.48 mers2x() int mers2x (

PRJS2X_ARGS)

mers2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a Mercator
(MER) projection.

See prjs2x() for a description of the API.

19.13.4.49 sflset() int sflset (

struct prjprm ∗ prj)

sflset() sets up a prjprm struct for a Sanson-Flamsteed (SFL) projection.

See prjset() for a description of the API.

19.13.4.50 sflx2s() int sflx2s (

PRJX2S_ARGS)

sflx2s() deprojects Cartesian (x, y) coordinates in the plane of a Sanson-Flamsteed (SFL) projection to native
spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

19.13.4.51 sfls2x() int sfls2x (

PRJS2X_ARGS)

sfls2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a Sanson-←↩

Flamsteed (SFL) projection.

See prjs2x() for a description of the API.

19.13.4.52 parset() int parset (

struct prjprm ∗ prj)

parset() sets up a prjprm struct for a parabolic (PAR) projection.

See prjset() for a description of the API.

19.13.4.53 parx2s() int parx2s (

PRJX2S_ARGS)

parx2s() deprojects Cartesian (x, y) coordinates in the plane of a parabolic (PAR) projection to native spherical
coordinates (φ, θ).

See prjx2s() for a description of the API.

19.13.4.54 pars2x() int pars2x (

PRJS2X_ARGS)

pars2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a parabolic
(PAR) projection.

See prjs2x() for a description of the API.

Generated by Doxygen

19.13 prj.h File Reference 179

19.13.4.55 molset() int molset (

struct prjprm ∗ prj)

molset() sets up a prjprm struct for a Mollweide (MOL) projection.

See prjset() for a description of the API.

19.13.4.56 molx2s() int molx2s (

PRJX2S_ARGS)

molx2s() deprojects Cartesian (x, y) coordinates in the plane of a Mollweide (MOL) projection to native spherical
coordinates (φ, θ).

See prjx2s() for a description of the API.

19.13.4.57 mols2x() int mols2x (

PRJS2X_ARGS)

mols2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a Mollweide
(MOL) projection.

See prjs2x() for a description of the API.

19.13.4.58 aitset() int aitset (

struct prjprm ∗ prj)

aitset() sets up a prjprm struct for a Hammer-Aitoff (AIT) projection.

See prjset() for a description of the API.

19.13.4.59 aitx2s() int aitx2s (

PRJX2S_ARGS)

aitx2s() deprojects Cartesian (x, y) coordinates in the plane of a Hammer-Aitoff (AIT) projection to native spher-
ical coordinates (φ, θ).

See prjx2s() for a description of the API.

19.13.4.60 aits2x() int aits2x (

PRJS2X_ARGS)

aits2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a Hammer-Aitoff
(AIT) projection.

See prjs2x() for a description of the API.

19.13.4.61 copset() int copset (

struct prjprm ∗ prj)

copset() sets up a prjprm struct for a conic perspective (COP) projection.

See prjset() for a description of the API.

Generated by Doxygen

180

19.13.4.62 copx2s() int copx2s (

PRJX2S_ARGS)

copx2s() deprojects Cartesian (x, y) coordinates in the plane of a conic perspective (COP) projection to native
spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

19.13.4.63 cops2x() int cops2x (

PRJS2X_ARGS)

cops2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a conic per-
spective (COP) projection.

See prjs2x() for a description of the API.

19.13.4.64 coeset() int coeset (

struct prjprm ∗ prj)

coeset() sets up a prjprm struct for a conic equal area (COE) projection.

See prjset() for a description of the API.

19.13.4.65 coex2s() int coex2s (

PRJX2S_ARGS)

coex2s() deprojects Cartesian (x, y) coordinates in the plane of a conic equal area (COE) projection to native
spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

19.13.4.66 coes2x() int coes2x (

PRJS2X_ARGS)

coes2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a conic equal
area (COE) projection.

See prjs2x() for a description of the API.

19.13.4.67 codset() int codset (

struct prjprm ∗ prj)

codset() sets up a prjprm struct for a conic equidistant (COD) projection.

See prjset() for a description of the API.

19.13.4.68 codx2s() int codx2s (

PRJX2S_ARGS)

codx2s() deprojects Cartesian (x, y) coordinates in the plane of a conic equidistant (COD) projection to native
spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

Generated by Doxygen

19.13 prj.h File Reference 181

19.13.4.69 cods2x() int cods2x (

PRJS2X_ARGS)

cods2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a conic
equidistant (COD) projection.

See prjs2x() for a description of the API.

19.13.4.70 cooset() int cooset (

struct prjprm ∗ prj)

cooset() sets up a prjprm struct for a conic orthomorphic (COO) projection.

See prjset() for a description of the API.

19.13.4.71 coox2s() int coox2s (

PRJX2S_ARGS)

coox2s() deprojects Cartesian (x, y) coordinates in the plane of a conic orthomorphic (COO) projection to native
spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

19.13.4.72 coos2x() int coos2x (

PRJS2X_ARGS)

coos2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a conic ortho-
morphic (COO) projection.

See prjs2x() for a description of the API.

19.13.4.73 bonset() int bonset (

struct prjprm ∗ prj)

bonset() sets up a prjprm struct for a Bonne (BON) projection.

See prjset() for a description of the API.

19.13.4.74 bonx2s() int bonx2s (

PRJX2S_ARGS)

bonx2s() deprojects Cartesian (x, y) coordinates in the plane of a Bonne (BON) projection to native spherical
coordinates (φ, θ).

See prjx2s() for a description of the API.

19.13.4.75 bons2x() int bons2x (

PRJS2X_ARGS)

bons2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a Bonne (BON)
projection.

See prjs2x() for a description of the API.

Generated by Doxygen

182

19.13.4.76 pcoset() int pcoset (

struct prjprm ∗ prj)

pcoset() sets up a prjprm struct for a polyconic (PCO) projection.

See prjset() for a description of the API.

19.13.4.77 pcox2s() int pcox2s (

PRJX2S_ARGS)

pcox2s() deprojects Cartesian (x, y) coordinates in the plane of a polyconic (PCO) projection to native spherical
coordinates (φ, θ).

See prjx2s() for a description of the API.

19.13.4.78 pcos2x() int pcos2x (

PRJS2X_ARGS)

pcos2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a polyconic
(PCO) projection.

See prjs2x() for a description of the API.

19.13.4.79 tscset() int tscset (

struct prjprm ∗ prj)

tscset() sets up a prjprm struct for a tangential spherical cube (TSC) projection.

See prjset() for a description of the API.

19.13.4.80 tscx2s() int tscx2s (

PRJX2S_ARGS)

tscx2s() deprojects Cartesian (x, y) coordinates in the plane of a tangential spherical cube (TSC) projection to
native spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

19.13.4.81 tscs2x() int tscs2x (

PRJS2X_ARGS)

tscs2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a tangential
spherical cube (TSC) projection.

See prjs2x() for a description of the API.

19.13.4.82 cscset() int cscset (

struct prjprm ∗ prj)

cscset() sets up a prjprm struct for a COBE spherical cube (CSC) projection.

See prjset() for a description of the API.

Generated by Doxygen

19.13 prj.h File Reference 183

19.13.4.83 cscx2s() int cscx2s (

PRJX2S_ARGS)

cscx2s() deprojects Cartesian (x, y) coordinates in the plane of a COBE spherical cube (CSC) projection to native
spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

19.13.4.84 cscs2x() int cscs2x (

PRJS2X_ARGS)

cscs2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a COBE spher-
ical cube (CSC) projection.

See prjs2x() for a description of the API.

19.13.4.85 qscset() int qscset (

struct prjprm ∗ prj)

qscset() sets up a prjprm struct for a quadrilateralized spherical cube (QSC) projection.

See prjset() for a description of the API.

19.13.4.86 qscx2s() int qscx2s (

PRJX2S_ARGS)

qscx2s() deprojects Cartesian (x, y) coordinates in the plane of a quadrilateralized spherical cube (QSC) pro-
jection to native spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

19.13.4.87 qscs2x() int qscs2x (

PRJS2X_ARGS)

qscs2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a quadrilater-
alized spherical cube (QSC) projection.

See prjs2x() for a description of the API.

19.13.4.88 hpxset() int hpxset (

struct prjprm ∗ prj)

hpxset() sets up a prjprm struct for a HEALPix (HPX) projection.

See prjset() for a description of the API.

19.13.4.89 hpxx2s() int hpxx2s (

PRJX2S_ARGS)

hpxx2s() deprojects Cartesian (x, y) coordinates in the plane of a HEALPix (HPX) projection to native spherical
coordinates (φ, θ).

See prjx2s() for a description of the API.

Generated by Doxygen

184

19.13.4.90 hpxs2x() int hpxs2x (

PRJS2X_ARGS)

hpxs2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a HEALPix
(HPX) projection.

See prjs2x() for a description of the API.

19.13.4.91 xphset() int xphset (

struct prjprm ∗ prj)

19.13.4.92 xphx2s() int xphx2s (

PRJX2S_ARGS)

19.13.4.93 xphs2x() int xphs2x (

PRJS2X_ARGS)

19.13.5 Variable Documentation

19.13.5.1 prj_errmsg const char ∗ prj_errmsg[] [extern]

Error messages to match the status value returned from each function.

19.13.5.2 CONIC const int CONIC [extern]

Identifier for conic projections, see prjprm::category.

19.13.5.3 CONVENTIONAL const int CONVENTIONAL

Identifier for conventional projections, see prjprm::category.

19.13.5.4 CYLINDRICAL const int CYLINDRICAL

Identifier for cylindrical projections, see prjprm::category.

19.13.5.5 POLYCONIC const int POLYCONIC

Identifier for polyconic projections, see prjprm::category.

Generated by Doxygen

19.14 prj.h 185

19.13.5.6 PSEUDOCYLINDRICAL const int PSEUDOCYLINDRICAL

Identifier for pseudocylindrical projections, see prjprm::category.

19.13.5.7 QUADCUBE const int QUADCUBE

Identifier for quadcube projections, see prjprm::category.

19.13.5.8 ZENITHAL const int ZENITHAL

Identifier for zenithal/azimuthal projections, see prjprm::category.

19.13.5.9 HEALPIX const int HEALPIX

Identifier for the HEALPix projection, see prjprm::category.

19.13.5.10 prj_categories const char prj_categories[9][32] [extern]

Names of the projection categories, all in lower-case except for "HEALPix".

Provided for information only, not used by the projection routines.

19.13.5.11 prj_ncode const int prj_ncode [extern]

The number of recognized three-letter projection codes (currently 27), see prj_codes.

19.13.5.12 prj_codes const char prj_codes[27][4] [extern]

List of all recognized three-letter projection codes (currently 27), e.g. SIN, TAN, etc.

19.14 prj.h

Go to the documentation of this file.
1 /*==
2 WCSLIB 7.11 - an implementation of the FITS WCS standard.
3 Copyright (C) 1995-2022, Mark Calabretta
4
5 This file is part of WCSLIB.
6
7 WCSLIB is free software: you can redistribute it and/or modify it under the
8 terms of the GNU Lesser General Public License as published by the Free
9 Software Foundation, either version 3 of the License, or (at your option)
10 any later version.
11
12 WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
15 more details.
16
17 You should have received a copy of the GNU Lesser General Public License
18 along with WCSLIB. If not, see http://www.gnu.org/licenses.
19
20 Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
21 http://www.atnf.csiro.au/people/Mark.Calabretta
22 $Id: prj.h,v 7.11 2022/04/26 06:13:52 mcalabre Exp $
23 *===
24 *
25 * WCSLIB 7.11 - C routines that implement the FITS World Coordinate System

Generated by Doxygen

186

26 * (WCS) standard. Refer to the README file provided with WCSLIB for an
27 * overview of the library.
28 *
29 *
30 * Summary of the prj routines
31 * ---------------------------
32 * Routines in this suite implement the spherical map projections defined by
33 * the FITS World Coordinate System (WCS) standard, as described in
34 *
35 = "Representations of world coordinates in FITS",
36 = Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)
37 =
38 = "Representations of celestial coordinates in FITS",
39 = Calabretta, M.R., & Greisen, E.W. 2002, A&A, 395, 1077 (WCS Paper II)
40 =
41 = "Mapping on the HEALPix grid",
42 = Calabretta, M.R., & Roukema, B.F. 2007, MNRAS, 381, 865 (WCS Paper V)
43 =
44 = "Representing the ’Butterfly’ Projection in FITS -- Projection Code XPH",
45 = Calabretta, M.R., & Lowe, S.R. 2013, PASA, 30, e050 (WCS Paper VI)
46 *
47 * These routines are based on the prjprm struct which contains all information
48 * needed for the computations. The struct contains some members that must be
49 * set by the user, and others that are maintained by these routines, somewhat
50 * like a C++ class but with no encapsulation.
51 *
52 * Routine prjini() is provided to initialize the prjprm struct with default
53 * values, prjfree() reclaims any memory that may have been allocated to store
54 * an error message, prjsize() computes its total size including allocated
55 * memory, and prjprt() prints its contents.
56 *
57 * prjperr() prints the error message(s) (if any) stored in a prjprm struct.
58 * prjbchk() performs bounds checking on native spherical coordinates.
59 *
60 * Setup routines for each projection with names of the form ???set(), where
61 * "???" is the down-cased three-letter projection code, compute intermediate
62 * values in the prjprm struct from parameters in it that were supplied by the
63 * user. The struct always needs to be set by the projection’s setup routine
64 * but that need not be called explicitly - refer to the explanation of
65 * prjprm::flag.
66 *
67 * Each map projection is implemented via separate functions for the spherical
68 * projection, ???s2x(), and deprojection, ???x2s().
69 *
70 * A set of driver routines, prjset(), prjx2s(), and prjs2x(), provides a
71 * generic interface to the specific projection routines which they invoke
72 * via pointers-to-functions stored in the prjprm struct.
73 *
74 * In summary, the routines are:
75 * - prjini() Initialization routine for the prjprm struct.
76 * - prjfree() Reclaim memory allocated for error messages.
77 * - prjsize() Compute total size of a prjprm struct.
78 * - prjprt() Print a prjprm struct.
79 * - prjperr() Print error message (if any).
80 * - prjbchk() Bounds checking on native coordinates.
81 *
82 * - prjset(), prjx2s(), prjs2x(): Generic driver routines
83 *
84 * - azpset(), azpx2s(), azps2x(): AZP (zenithal/azimuthal perspective)
85 * - szpset(), szpx2s(), szps2x(): SZP (slant zenithal perspective)
86 * - tanset(), tanx2s(), tans2x(): TAN (gnomonic)
87 * - stgset(), stgx2s(), stgs2x(): STG (stereographic)
88 * - sinset(), sinx2s(), sins2x(): SIN (orthographic/synthesis)
89 * - arcset(), arcx2s(), arcs2x(): ARC (zenithal/azimuthal equidistant)
90 * - zpnset(), zpnx2s(), zpns2x(): ZPN (zenithal/azimuthal polynomial)
91 * - zeaset(), zeax2s(), zeas2x(): ZEA (zenithal/azimuthal equal area)
92 * - airset(), airx2s(), airs2x(): AIR (Airy)
93 * - cypset(), cypx2s(), cyps2x(): CYP (cylindrical perspective)
94 * - ceaset(), ceax2s(), ceas2x(): CEA (cylindrical equal area)
95 * - carset(), carx2s(), cars2x(): CAR (Plate carree)
96 * - merset(), merx2s(), mers2x(): MER (Mercator)
97 * - sflset(), sflx2s(), sfls2x(): SFL (Sanson-Flamsteed)
98 * - parset(), parx2s(), pars2x(): PAR (parabolic)
99 * - molset(), molx2s(), mols2x(): MOL (Mollweide)
100 * - aitset(), aitx2s(), aits2x(): AIT (Hammer-Aitoff)
101 * - copset(), copx2s(), cops2x(): COP (conic perspective)
102 * - coeset(), coex2s(), coes2x(): COE (conic equal area)
103 * - codset(), codx2s(), cods2x(): COD (conic equidistant)
104 * - cooset(), coox2s(), coos2x(): COO (conic orthomorphic)
105 * - bonset(), bonx2s(), bons2x(): BON (Bonne)
106 * - pcoset(), pcox2s(), pcos2x(): PCO (polyconic)
107 * - tscset(), tscx2s(), tscs2x(): TSC (tangential spherical cube)
108 * - cscset(), cscx2s(), cscs2x(): CSC (COBE spherical cube)
109 * - qscset(), qscx2s(), qscs2x(): QSC (quadrilateralized spherical cube)
110 * - hpxset(), hpxx2s(), hpxs2x(): HPX (HEALPix)
111 * - xphset(), xphx2s(), xphs2x(): XPH (HEALPix polar, aka "butterfly")
112 *

Generated by Doxygen

19.14 prj.h 187

113 * Argument checking (projection routines):
114 * --
115 * The values of phi and theta (the native longitude and latitude) normally lie
116 * in the range [-180,180] for phi, and [-90,90] for theta. However, all
117 * projection routines will accept any value of phi and will not normalize it.
118 *
119 * The projection routines do not explicitly check that theta lies within the
120 * range [-90,90]. They do check for any value of theta that produces an
121 * invalid argument to the projection equations (e.g. leading to division by
122 * zero). The projection routines for AZP, SZP, TAN, SIN, ZPN, and COP also
123 * return error 2 if (phi,theta) corresponds to the overlapped (far) side of
124 * the projection but also return the corresponding value of (x,y). This
125 * strict bounds checking may be relaxed at any time by setting
126 * prjprm::bounds%2 to 0 (rather than 1); the projections need not be
127 * reinitialized.
128 *
129 * Argument checking (deprojection routines):
130 * --
131 * Error checking on the projected coordinates (x,y) is limited to that
132 * required to ascertain whether a solution exists. Where a solution does
133 * exist, an optional check is made that the value of phi and theta obtained
134 * lie within the ranges [-180,180] for phi, and [-90,90] for theta. This
135 * check, performed by prjbchk(), is enabled by default. It may be disabled by
136 * setting prjprm::bounds%4 to 0 (rather than 1); the projections need not be
137 * reinitialized.
138 *
139 * Accuracy:
140 * ---------
141 * No warranty is given for the accuracy of these routines (refer to the
142 * copyright notice); intending users must satisfy for themselves their
143 * adequacy for the intended purpose. However, closure to a precision of at
144 * least 1E-10 degree of longitude and latitude has been verified for typical
145 * projection parameters on the 1 degree graticule of native longitude and
146 * latitude (to within 5 degrees of any latitude where the projection may
147 * diverge). Refer to the tprj1.c and tprj2.c test routines that accompany
148 * this software.
149 *
150 *
151 * prjini() - Default constructor for the prjprm struct
152 * --
153 * prjini() sets all members of a prjprm struct to default values. It should
154 * be used to initialize every prjprm struct.
155 *
156 * PLEASE NOTE: If the prjprm struct has already been initialized, then before
157 * reinitializing, it prjfree() should be used to free any memory that may have
158 * been allocated to store an error message. A memory leak may otherwise
159 * result.
160 *
161 * Returned:
162 * prj struct prjprm*
163 * Projection parameters.
164 *
165 * Function return value:
166 * int Status return value:
167 * 0: Success.
168 * 1: Null prjprm pointer passed.
169 *
170 *
171 * prjfree() - Destructor for the prjprm struct
172 * --
173 * prjfree() frees any memory that may have been allocated to store an error
174 * message in the prjprm struct.
175 *
176 * Given:
177 * prj struct prjprm*
178 * Projection parameters.
179 *
180 * Function return value:
181 * int Status return value:
182 * 0: Success.
183 * 1: Null prjprm pointer passed.
184 *
185 *
186 * prjsize() - Compute the size of a prjprm struct
187 * ---
188 * prjsize() computes the full size of a prjprm struct, including allocated
189 * memory.
190 *
191 * Given:
192 * prj const struct prjprm*
193 * Projection parameters.
194 *
195 * If NULL, the base size of the struct and the allocated
196 * size are both set to zero.
197 *
198 * Returned:
199 * sizes int[2] The first element is the base size of the struct as

Generated by Doxygen

188

200 * returned by sizeof(struct prjprm). The second element
201 * is the total allocated size, in bytes. This figure
202 * includes memory allocated for the constituent struct,
203 * prjprm::err.
204 *
205 * It is not an error for the struct not to have been set
206 * up via prjset().
207 *
208 * Function return value:
209 * int Status return value:
210 * 0: Success.
211 *
212 *
213 * prjprt() - Print routine for the prjprm struct
214 * --
215 * prjprt() prints the contents of a prjprm struct using wcsprintf(). Mainly
216 * intended for diagnostic purposes.
217 *
218 * Given:
219 * prj const struct prjprm*
220 * Projection parameters.
221 *
222 * Function return value:
223 * int Status return value:
224 * 0: Success.
225 * 1: Null prjprm pointer passed.
226 *
227 *
228 * prjperr() - Print error messages from a prjprm struct
229 * ---
230 * prjperr() prints the error message(s) (if any) stored in a prjprm struct.
231 * If there are no errors then nothing is printed. It uses wcserr_prt(), q.v.
232 *
233 * Given:
234 * prj const struct prjprm*
235 * Projection parameters.
236 *
237 * prefix const char *
238 * If non-NULL, each output line will be prefixed with
239 * this string.
240 *
241 * Function return value:
242 * int Status return value:
243 * 0: Success.
244 * 1: Null prjprm pointer passed.
245 *
246 *
247 * prjbchk() - Bounds checking on native coordinates
248 * ---
249 * prjbchk() performs bounds checking on native spherical coordinates. As
250 * returned by the deprojection (x2s) routines, native longitude is expected
251 * to lie in the closed interval [-180,180], with latitude in [-90,90].
252 *
253 * A tolerance may be specified to provide a small allowance for numerical
254 * imprecision. Values that lie outside the allowed range by not more than
255 * the specified tolerance will be adjusted back into range.
256 *
257 * If prjprm::bounds&4 is set, as it is by prjini(), then prjbchk() will be
258 * invoked automatically by the Cartesian-to-spherical deprojection (x2s)
259 * routines with an appropriate tolerance set for each projection.
260 *
261 * Given:
262 * tol double Tolerance for the bounds check [deg].
263 *
264 * nphi,
265 * ntheta int Vector lengths.
266 *
267 * spt int Vector stride.
268 *
269 * Given and returned:
270 * phi,theta double[] Native longitude and latitude (phi,theta) [deg].
271 *
272 * Returned:
273 * stat int[] Status value for each vector element:
274 * 0: Valid value of (phi,theta).
275 * 1: Invalid value.
276 *
277 * Function return value:
278 * int Status return value:
279 * 0: Success.
280 * 1: One or more of the (phi,theta) coordinates
281 * were, invalid, as indicated by the stat vector.
282 *
283 *
284 * prjset() - Generic setup routine for the prjprm struct
285 * --
286 * prjset() sets up a prjprm struct according to information supplied within

Generated by Doxygen

19.14 prj.h 189

287 * it.
288 *
289 * Note that this routine need not be called directly; it will be invoked by
290 * prjx2s() and prjs2x() if prj.flag is anything other than a predefined magic
291 * value.
292 *
293 * The one important distinction between prjset() and the setup routines for
294 * the specific projections is that the projection code must be defined in the
295 * prjprm struct in order for prjset() to identify the required projection.
296 * Once prjset() has initialized the prjprm struct, prjx2s() and prjs2x() use
297 * the pointers to the specific projection and deprojection routines contained
298 * therein.
299 *
300 * Given and returned:
301 * prj struct prjprm*
302 * Projection parameters.
303 *
304 * Function return value:
305 * int Status return value:
306 * 0: Success.
307 * 1: Null prjprm pointer passed.
308 * 2: Invalid projection parameters.
309 *
310 * For returns > 1, a detailed error message is set in
311 * prjprm::err if enabled, see wcserr_enable().
312 *
313 *
314 * prjx2s() - Generic Cartesian-to-spherical deprojection
315 * --
316 * Deproject Cartesian (x,y) coordinates in the plane of projection to native
317 * spherical coordinates (phi,theta).
318 *
319 * The projection is that specified by prjprm::code.
320 *
321 * Given and returned:
322 * prj struct prjprm*
323 * Projection parameters.
324 *
325 * Given:
326 * nx,ny int Vector lengths.
327 *
328 * sxy,spt int Vector strides.
329 *
330 * x,y const double[]
331 * Projected coordinates.
332 *
333 * Returned:
334 * phi,theta double[] Longitude and latitude (phi,theta) of the projected
335 * point in native spherical coordinates [deg].
336 *
337 * stat int[] Status value for each vector element:
338 * 0: Success.
339 * 1: Invalid value of (x,y).
340 *
341 * Function return value:
342 * int Status return value:
343 * 0: Success.
344 * 1: Null prjprm pointer passed.
345 * 2: Invalid projection parameters.
346 * 3: One or more of the (x,y) coordinates were
347 * invalid, as indicated by the stat vector.
348 *
349 * For returns > 1, a detailed error message is set in
350 * prjprm::err if enabled, see wcserr_enable().
351 *
352 *
353 * prjs2x() - Generic spherical-to-Cartesian projection
354 * --
355 * Project native spherical coordinates (phi,theta) to Cartesian (x,y)
356 * coordinates in the plane of projection.
357 *
358 * The projection is that specified by prjprm::code.
359 *
360 * Given and returned:
361 * prj struct prjprm*
362 * Projection parameters.
363 *
364 * Given:
365 * nphi,
366 * ntheta int Vector lengths.
367 *
368 * spt,sxy int Vector strides.
369 *
370 * phi,theta const double[]
371 * Longitude and latitude (phi,theta) of the projected
372 * point in native spherical coordinates [deg].
373 *

Generated by Doxygen

190

374 * Returned:
375 * x,y double[] Projected coordinates.
376 *
377 * stat int[] Status value for each vector element:
378 * 0: Success.
379 * 1: Invalid value of (phi,theta).
380 *
381 * Function return value:
382 * int Status return value:
383 * 0: Success.
384 * 1: Null prjprm pointer passed.
385 * 2: Invalid projection parameters.
386 * 4: One or more of the (phi,theta) coordinates
387 * were, invalid, as indicated by the stat vector.
388 *
389 * For returns > 1, a detailed error message is set in
390 * prjprm::err if enabled, see wcserr_enable().
391 *
392 *
393 * ???set() - Specific setup routines for the prjprm struct
394 * --
395 * Set up a prjprm struct for a particular projection according to information
396 * supplied within it.
397 *
398 * Given and returned:
399 * prj struct prjprm*
400 * Projection parameters.
401 *
402 * Function return value:
403 * int Status return value:
404 * 0: Success.
405 * 1: Null prjprm pointer passed.
406 * 2: Invalid projection parameters.
407 *
408 * For returns > 1, a detailed error message is set in
409 * prjprm::err if enabled, see wcserr_enable().
410 *
411 *
412 * ???x2s() - Specific Cartesian-to-spherical deprojection routines
413 * --
414 * Transform (x,y) coordinates in the plane of projection to native spherical
415 * coordinates (phi,theta).
416 *
417 * Given and returned:
418 * prj struct prjprm*
419 * Projection parameters.
420 *
421 * Given:
422 * nx,ny int Vector lengths.
423 *
424 * sxy,spt int Vector strides.
425 *
426 * x,y const double[]
427 * Projected coordinates.
428 *
429 * Returned:
430 * phi,theta double[] Longitude and latitude of the projected point in
431 * native spherical coordinates [deg].
432 *
433 * stat int[] Status value for each vector element:
434 * 0: Success.
435 * 1: Invalid value of (x,y).
436 *
437 * Function return value:
438 * int Status return value:
439 * 0: Success.
440 * 1: Null prjprm pointer passed.
441 * 2: Invalid projection parameters.
442 * 3: One or more of the (x,y) coordinates were
443 * invalid, as indicated by the stat vector.
444 *
445 * For returns > 1, a detailed error message is set in
446 * prjprm::err if enabled, see wcserr_enable().
447 *
448 *
449 * ???s2x() - Specific spherical-to-Cartesian projection routines
450 *---
451 * Transform native spherical coordinates (phi,theta) to (x,y) coordinates in
452 * the plane of projection.
453 *
454 * Given and returned:
455 * prj struct prjprm*
456 * Projection parameters.
457 *
458 * Given:
459 * nphi,
460 * ntheta int Vector lengths.

Generated by Doxygen

19.14 prj.h 191

461 *
462 * spt,sxy int Vector strides.
463 *
464 * phi,theta const double[]
465 * Longitude and latitude of the projected point in
466 * native spherical coordinates [deg].
467 *
468 * Returned:
469 * x,y double[] Projected coordinates.
470 *
471 * stat int[] Status value for each vector element:
472 * 0: Success.
473 * 1: Invalid value of (phi,theta).
474 *
475 * Function return value:
476 * int Status return value:
477 * 0: Success.
478 * 1: Null prjprm pointer passed.
479 * 2: Invalid projection parameters.
480 * 4: One or more of the (phi,theta) coordinates
481 * were, invalid, as indicated by the stat vector.
482 *
483 * For returns > 1, a detailed error message is set in
484 * prjprm::err if enabled, see wcserr_enable().
485 *
486 *
487 * prjprm struct - Projection parameters
488 * -------------------------------------
489 * The prjprm struct contains all information needed to project or deproject
490 * native spherical coordinates. It consists of certain members that must be
491 * set by the user ("given") and others that are set by the WCSLIB routines
492 * ("returned"). Some of the latter are supplied for informational purposes
493 * while others are for internal use only.
494 *
495 * int flag
496 * (Given and returned) This flag must be set to zero whenever any of the
497 * following prjprm struct members are set or changed:
498 *
499 * - prjprm::code,
500 * - prjprm::r0,
501 * - prjprm::pv[],
502 * - prjprm::phi0,
503 * - prjprm::theta0.
504 *
505 * This signals the initialization routine (prjset() or ???set()) to
506 * recompute the returned members of the prjprm struct. flag will then be
507 * reset to indicate that this has been done.
508 *
509 * Note that flag need not be reset when prjprm::bounds is changed.
510 *
511 * char code[4]
512 * (Given) Three-letter projection code defined by the FITS standard.
513 *
514 * double r0
515 * (Given) The radius of the generating sphere for the projection, a linear
516 * scaling parameter. If this is zero, it will be reset to its default
517 * value of 180/pi (the value for FITS WCS).
518 *
519 * double pv[30]
520 * (Given) Projection parameters. These correspond to the PVi_ma keywords
521 * in FITS, so pv[0] is PVi_0a, pv[1] is PVi_1a, etc., where i denotes the
522 * latitude-like axis. Many projections use pv[1] (PVi_1a), some also use
523 * pv[2] (PVi_2a) and SZP uses pv[3] (PVi_3a). ZPN is currently the only
524 * projection that uses any of the others.
525 *
526 * Usage of the pv[] array as it applies to each projection is described in
527 * the prologue to each trio of projection routines in prj.c.
528 *
529 * double phi0
530 * (Given) The native longitude, phi_0 [deg], and ...
531 * double theta0
532 * (Given) ... the native latitude, theta_0 [deg], of the reference point,
533 * i.e. the point (x,y) = (0,0). If undefined (set to a magic value by
534 * prjini()) the initialization routine will set this to a
535 * projection-specific default.
536 *
537 * int bounds
538 * (Given) Controls bounds checking. If bounds&1 then enable strict bounds
539 * checking for the spherical-to-Cartesian (s2x) transformation for the
540 * AZP, SZP, TAN, SIN, ZPN, and COP projections. If bounds&2 then enable
541 * strict bounds checking for the Cartesian-to-spherical transformation
542 * (x2s) for the HPX and XPH projections. If bounds&4 then the Cartesian-
543 * to-spherical transformations (x2s) will invoke prjbchk() to perform
544 * bounds checking on the computed native coordinates, with a tolerance set
545 * to suit each projection. bounds is set to 7 by prjini() by default
546 * which enables all checks. Zero it to disable all checking.
547 *

Generated by Doxygen

192

548 * It is not necessary to reset the prjprm struct (via prjset() or
549 * ???set()) when prjprm::bounds is changed.
550 *
551 * The remaining members of the prjprm struct are maintained by the setup
552 * routines and must not be modified elsewhere:
553 *
554 * char name[40]
555 * (Returned) Long name of the projection.
556 *
557 * Provided for information only, not used by the projection routines.
558 *
559 * int category
560 * (Returned) Projection category matching the value of the relevant global
561 * variable:
562 *
563 * - ZENITHAL,
564 * - CYLINDRICAL,
565 * - PSEUDOCYLINDRICAL,
566 * - CONVENTIONAL,
567 * - CONIC,
568 * - POLYCONIC,
569 * - QUADCUBE, and
570 * - HEALPIX.
571 *
572 * The category name may be identified via the prj_categories character
573 * array, e.g.
574 *
575 = struct prjprm prj;
576 = ...
577 = printf("%s\n", prj_categories[prj.category]);
578 *
579 * Provided for information only, not used by the projection routines.
580 *
581 * int pvrange
582 * (Returned) Range of projection parameter indices: 100 times the first
583 * allowed index plus the number of parameters, e.g. TAN is 0 (no
584 * parameters), SZP is 103 (1 to 3), and ZPN is 30 (0 to 29).
585 *
586 * Provided for information only, not used by the projection routines.
587 *
588 * int simplezen
589 * (Returned) True if the projection is a radially-symmetric zenithal
590 * projection.
591 *
592 * Provided for information only, not used by the projection routines.
593 *
594 * int equiareal
595 * (Returned) True if the projection is equal area.
596 *
597 * Provided for information only, not used by the projection routines.
598 *
599 * int conformal
600 * (Returned) True if the projection is conformal.
601 *
602 * Provided for information only, not used by the projection routines.
603 *
604 * int global
605 * (Returned) True if the projection can represent the whole sphere in a
606 * finite, non-overlapped mapping.
607 *
608 * Provided for information only, not used by the projection routines.
609 *
610 * int divergent
611 * (Returned) True if the projection diverges in latitude.
612 *
613 * Provided for information only, not used by the projection routines.
614 *
615 * double x0
616 * (Returned) The offset in x, and ...
617 * double y0
618 * (Returned) ... the offset in y used to force (x,y) = (0,0) at
619 * (phi_0,theta_0).
620 *
621 * struct wcserr *err
622 * (Returned) If enabled, when an error status is returned, this struct
623 * contains detailed information about the error, see wcserr_enable().
624 *
625 * void *padding
626 * (An unused variable inserted for alignment purposes only.)
627 *
628 * double w[10]
629 * (Returned) Intermediate floating-point values derived from the
630 * projection parameters, cached here to save recomputation.
631 *
632 * Usage of the w[] array as it applies to each projection is described in
633 * the prologue to each trio of projection routines in prj.c.
634 *

Generated by Doxygen

19.14 prj.h 193

635 * int n
636 * (Returned) Intermediate integer value (used only for the ZPN and HPX
637 * projections).
638 *
639 * int (*prjx2s)(PRJX2S_ARGS)
640 * (Returned) Pointer to the spherical projection ...
641 * int (*prjs2x)(PRJ_ARGS)
642 * (Returned) ... and deprojection routines.
643 *
644 *
645 * Global variable: const char *prj_errmsg[] - Status return messages
646 * --
647 * Error messages to match the status value returned from each function.
648 *
649 *===*/
650
651 #ifndef WCSLIB_PROJ
652 #define WCSLIB_PROJ
653
654 #ifdef __cplusplus
655 extern "C" {
656 #endif
657
658
659 // Total number of projection parameters; 0 to PVN-1.
660 #define PVN 30
661
662 extern const char *prj_errmsg[];
663
664 enum prj_errmsg_enum {
665 PRJERR_SUCCESS = 0, // Success.
666 PRJERR_NULL_POINTER = 1, // Null prjprm pointer passed.
667 PRJERR_BAD_PARAM = 2, // Invalid projection parameters.
668 PRJERR_BAD_PIX = 3, // One or more of the (x, y) coordinates were
669 // invalid.
670 PRJERR_BAD_WORLD = 4 // One or more of the (phi, theta) coordinates
671 // were invalid.
672 };
673
674 extern const int CONIC, CONVENTIONAL, CYLINDRICAL, POLYCONIC,
675 PSEUDOCYLINDRICAL, QUADCUBE, ZENITHAL, HEALPIX;
676 extern const char prj_categories[9][32];
677
678 extern const int prj_ncode;
679 extern const char prj_codes[28][4];
680
681 #ifdef PRJX2S_ARGS
682 #undef PRJX2S_ARGS
683 #endif
684
685 #ifdef PRJS2X_ARGS
686 #undef PRJS2X_ARGS
687 #endif
688
689 // For use in declaring deprojection function prototypes.
690 #define PRJX2S_ARGS struct prjprm *prj, int nx, int ny, int sxy, int spt, \
691 const double x[], const double y[], double phi[], double theta[], int stat[]
692
693 // For use in declaring projection function prototypes.
694 #define PRJS2X_ARGS struct prjprm *prj, int nx, int ny, int sxy, int spt, \
695 const double phi[], const double theta[], double x[], double y[], int stat[]
696
697
698 struct prjprm {
699 // Initialization flag (see the prologue above).
700 //--
701 int flag; // Set to zero to force initialization.
702
703 // Parameters to be provided (see the prologue above).
704 //--
705 char code[4]; // Three-letter projection code.
706 double r0; // Radius of the generating sphere.
707 double pv[PVN]; // Projection parameters.
708 double phi0, theta0; // Fiducial native coordinates.
709 int bounds; // Controls bounds checking.
710
711 // Information derived from the parameters supplied.
712 //--
713 char name[40]; // Projection name.
714 int category; // Projection category.
715 int pvrange; // Range of projection parameter indices.
716 int simplezen; // Is it a simple zenithal projection?
717 int equiareal; // Is it an equal area projection?
718 int conformal; // Is it a conformal projection?
719 int global; // Can it map the whole sphere?
720 int divergent; // Does the projection diverge in latitude?
721 double x0, y0; // Fiducial offsets.

Generated by Doxygen

194

722
723 // Error handling
724 //--
725 struct wcserr *err;
726
727 // Private
728 //--
729 void *padding; // (Dummy inserted for alignment purposes.)
730 double w[10]; // Intermediate values.
731 int m, n; // Intermediate values.
732
733 int (*prjx2s)(PRJX2S_ARGS); // Pointers to the spherical projection and
734 int (*prjs2x)(PRJS2X_ARGS); // deprojection functions.
735 };
736
737 // Size of the prjprm struct in int units, used by the Fortran wrappers.
738 #define PRJLEN (sizeof(struct prjprm)/sizeof(int))
739
740
741 int prjini(struct prjprm *prj);
742
743 int prjfree(struct prjprm *prj);
744
745 int prjsize(const struct prjprm *prj, int sizes[2]);
746
747 int prjprt(const struct prjprm *prj);
748
749 int prjperr(const struct prjprm *prj, const char *prefix);
750
751 int prjbchk(double tol, int nphi, int ntheta, int spt, double phi[],
752 double theta[], int stat[]);
753
754 // Use the preprocessor to help declare function prototypes (see above).
755 int prjset(struct prjprm *prj);
756 int prjx2s(PRJX2S_ARGS);
757 int prjs2x(PRJS2X_ARGS);
758
759 int azpset(struct prjprm *prj);
760 int azpx2s(PRJX2S_ARGS);
761 int azps2x(PRJS2X_ARGS);
762
763 int szpset(struct prjprm *prj);
764 int szpx2s(PRJX2S_ARGS);
765 int szps2x(PRJS2X_ARGS);
766
767 int tanset(struct prjprm *prj);
768 int tanx2s(PRJX2S_ARGS);
769 int tans2x(PRJS2X_ARGS);
770
771 int stgset(struct prjprm *prj);
772 int stgx2s(PRJX2S_ARGS);
773 int stgs2x(PRJS2X_ARGS);
774
775 int sinset(struct prjprm *prj);
776 int sinx2s(PRJX2S_ARGS);
777 int sins2x(PRJS2X_ARGS);
778
779 int arcset(struct prjprm *prj);
780 int arcx2s(PRJX2S_ARGS);
781 int arcs2x(PRJS2X_ARGS);
782
783 int zpnset(struct prjprm *prj);
784 int zpnx2s(PRJX2S_ARGS);
785 int zpns2x(PRJS2X_ARGS);
786
787 int zeaset(struct prjprm *prj);
788 int zeax2s(PRJX2S_ARGS);
789 int zeas2x(PRJS2X_ARGS);
790
791 int airset(struct prjprm *prj);
792 int airx2s(PRJX2S_ARGS);
793 int airs2x(PRJS2X_ARGS);
794
795 int cypset(struct prjprm *prj);
796 int cypx2s(PRJX2S_ARGS);
797 int cyps2x(PRJS2X_ARGS);
798
799 int ceaset(struct prjprm *prj);
800 int ceax2s(PRJX2S_ARGS);
801 int ceas2x(PRJS2X_ARGS);
802
803 int carset(struct prjprm *prj);
804 int carx2s(PRJX2S_ARGS);
805 int cars2x(PRJS2X_ARGS);
806
807 int merset(struct prjprm *prj);
808 int merx2s(PRJX2S_ARGS);

Generated by Doxygen

19.15 spc.h File Reference 195

809 int mers2x(PRJS2X_ARGS);
810
811 int sflset(struct prjprm *prj);
812 int sflx2s(PRJX2S_ARGS);
813 int sfls2x(PRJS2X_ARGS);
814
815 int parset(struct prjprm *prj);
816 int parx2s(PRJX2S_ARGS);
817 int pars2x(PRJS2X_ARGS);
818
819 int molset(struct prjprm *prj);
820 int molx2s(PRJX2S_ARGS);
821 int mols2x(PRJS2X_ARGS);
822
823 int aitset(struct prjprm *prj);
824 int aitx2s(PRJX2S_ARGS);
825 int aits2x(PRJS2X_ARGS);
826
827 int copset(struct prjprm *prj);
828 int copx2s(PRJX2S_ARGS);
829 int cops2x(PRJS2X_ARGS);
830
831 int coeset(struct prjprm *prj);
832 int coex2s(PRJX2S_ARGS);
833 int coes2x(PRJS2X_ARGS);
834
835 int codset(struct prjprm *prj);
836 int codx2s(PRJX2S_ARGS);
837 int cods2x(PRJS2X_ARGS);
838
839 int cooset(struct prjprm *prj);
840 int coox2s(PRJX2S_ARGS);
841 int coos2x(PRJS2X_ARGS);
842
843 int bonset(struct prjprm *prj);
844 int bonx2s(PRJX2S_ARGS);
845 int bons2x(PRJS2X_ARGS);
846
847 int pcoset(struct prjprm *prj);
848 int pcox2s(PRJX2S_ARGS);
849 int pcos2x(PRJS2X_ARGS);
850
851 int tscset(struct prjprm *prj);
852 int tscx2s(PRJX2S_ARGS);
853 int tscs2x(PRJS2X_ARGS);
854
855 int cscset(struct prjprm *prj);
856 int cscx2s(PRJX2S_ARGS);
857 int cscs2x(PRJS2X_ARGS);
858
859 int qscset(struct prjprm *prj);
860 int qscx2s(PRJX2S_ARGS);
861 int qscs2x(PRJS2X_ARGS);
862
863 int hpxset(struct prjprm *prj);
864 int hpxx2s(PRJX2S_ARGS);
865 int hpxs2x(PRJS2X_ARGS);
866
867 int xphset(struct prjprm *prj);
868 int xphx2s(PRJX2S_ARGS);
869 int xphs2x(PRJS2X_ARGS);
870
871
872 // Deprecated.
873 #define prjini_errmsg prj_errmsg
874 #define prjprt_errmsg prj_errmsg
875 #define prjset_errmsg prj_errmsg
876 #define prjx2s_errmsg prj_errmsg
877 #define prjs2x_errmsg prj_errmsg
878
879 #ifdef __cplusplus
880 }
881 #endif
882
883 #endif // WCSLIB_PROJ

19.15 spc.h File Reference

#include "spx.h"

Generated by Doxygen

196

Data Structures

• struct spcprm

Spectral transformation parameters.

Macros

• #define SPCLEN (sizeof(struct spcprm)/sizeof(int))

Size of the spcprm struct in int units.

• #define spcini_errmsg spc_errmsg

Deprecated.

• #define spcprt_errmsg spc_errmsg

Deprecated.

• #define spcset_errmsg spc_errmsg

Deprecated.

• #define spcx2s_errmsg spc_errmsg

Deprecated.

• #define spcs2x_errmsg spc_errmsg

Deprecated.

Enumerations

• enum spc_errmsg_enum {
SPCERR_NO_CHANGE = -1 , SPCERR_SUCCESS = 0 , SPCERR_NULL_POINTER = 1 , SPCERR_BAD_SPEC_PARAMS
= 2 ,
SPCERR_BAD_X = 3 , SPCERR_BAD_SPEC = 4 }

Functions

• int spcini (struct spcprm ∗spc)

Default constructor for the spcprm struct.

• int spcfree (struct spcprm ∗spc)

Destructor for the spcprm struct.

• int spcsize (const struct spcprm ∗spc, int sizes[2])

Compute the size of a spcprm struct.

• int spcprt (const struct spcprm ∗spc)

Print routine for the spcprm struct.

• int spcperr (const struct spcprm ∗spc, const char ∗prefix)

Print error messages from a spcprm struct.

• int spcset (struct spcprm ∗spc)

Setup routine for the spcprm struct.

• int spcx2s (struct spcprm ∗spc, int nx, int sx, int sspec, const double x[], double spec[], int stat[])

Transform to spectral coordinates.

• int spcs2x (struct spcprm ∗spc, int nspec, int sspec, int sx, const double spec[], double x[], int stat[])

Transform spectral coordinates.

• int spctype (const char ctype[9], char stype[], char scode[], char sname[], char units[], char ∗ptype, char
∗xtype, int ∗restreq, struct wcserr ∗∗err)

Spectral CTYPEia keyword analysis.

• int spcspxe (const char ctypeS[9], double crvalS, double restfrq, double restwav, char ∗ptype, char ∗xtype, int
∗restreq, double ∗crvalX, double ∗dXdS, struct wcserr ∗∗err)

Generated by Doxygen

19.15 spc.h File Reference 197

Spectral keyword analysis.

• int spcxpse (const char ctypeS[9], double crvalX, double restfrq, double restwav, char ∗ptype, char ∗xtype, int
∗restreq, double ∗crvalS, double ∗dSdX, struct wcserr ∗∗err)

Spectral keyword synthesis.

• int spctrne (const char ctypeS1[9], double crvalS1, double cdeltS1, double restfrq, double restwav, char
ctypeS2[9], double ∗crvalS2, double ∗cdeltS2, struct wcserr ∗∗err)

Spectral keyword translation.

• int spcaips (const char ctypeA[9], int velref, char ctype[9], char specsys[9])

Translate AIPS-convention spectral keywords.

• int spctyp (const char ctype[9], char stype[], char scode[], char sname[], char units[], char ∗ptype, char
∗xtype, int ∗restreq)

• int spcspx (const char ctypeS[9], double crvalS, double restfrq, double restwav, char ∗ptype, char ∗xtype, int
∗restreq, double ∗crvalX, double ∗dXdS)

• int spcxps (const char ctypeS[9], double crvalX, double restfrq, double restwav, char ∗ptype, char ∗xtype, int
∗restreq, double ∗crvalS, double ∗dSdX)

• int spctrn (const char ctypeS1[9], double crvalS1, double cdeltS1, double restfrq, double restwav, char ctype←↩

S2[9], double ∗crvalS2, double ∗cdeltS2)

Variables

• const char ∗ spc_errmsg []

Status return messages.

19.15.1 Detailed Description

Routines in this suite implement the part of the FITS World Coordinate System (WCS) standard that deals with
spectral coordinates, as described in
"Representations of world coordinates in FITS",
Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)
"Representations of spectral coordinates in FITS",
Greisen, E.W., Calabretta, M.R., Valdes, F.G., & Allen, S.L.
2006, A&A, 446, 747 (WCS Paper III)

These routines define methods to be used for computing spectral world coordinates from intermediate world coor-
dinates (a linear transformation of image pixel coordinates), and vice versa. They are based on the spcprm struct
which contains all information needed for the computations. The struct contains some members that must be set by
the user, and others that are maintained by these routines, somewhat like a C++ class but with no encapsulation.

Routine spcini() is provided to initialize the spcprm struct with default values, spcfree() reclaims any memory that
may have been allocated to store an error message, spcsize() computes its total size including allocated memory,
and spcprt() prints its contents.

spcperr() prints the error message(s) (if any) stored in a spcprm struct.

A setup routine, spcset(), computes intermediate values in the spcprm struct from parameters in it that were supplied
by the user. The struct always needs to be set up by spcset() but it need not be called explicitly - refer to the
explanation of spcprm::flag.

spcx2s() and spcs2x() implement the WCS spectral coordinate transformations. In fact, they are high level driver
routines for the lower level spectral coordinate transformation routines described in spx.h.

A number of routines are provided to aid in analysing or synthesising sets of FITS spectral axis keywords:

• spctype() checks a spectral CTYPEia keyword for validity and returns information derived from it.

Generated by Doxygen

198

• Spectral keyword analysis routine spcspxe() computes the values of the X-type spectral variables for the
S-type variables supplied.

• Spectral keyword synthesis routine, spcxpse(), computes the S-type variables for the X-types supplied.

• Given a set of spectral keywords, a translation routine, spctrne(), produces the corresponding set for the
specified spectral CTYPEia.

• spcaips() translates AIPS-convention spectral CTYPEia and VELREF keyvalues.

Spectral variable types - S, P , and X:
A few words of explanation are necessary regarding spectral variable types in FITS.

Every FITS spectral axis has three associated spectral variables:

S-type: the spectral variable in which coordinates are to be expressed. Each S-type is encoded as four characters
and is linearly related to one of four basic types as follows:

F (Frequency):

• 'FREQ': frequency

• 'AFRQ': angular frequency

• 'ENER': photon energy

• 'WAVN': wave number

• 'VRAD': radio velocity

W (Wavelength in vacuo):

• 'WAVE': wavelength

• 'VOPT': optical velocity

• 'ZOPT': redshift

A (wavelength in Air):

• 'AWAV': wavelength in air

V (Velocity):

• 'VELO': relativistic velocity

• 'BETA': relativistic beta factor

Generated by Doxygen

19.15 spc.h File Reference 199

The S-type forms the first four characters of the CTYPEia keyvalue, and CRVALia and CDELTia are expressed
as S-type quantities so that they provide a first-order approximation to the S-type variable at the reference point.

Note that 'AFRQ', angular frequency, is additional to the variables defined in WCS Paper III.

P -type: the basic spectral variable (F, W, A, or V) with which the S-type variable is associated (see list above).

For non-grism axes, the P -type is encoded as the eighth character of CTYPEia.

X-type: the basic spectral variable (F, W, A, or V) for which the spectral axis is linear, grisms excluded (see below).

For non-grism axes, the X-type is encoded as the sixth character of CTYPEia.

Grisms: Grism axes have normal S-, and P -types but the axis is linear, not in any spectral variable, but in a
special "grism parameter". The X-type spectral variable is either W or A for grisms in vacuo or air respectively,
but is encoded as 'w' or 'a' to indicate that an additional transformation is required to convert to or from the grism
parameter. The spectral algorithm code for grisms also has a special encoding in CTYPEia, either 'GRI' (in vacuo)
or 'GRA' (in air).

In the algorithm chain, the non-linear transformation occurs between the X-type and the P -type variables; the
transformation between P -type and S-type variables is always linear.

When the P -type and X-type variables are the same, the spectral axis is linear in the S-type variable and the
second four characters of CTYPEia are blank. This can never happen for grism axes.

As an example, correlating radio spectrometers always produce spectra that are regularly gridded in frequency; a
redshift scale on such a spectrum is non-linear. The required value of CTYPEia would be 'ZOPT-F2W', where
the desired S-type is 'ZOPT' (redshift), the P -type is necessarily 'W' (wavelength), and the X-type is 'F' (frequency)
by the nature of the instrument.

Air-to-vacuum wavelength conversion:
Please refer to the prologue of spx.h for important comments relating to the air-to-vacuum wavelength conversion.

Argument checking:
The input spectral values are only checked for values that would result in floating point exceptions. In particular,
negative frequencies and wavelengths are allowed, as are velocities greater than the speed of light. The same is
true for the spectral parameters - rest frequency and wavelength.

Accuracy:
No warranty is given for the accuracy of these routines (refer to the copyright notice); intending users must satisfy
for themselves their adequacy for the intended purpose. However, closure effectively to within double precision
rounding error was demonstrated by test routine tspc.c which accompanies this software.

19.15.2 Macro Definition Documentation

19.15.2.1 SPCLEN #define SPCLEN (sizeof(struct spcprm)/sizeof(int))

Size of the spcprm struct in int units, used by the Fortran wrappers.

19.15.2.2 spcini_errmsg #define spcini_errmsg spc_errmsg

Deprecated Added for backwards compatibility, use spc_errmsg directly now instead.

Generated by Doxygen

200

19.15.2.3 spcprt_errmsg #define spcprt_errmsg spc_errmsg

Deprecated Added for backwards compatibility, use spc_errmsg directly now instead.

19.15.2.4 spcset_errmsg #define spcset_errmsg spc_errmsg

Deprecated Added for backwards compatibility, use spc_errmsg directly now instead.

19.15.2.5 spcx2s_errmsg #define spcx2s_errmsg spc_errmsg

Deprecated Added for backwards compatibility, use spc_errmsg directly now instead.

19.15.2.6 spcs2x_errmsg #define spcs2x_errmsg spc_errmsg

Deprecated Added for backwards compatibility, use spc_errmsg directly now instead.

19.15.3 Enumeration Type Documentation

19.15.3.1 spc_errmsg_enum enum spc_errmsg_enum

Enumerator

SPCERR_NO_CHANGE
SPCERR_SUCCESS

SPCERR_NULL_POINTER
SPCERR_BAD_SPEC_PARAMS

SPCERR_BAD_X
SPCERR_BAD_SPEC

19.15.4 Function Documentation

Generated by Doxygen

19.15 spc.h File Reference 201

19.15.4.1 spcini() int spcini (

struct spcprm ∗ spc)

spcini() sets all members of a spcprm struct to default values. It should be used to initialize every spcprm struct.

PLEASE NOTE: If the spcprm struct has already been initialized, then before reinitializing, it spcfree() should be
used to free any memory that may have been allocated to store an error message. A memory leak may otherwise
result.

Parameters

in,out spc Spectral transformation parameters.

Returns

Status return value:

• 0: Success.

• 1: Null spcprm pointer passed.

19.15.4.2 spcfree() int spcfree (

struct spcprm ∗ spc)

spcfree() frees any memory that may have been allocated to store an error message in the spcprm struct.

Parameters

in spc Spectral transformation parameters.

Returns

Status return value:

• 0: Success.

• 1: Null spcprm pointer passed.

19.15.4.3 spcsize() int spcsize (

const struct spcprm ∗ spc,

int sizes[2])

spcsize() computes the full size of a spcprm struct, including allocated memory.

Parameters

in spc Spectral transformation parameters.
If NULL, the base size of the struct and the allocated size are both set to zero.

out sizes The first element is the base size of the struct as returned by sizeof(struct spcprm). The
second element is the total allocated size, in bytes. This figure includes memory allocated for
the constituent struct, spcprm::err.
It is not an error for the struct not to have been set up via spcset().Generated by Doxygen

202

Returns

Status return value:

• 0: Success.

19.15.4.4 spcprt() int spcprt (

const struct spcprm ∗ spc)

spcprt() prints the contents of a spcprm struct using wcsprintf(). Mainly intended for diagnostic purposes.

Parameters

in spc Spectral transformation parameters.

Returns

Status return value:

• 0: Success.

• 1: Null spcprm pointer passed.

19.15.4.5 spcperr() int spcperr (

const struct spcprm ∗ spc,

const char ∗ prefix)

spcperr() prints the error message(s) (if any) stored in a spcprm struct. If there are no errors then nothing is printed.
It uses wcserr_prt(), q.v.

Parameters

in spc Spectral transformation parameters.

in prefix If non-NULL, each output line will be prefixed with this string.

Returns

Status return value:

• 0: Success.

• 1: Null spcprm pointer passed.

19.15.4.6 spcset() int spcset (

struct spcprm ∗ spc)

spcset() sets up a spcprm struct according to information supplied within it.

Note that this routine need not be called directly; it will be invoked by spcx2s() and spcs2x() if spcprm::flag is
anything other than a predefined magic value.

Generated by Doxygen

19.15 spc.h File Reference 203

Parameters

in,out spc Spectral transformation parameters.

Returns

Status return value:

• 0: Success.

• 1: Null spcprm pointer passed.

• 2: Invalid spectral parameters.

For returns > 1, a detailed error message is set in spcprm::err if enabled, see wcserr_enable().

19.15.4.7 spcx2s() int spcx2s (

struct spcprm ∗ spc,

int nx,

int sx,

int sspec,

const double x[],

double spec[],

int stat[])

spcx2s() transforms intermediate world coordinates to spectral coordinates.

Parameters

in,out spc Spectral transformation parameters.

in nx Vector length.

in sx Vector stride.
in sspec Vector stride.

in x Intermediate world coordinates, in SI units.

out spec Spectral coordinates, in SI units.

out stat Status return value status for each vector
element:

• 0: Success.

• 1: Invalid value of x.

Returns

Status return value:

• 0: Success.

• 1: Null spcprm pointer passed.

• 2: Invalid spectral parameters.

• 3: One or more of the x coordinates were invalid, as indicated by the stat vector.

For returns > 1, a detailed error message is set in spcprm::err if enabled, see wcserr_enable().

Generated by Doxygen

204

19.15.4.8 spcs2x() int spcs2x (

struct spcprm ∗ spc,

int nspec,

int sspec,

int sx,

const double spec[],

double x[],

int stat[])

spcs2x() transforms spectral world coordinates to intermediate world coordinates.

Parameters

in,out spc Spectral transformation parameters.

in nspec Vector length.

in sspec Vector stride.

in sx Vector stride.
in spec Spectral coordinates, in SI units.

out x Intermediate world coordinates, in SI units.

out stat Status return value status for each vector
element:

• 0: Success.

• 1: Invalid value of spec.

Returns

Status return value:

• 0: Success.

• 1: Null spcprm pointer passed.

• 2: Invalid spectral parameters.

• 4: One or more of the spec coordinates were invalid, as indicated by the stat vector.

For returns > 1, a detailed error message is set in spcprm::err if enabled, see wcserr_enable().

19.15.4.9 spctype() int spctype (

const char ctype[9],

char stype[],

char scode[],

char sname[],

char units[],

char ∗ ptype,

char ∗ xtype,

int ∗ restreq,

struct wcserr ∗∗ err)

spctype() checks whether a CTYPEia keyvalue is a valid spectral axis type and if so returns information derived
from it relating to the associated S-, P -, and X-type spectral variables (see explanation above).

The return arguments are guaranteed not be modified if CTYPEia is not a valid spectral type; zero-pointers may
be specified for any that are not of interest.

A deprecated form of this function, spctyp(), lacks the wcserr∗∗ parameter.

Generated by Doxygen

19.15 spc.h File Reference 205

Parameters

in ctype The CTYPEia keyvalue, (eight characters with null termination).

out stype The four-letter name of the S-type spectral variable copied or translated from ctype. If a
non-zero pointer is given, the array must accomodate a null- terminated string of length 5.

out scode The three-letter spectral algorithm code copied or translated from ctype. Logarithmic ('LOG')
and tabular ('TAB') codes are also recognized. If a non-zero pointer is given, the array must
accomodate a null-terminated string of length 4.

out sname Descriptive name of the S-type spectral variable. If a non-zero pointer is given, the array
must accomodate a null-terminated string of length 22.

out units SI units of the S-type spectral variable. If a non-zero pointer is given, the array must
accomodate a null-terminated string of length 8.

out ptype Character code for the P -type spectral variable derived from ctype, one of 'F', 'W', 'A', or 'V'.

out xtype Character code for the X-type spectral variable derived from ctype, one of 'F', 'W', 'A', or 'V'.
Also, 'w' and 'a' are synonymous to 'W' and 'A' for grisms in vacuo and air respectively. Set
to 'L' or 'T' for logarithmic ('LOG') and tabular ('TAB') axes.

out restreq Multivalued flag that indicates whether rest frequency or wavelength is required to compute
spectral variables for this CTYPEia:

• 0: Not required.

• 1: Required for the conversion between S- and P -types (e.g. 'ZOPT-F2W').

• 2: Required for the conversion between P - and X-types (e.g. 'BETA-W2V').

• 3: Required for the conversion between S- and P -types, and between P - and
X-types, but not between S- and X-types (this applies only for 'VRAD-V2F',
'VOPT-V2W', and 'ZOPT-V2W').

Thus the rest frequency or wavelength is required for spectral coordinate computations (i.e.
between S- and X-types) only if
restreq%3 != 0

.
out err If enabled, for function return values > 1, this struct will contain a detailed error message,

see wcserr_enable(). May be NULL if an error message is not desired. Otherwise, the user
is responsible for deleting the memory allocated for the wcserr struct.

Returns

Status return value:

• 0: Success.

• 2: Invalid spectral parameters (not a spectral CTYPEia).

19.15.4.10 spcspxe() int spcspxe (

const char ctypeS[9],

double crvalS,

double restfrq,

double restwav,

char ∗ ptype,

char ∗ xtype,

int ∗ restreq,

double ∗ crvalX,

Generated by Doxygen

206

double ∗ dXdS,

struct wcserr ∗∗ err)

spcspxe() analyses the CTYPEia and CRVALia FITS spectral axis keyword values and returns information about
the associated X-type spectral variable.

A deprecated form of this function, spcspx(), lacks the wcserr∗∗ parameter.

Parameters

in ctypeS Spectral axis type, i.e. the CTYPEia keyvalue, (eight characters with null
termination). For non-grism axes, the character code for the P -type spectral variable
in the algorithm code (i.e. the eighth character of CTYPEia) may be set to '?' (it will
not be reset).

in crvalS Value of the S-type spectral variable at the reference point, i.e. the CRVALia
keyvalue, SI units.

in restfrq,restwav Rest frequency [Hz] and rest wavelength in vacuo [m], only one of which need be
given, the other should be set to zero.

out ptype Character code for the P -type spectral variable derived from ctypeS, one of 'F', 'W',
'A', or 'V'.

out xtype Character code for the X-type spectral variable derived from ctypeS, one of 'F', 'W',
'A', or 'V'. Also, 'w' and 'a' are synonymous to 'W' and 'A' for grisms in vacuo and air
respectively; crvalX and dXdS (see below) will conform to these.

out restreq Multivalued flag that indicates whether rest frequency or wavelength is required to
compute spectral variables for this CTYPEia, as for spctype().

out crvalX Value of the X-type spectral variable at the reference point, SI units.

out dXdS The derivative, dX/dS, evaluated at the reference point, SI units. Multiply the
CDELTia keyvalue by this to get the pixel spacing in the X-type spectral
coordinate.

out err If enabled, for function return values > 1, this struct will contain a detailed error
message, see wcserr_enable(). May be NULL if an error message is not desired.
Otherwise, the user is responsible for deleting the memory allocated for the wcserr
struct.

Returns

Status return value:

• 0: Success.

• 2: Invalid spectral parameters.

19.15.4.11 spcxpse() int spcxpse (

const char ctypeS[9],

double crvalX,

double restfrq,

double restwav,

char ∗ ptype,

char ∗ xtype,

int ∗ restreq,

double ∗ crvalS,

double ∗ dSdX,

struct wcserr ∗∗ err)

Generated by Doxygen

19.15 spc.h File Reference 207

spcxpse(), for the spectral axis type specified and the value provided for the X-type spectral variable at the refer-
ence point, deduces the value of the FITS spectral axis keyword CRVALia and also the derivative dS/dX which
may be used to compute CDELTia. See above for an explanation of the S-, P -, and X-type spectral variables.

A deprecated form of this function, spcxps(), lacks the wcserr∗∗ parameter.

Parameters

in ctypeS The required spectral axis type, i.e. the CTYPEia keyvalue, (eight characters with
null termination). For non-grism axes, the character code for the P -type spectral
variable in the algorithm code (i.e. the eighth character of CTYPEia) may be set to
'?' (it will not be reset).

in crvalX Value of the X-type spectral variable at the reference point (N.B. NOT the
CRVALia keyvalue), SI units.

in restfrq,restwav Rest frequency [Hz] and rest wavelength in vacuo [m], only one of which need be
given, the other should be set to zero.

out ptype Character code for the P -type spectral variable derived from ctypeS, one of 'F', 'W',
'A', or 'V'.

out xtype Character code for the X-type spectral variable derived from ctypeS, one of 'F', 'W',
'A', or 'V'. Also, 'w' and 'a' are synonymous to 'W' and 'A' for grisms; crvalX and
cdeltX must conform to these.

out restreq Multivalued flag that indicates whether rest frequency or wavelength is required to
compute spectral variables for this CTYPEia, as for spctype().

out crvalS Value of the S-type spectral variable at the reference point (i.e. the appropriate
CRVALia keyvalue), SI units.

out dSdX The derivative, dS/dX , evaluated at the reference point, SI units. Multiply this by
the pixel spacing in the X-type spectral coordinate to get the CDELTia keyvalue.

out err If enabled, for function return values > 1, this struct will contain a detailed error
message, see wcserr_enable(). May be NULL if an error message is not desired.
Otherwise, the user is responsible for deleting the memory allocated for the wcserr
struct.

Returns

Status return value:

• 0: Success.

• 2: Invalid spectral parameters.

19.15.4.12 spctrne() int spctrne (

const char ctypeS1[9],

double crvalS1,

double cdeltS1,

double restfrq,

double restwav,

char ctypeS2[9],

double ∗ crvalS2,

double ∗ cdeltS2,

struct wcserr ∗∗ err)

spctrne() translates a set of FITS spectral axis keywords into the corresponding set for the specified spectral axis
type. For example, a 'FREQ' axis may be translated into 'ZOPT-F2W' and vice versa.

A deprecated form of this function, spctrn(), lacks the wcserr∗∗ parameter.

Generated by Doxygen

208

Parameters

in ctypeS1 Spectral axis type, i.e. the CTYPEia keyvalue, (eight characters with null
termination). For non-grism axes, the character code for the P -type spectral
variable in the algorithm code (i.e. the eighth character of CTYPEia) may be
set to '?' (it will not be reset).

in crvalS1 Value of the S-type spectral variable at the reference point, i.e. the CRVALia
keyvalue, SI units.

in cdeltS1 Increment of the S-type spectral variable at the reference point, SI units.

in restfrq,restwav Rest frequency [Hz] and rest wavelength in vacuo [m], only one of which need
be given, the other should be set to zero. Neither are required if the translation
is between wave-characteristic types, or between velocity-characteristic types.
E.g., required for 'FREQ' -> 'ZOPT-F2W', but not required for 'VELO-F2V'
-> 'ZOPT-F2W'.

in,out ctypeS2 Required spectral axis type (eight characters with null termination). The first
four characters are required to be given and are never modified. The remaining
four, the algorithm code, are completely determined by, and must be consistent
with, ctypeS1 and the first four characters of ctypeS2. A non-zero status value
will be returned if they are inconsistent (see below). However, if the final three
characters are specified as "???", or if just the eighth character is specified as
'?', the correct algorithm code will be substituted (applies for grism axes as well
as non-grism).

out crvalS2 Value of the new S-type spectral variable at the reference point, i.e. the new
CRVALia keyvalue, SI units.

out cdeltS2 Increment of the new S-type spectral variable at the reference point, i.e. the
new CDELTia keyvalue, SI units.

out err If enabled, for function return values > 1, this struct will contain a detailed error
message, see wcserr_enable(). May be NULL if an error message is not
desired. Otherwise, the user is responsible for deleting the memory allocated
for the wcserr struct.

Returns

Status return value:

• 0: Success.

• 2: Invalid spectral parameters.

A status value of 2 will be returned if restfrq or restwav are not specified when required, or if ctypeS1 or
ctypeS2 are self-inconsistent, or have different spectral X-type variables.

19.15.4.13 spcaips() int spcaips (

const char ctypeA[9],

int velref,

char ctype[9],

char specsys[9])

spcaips() translates AIPS-convention spectral CTYPEia and VELREF keyvalues.

Generated by Doxygen

19.15 spc.h File Reference 209

Parameters

in ctypeA CTYPEia keyvalue possibly containing an AIPS-convention spectral code (eight
characters, need not be null-terminated).

in velref AIPS-convention VELREF code. It has the following integer values:

• 1: LSR kinematic, originally described simply as "LSR" without distinction between
the kinematic and dynamic definitions.

• 2: Barycentric, originally described as "HEL" meaning heliocentric.

• 3: Topocentric, originally described as "OBS" meaning geocentric but widely
interpreted as topocentric.

AIPS++ extensions to VELREF are also recognized:

• 4: LSR dynamic.

• 5: Geocentric.

• 6: Source rest frame.

• 7: Galactocentric.

For an AIPS 'VELO' axis, a radio convention velocity (VRAD) is denoted by adding 256 to
VELREF, otherwise an optical velocity (VOPT) is indicated (this is not applicable to 'FREQ'
or 'FELO' axes). Setting velref to 0 or 256 chooses between optical and radio velocity
without specifying a Doppler frame, provided that a frame is encoded in ctypeA. If not, i.e.
for ctypeA = 'VELO', ctype will be returned as 'VELO'.
VELREF takes precedence over CTYPEia in defining the Doppler frame, e.g.
ctypeA = ’VELO-HEL’ velref = 1

returns ctype = 'VOPT' with specsys set to 'LSRK'.
If omitted from the header, the default value of VELREF is 0.

out ctype Translated CTYPEia keyvalue, or a copy of ctypeA if no translation was performed (in
which case any trailing blanks in ctypeA will be replaced with nulls).

out specsys Doppler reference frame indicated by VELREF or else by CTYPEia with value
corresponding to the SPECSYS keyvalue in the FITS WCS standard. May be returned
blank if neither specifies a Doppler frame, e.g. ctypeA = 'FELO' and velref%256 == 0.

Returns

Status return value:

• -1: No translation required (not an error).

• 0: Success.

• 2: Invalid value of VELREF.

19.15.4.14 spctyp() int spctyp (

const char ctype[9],

char stype[],

char scode[],

char sname[],

char units[],

char ∗ ptype,

char ∗ xtype,

int ∗ restreq)

Generated by Doxygen

210

19.15.4.15 spcspx() int spcspx (

const char ctypeS[9],

double crvalS,

double restfrq,

double restwav,

char ∗ ptype,

char ∗ xtype,

int ∗ restreq,

double ∗ crvalX,

double ∗ dXdS)

19.15.4.16 spcxps() int spcxps (

const char ctypeS[9],

double crvalX,

double restfrq,

double restwav,

char ∗ ptype,

char ∗ xtype,

int ∗ restreq,

double ∗ crvalS,

double ∗ dSdX)

19.15.4.17 spctrn() int spctrn (

const char ctypeS1[9],

double crvalS1,

double cdeltS1,

double restfrq,

double restwav,

char ctypeS2[9],

double ∗ crvalS2,

double ∗ cdeltS2)

19.15.5 Variable Documentation

19.15.5.1 spc_errmsg const char ∗ spc_errmsg[] [extern]

Error messages to match the status value returned from each function.

Generated by Doxygen

19.16 spc.h 211

19.16 spc.h

Go to the documentation of this file.
1 /*==
2 WCSLIB 7.11 - an implementation of the FITS WCS standard.
3 Copyright (C) 1995-2022, Mark Calabretta
4
5 This file is part of WCSLIB.
6
7 WCSLIB is free software: you can redistribute it and/or modify it under the
8 terms of the GNU Lesser General Public License as published by the Free
9 Software Foundation, either version 3 of the License, or (at your option)
10 any later version.
11
12 WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
15 more details.
16
17 You should have received a copy of the GNU Lesser General Public License
18 along with WCSLIB. If not, see http://www.gnu.org/licenses.
19
20 Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
21 http://www.atnf.csiro.au/people/Mark.Calabretta
22 $Id: spc.h,v 7.11 2022/04/26 06:13:52 mcalabre Exp $
23 *===
24 *
25 * WCSLIB 7.11 - C routines that implement the FITS World Coordinate System
26 * (WCS) standard. Refer to the README file provided with WCSLIB for an
27 * overview of the library.
28 *
29 *
30 * Summary of the spc routines
31 * ---------------------------
32 * Routines in this suite implement the part of the FITS World Coordinate
33 * System (WCS) standard that deals with spectral coordinates, as described in
34 *
35 = "Representations of world coordinates in FITS",
36 = Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)
37 =
38 = "Representations of spectral coordinates in FITS",
39 = Greisen, E.W., Calabretta, M.R., Valdes, F.G., & Allen, S.L.
40 = 2006, A&A, 446, 747 (WCS Paper III)
41 *
42 * These routines define methods to be used for computing spectral world
43 * coordinates from intermediate world coordinates (a linear transformation
44 * of image pixel coordinates), and vice versa. They are based on the spcprm
45 * struct which contains all information needed for the computations. The
46 * struct contains some members that must be set by the user, and others that
47 * are maintained by these routines, somewhat like a C++ class but with no
48 * encapsulation.
49 *
50 * Routine spcini() is provided to initialize the spcprm struct with default
51 * values, spcfree() reclaims any memory that may have been allocated to store
52 * an error message, spcsize() computes its total size including allocated
53 * memory, and spcprt() prints its contents.
54 *
55 * spcperr() prints the error message(s) (if any) stored in a spcprm struct.
56 *
57 * A setup routine, spcset(), computes intermediate values in the spcprm struct
58 * from parameters in it that were supplied by the user. The struct always
59 * needs to be set up by spcset() but it need not be called explicitly - refer
60 * to the explanation of spcprm::flag.
61 *
62 * spcx2s() and spcs2x() implement the WCS spectral coordinate transformations.
63 * In fact, they are high level driver routines for the lower level spectral
64 * coordinate transformation routines described in spx.h.
65 *
66 * A number of routines are provided to aid in analysing or synthesising sets
67 * of FITS spectral axis keywords:
68 *
69 * - spctype() checks a spectral CTYPEia keyword for validity and returns
70 * information derived from it.
71 *
72 * - Spectral keyword analysis routine spcspxe() computes the values of the
73 * X-type spectral variables for the S-type variables supplied.
74 *
75 * - Spectral keyword synthesis routine, spcxpse(), computes the S-type
76 * variables for the X-types supplied.
77 *
78 * - Given a set of spectral keywords, a translation routine, spctrne(),
79 * produces the corresponding set for the specified spectral CTYPEia.
80 *
81 * - spcaips() translates AIPS-convention spectral CTYPEia and VELREF
82 * keyvalues.
83 *

Generated by Doxygen

212

84 * Spectral variable types - S, P, and X:
85 * --------------------------------------
86 * A few words of explanation are necessary regarding spectral variable types
87 * in FITS.
88 *
89 * Every FITS spectral axis has three associated spectral variables:
90 *
91 * S-type: the spectral variable in which coordinates are to be
92 * expressed. Each S-type is encoded as four characters and is
93 * linearly related to one of four basic types as follows:
94 *
95 * F (Frequency):
96 * - ’FREQ’: frequency
97 * - ’AFRQ’: angular frequency
98 * - ’ENER’: photon energy
99 * - ’WAVN’: wave number
100 * - ’VRAD’: radio velocity
101 *
102 * W (Wavelength in vacuo):
103 * - ’WAVE’: wavelength
104 * - ’VOPT’: optical velocity
105 * - ’ZOPT’: redshift
106 *
107 * A (wavelength in Air):
108 * - ’AWAV’: wavelength in air
109 *
110 * V (Velocity):
111 * - ’VELO’: relativistic velocity
112 * - ’BETA’: relativistic beta factor
113 *
114 * The S-type forms the first four characters of the CTYPEia keyvalue,
115 * and CRVALia and CDELTia are expressed as S-type quantities so that
116 * they provide a first-order approximation to the S-type variable at
117 * the reference point.
118 *
119 * Note that ’AFRQ’, angular frequency, is additional to the variables
120 * defined in WCS Paper III.
121 *
122 * P-type: the basic spectral variable (F, W, A, or V) with which the
123 * S-type variable is associated (see list above).
124 *
125 * For non-grism axes, the P-type is encoded as the eighth character of
126 * CTYPEia.
127 *
128 * X-type: the basic spectral variable (F, W, A, or V) for which the
129 * spectral axis is linear, grisms excluded (see below).
130 *
131 * For non-grism axes, the X-type is encoded as the sixth character of
132 * CTYPEia.
133 *
134 * Grisms: Grism axes have normal S-, and P-types but the axis is linear,
135 * not in any spectral variable, but in a special "grism parameter".
136 * The X-type spectral variable is either W or A for grisms in vacuo or
137 * air respectively, but is encoded as ’w’ or ’a’ to indicate that an
138 * additional transformation is required to convert to or from the
139 * grism parameter. The spectral algorithm code for grisms also has a
140 * special encoding in CTYPEia, either ’GRI’ (in vacuo) or ’GRA’ (in air).
141 *
142 * In the algorithm chain, the non-linear transformation occurs between the
143 * X-type and the P-type variables; the transformation between P-type and
144 * S-type variables is always linear.
145 *
146 * When the P-type and X-type variables are the same, the spectral axis is
147 * linear in the S-type variable and the second four characters of CTYPEia
148 * are blank. This can never happen for grism axes.
149 *
150 * As an example, correlating radio spectrometers always produce spectra that
151 * are regularly gridded in frequency; a redshift scale on such a spectrum is
152 * non-linear. The required value of CTYPEia would be ’ZOPT-F2W’, where the
153 * desired S-type is ’ZOPT’ (redshift), the P-type is necessarily ’W’
154 * (wavelength), and the X-type is ’F’ (frequency) by the nature of the
155 * instrument.
156 *
157 * Air-to-vacuum wavelength conversion:
158 * ------------------------------------
159 * Please refer to the prologue of spx.h for important comments relating to the
160 * air-to-vacuum wavelength conversion.
161 *
162 * Argument checking:
163 * ------------------
164 * The input spectral values are only checked for values that would result in
165 * floating point exceptions. In particular, negative frequencies and
166 * wavelengths are allowed, as are velocities greater than the speed of
167 * light. The same is true for the spectral parameters - rest frequency and
168 * wavelength.
169 *
170 * Accuracy:

Generated by Doxygen

19.16 spc.h 213

171 * ---------
172 * No warranty is given for the accuracy of these routines (refer to the
173 * copyright notice); intending users must satisfy for themselves their
174 * adequacy for the intended purpose. However, closure effectively to within
175 * double precision rounding error was demonstrated by test routine tspc.c
176 * which accompanies this software.
177 *
178 *
179 * spcini() - Default constructor for the spcprm struct
180 * --
181 * spcini() sets all members of a spcprm struct to default values. It should
182 * be used to initialize every spcprm struct.
183 *
184 * PLEASE NOTE: If the spcprm struct has already been initialized, then before
185 * reinitializing, it spcfree() should be used to free any memory that may have
186 * been allocated to store an error message. A memory leak may otherwise
187 * result.
188 *
189 * Given and returned:
190 * spc struct spcprm*
191 * Spectral transformation parameters.
192 *
193 * Function return value:
194 * int Status return value:
195 * 0: Success.
196 * 1: Null spcprm pointer passed.
197 *
198 *
199 * spcfree() - Destructor for the spcprm struct
200 * --
201 * spcfree() frees any memory that may have been allocated to store an error
202 * message in the spcprm struct.
203 *
204 * Given:
205 * spc struct spcprm*
206 * Spectral transformation parameters.
207 *
208 * Function return value:
209 * int Status return value:
210 * 0: Success.
211 * 1: Null spcprm pointer passed.
212 *
213 *
214 * spcsize() - Compute the size of a spcprm struct
215 * ---
216 * spcsize() computes the full size of a spcprm struct, including allocated
217 * memory.
218 *
219 * Given:
220 * spc const struct spcprm*
221 * Spectral transformation parameters.
222 *
223 * If NULL, the base size of the struct and the allocated
224 * size are both set to zero.
225 *
226 * Returned:
227 * sizes int[2] The first element is the base size of the struct as
228 * returned by sizeof(struct spcprm). The second element
229 * is the total allocated size, in bytes. This figure
230 * includes memory allocated for the constituent struct,
231 * spcprm::err.
232 *
233 * It is not an error for the struct not to have been set
234 * up via spcset().
235 *
236 * Function return value:
237 * int Status return value:
238 * 0: Success.
239 *
240 *
241 * spcprt() - Print routine for the spcprm struct
242 * --
243 * spcprt() prints the contents of a spcprm struct using wcsprintf(). Mainly
244 * intended for diagnostic purposes.
245 *
246 * Given:
247 * spc const struct spcprm*
248 * Spectral transformation parameters.
249 *
250 * Function return value:
251 * int Status return value:
252 * 0: Success.
253 * 1: Null spcprm pointer passed.
254 *
255 *
256 * spcperr() - Print error messages from a spcprm struct
257 * ---

Generated by Doxygen

214

258 * spcperr() prints the error message(s) (if any) stored in a spcprm struct.
259 * If there are no errors then nothing is printed. It uses wcserr_prt(), q.v.
260 *
261 * Given:
262 * spc const struct spcprm*
263 * Spectral transformation parameters.
264 *
265 * prefix const char *
266 * If non-NULL, each output line will be prefixed with
267 * this string.
268 *
269 * Function return value:
270 * int Status return value:
271 * 0: Success.
272 * 1: Null spcprm pointer passed.
273 *
274 *
275 * spcset() - Setup routine for the spcprm struct
276 * --
277 * spcset() sets up a spcprm struct according to information supplied within
278 * it.
279 *
280 * Note that this routine need not be called directly; it will be invoked by
281 * spcx2s() and spcs2x() if spcprm::flag is anything other than a predefined
282 * magic value.
283 *
284 * Given and returned:
285 * spc struct spcprm*
286 * Spectral transformation parameters.
287 *
288 * Function return value:
289 * int Status return value:
290 * 0: Success.
291 * 1: Null spcprm pointer passed.
292 * 2: Invalid spectral parameters.
293 *
294 * For returns > 1, a detailed error message is set in
295 * spcprm::err if enabled, see wcserr_enable().
296 *
297 *
298 * spcx2s() - Transform to spectral coordinates
299 * --
300 * spcx2s() transforms intermediate world coordinates to spectral coordinates.
301 *
302 * Given and returned:
303 * spc struct spcprm*
304 * Spectral transformation parameters.
305 *
306 * Given:
307 * nx int Vector length.
308 *
309 * sx int Vector stride.
310 *
311 * sspec int Vector stride.
312 *
313 * x const double[]
314 * Intermediate world coordinates, in SI units.
315 *
316 * Returned:
317 * spec double[] Spectral coordinates, in SI units.
318 *
319 * stat int[] Status return value status for each vector element:
320 * 0: Success.
321 * 1: Invalid value of x.
322 *
323 * Function return value:
324 * int Status return value:
325 * 0: Success.
326 * 1: Null spcprm pointer passed.
327 * 2: Invalid spectral parameters.
328 * 3: One or more of the x coordinates were invalid,
329 * as indicated by the stat vector.
330 *
331 * For returns > 1, a detailed error message is set in
332 * spcprm::err if enabled, see wcserr_enable().
333 *
334 *
335 * spcs2x() - Transform spectral coordinates
336 * ---
337 * spcs2x() transforms spectral world coordinates to intermediate world
338 * coordinates.
339 *
340 * Given and returned:
341 * spc struct spcprm*
342 * Spectral transformation parameters.
343 *
344 * Given:

Generated by Doxygen

19.16 spc.h 215

345 * nspec int Vector length.
346 *
347 * sspec int Vector stride.
348 *
349 * sx int Vector stride.
350 *
351 * spec const double[]
352 * Spectral coordinates, in SI units.
353 *
354 * Returned:
355 * x double[] Intermediate world coordinates, in SI units.
356 *
357 * stat int[] Status return value status for each vector element:
358 * 0: Success.
359 * 1: Invalid value of spec.
360 *
361 * Function return value:
362 * int Status return value:
363 * 0: Success.
364 * 1: Null spcprm pointer passed.
365 * 2: Invalid spectral parameters.
366 * 4: One or more of the spec coordinates were
367 * invalid, as indicated by the stat vector.
368 *
369 * For returns > 1, a detailed error message is set in
370 * spcprm::err if enabled, see wcserr_enable().
371 *
372 *
373 * spctype() - Spectral CTYPEia keyword analysis
374 * ---
375 * spctype() checks whether a CTYPEia keyvalue is a valid spectral axis type
376 * and if so returns information derived from it relating to the associated S-,
377 * P-, and X-type spectral variables (see explanation above).
378 *
379 * The return arguments are guaranteed not be modified if CTYPEia is not a
380 * valid spectral type; zero-pointers may be specified for any that are not of
381 * interest.
382 *
383 * A deprecated form of this function, spctyp(), lacks the wcserr** parameter.
384 *
385 * Given:
386 * ctype const char[9]
387 * The CTYPEia keyvalue, (eight characters with null
388 * termination).
389 *
390 * Returned:
391 * stype char[] The four-letter name of the S-type spectral variable
392 * copied or translated from ctype. If a non-zero
393 * pointer is given, the array must accomodate a null-
394 * terminated string of length 5.
395 *
396 * scode char[] The three-letter spectral algorithm code copied or
397 * translated from ctype. Logarithmic (’LOG’) and
398 * tabular (’TAB’) codes are also recognized. If a
399 * non-zero pointer is given, the array must accomodate a
400 * null-terminated string of length 4.
401 *
402 * sname char[] Descriptive name of the S-type spectral variable.
403 * If a non-zero pointer is given, the array must
404 * accomodate a null-terminated string of length 22.
405 *
406 * units char[] SI units of the S-type spectral variable. If a
407 * non-zero pointer is given, the array must accomodate a
408 * null-terminated string of length 8.
409 *
410 * ptype char* Character code for the P-type spectral variable
411 * derived from ctype, one of ’F’, ’W’, ’A’, or ’V’.
412 *
413 * xtype char* Character code for the X-type spectral variable
414 * derived from ctype, one of ’F’, ’W’, ’A’, or ’V’.
415 * Also, ’w’ and ’a’ are synonymous to ’W’ and ’A’ for
416 * grisms in vacuo and air respectively. Set to ’L’ or
417 * ’T’ for logarithmic (’LOG’) and tabular (’TAB’) axes.
418 *
419 * restreq int* Multivalued flag that indicates whether rest
420 * frequency or wavelength is required to compute
421 * spectral variables for this CTYPEia:
422 * 0: Not required.
423 * 1: Required for the conversion between S- and
424 * P-types (e.g. ’ZOPT-F2W’).
425 * 2: Required for the conversion between P- and
426 * X-types (e.g. ’BETA-W2V’).
427 * 3: Required for the conversion between S- and
428 * P-types, and between P- and X-types, but not
429 * between S- and X-types (this applies only for
430 * ’VRAD-V2F’, ’VOPT-V2W’, and ’ZOPT-V2W’).
431 * Thus the rest frequency or wavelength is required for

Generated by Doxygen

216

432 * spectral coordinate computations (i.e. between S- and
433 * X-types) only if restreq%3 != 0.
434 *
435 * err struct wcserr **
436 * If enabled, for function return values > 1, this
437 * struct will contain a detailed error message, see
438 * wcserr_enable(). May be NULL if an error message is
439 * not desired. Otherwise, the user is responsible for
440 * deleting the memory allocated for the wcserr struct.
441 *
442 * Function return value:
443 * int Status return value:
444 * 0: Success.
445 * 2: Invalid spectral parameters (not a spectral
446 * CTYPEia).
447 *
448 *
449 * spcspxe() - Spectral keyword analysis
450 * ------------------------------------
451 * spcspxe() analyses the CTYPEia and CRVALia FITS spectral axis keyword values
452 * and returns information about the associated X-type spectral variable.
453 *
454 * A deprecated form of this function, spcspx(), lacks the wcserr** parameter.
455 *
456 * Given:
457 * ctypeS const char[9]
458 * Spectral axis type, i.e. the CTYPEia keyvalue, (eight
459 * characters with null termination). For non-grism
460 * axes, the character code for the P-type spectral
461 * variable in the algorithm code (i.e. the eighth
462 * character of CTYPEia) may be set to ’?’ (it will not
463 * be reset).
464 *
465 * crvalS double Value of the S-type spectral variable at the reference
466 * point, i.e. the CRVALia keyvalue, SI units.
467 *
468 * restfrq,
469 * restwav double Rest frequency [Hz] and rest wavelength in vacuo [m],
470 * only one of which need be given, the other should be
471 * set to zero.
472 *
473 * Returned:
474 * ptype char* Character code for the P-type spectral variable
475 * derived from ctypeS, one of ’F’, ’W’, ’A’, or ’V’.
476 *
477 * xtype char* Character code for the X-type spectral variable
478 * derived from ctypeS, one of ’F’, ’W’, ’A’, or ’V’.
479 * Also, ’w’ and ’a’ are synonymous to ’W’ and ’A’ for
480 * grisms in vacuo and air respectively; crvalX and dXdS
481 * (see below) will conform to these.
482 *
483 * restreq int* Multivalued flag that indicates whether rest frequency
484 * or wavelength is required to compute spectral
485 * variables for this CTYPEia, as for spctype().
486 *
487 * crvalX double* Value of the X-type spectral variable at the reference
488 * point, SI units.
489 *
490 * dXdS double* The derivative, dX/dS, evaluated at the reference
491 * point, SI units. Multiply the CDELTia keyvalue by
492 * this to get the pixel spacing in the X-type spectral
493 * coordinate.
494 *
495 * err struct wcserr **
496 * If enabled, for function return values > 1, this
497 * struct will contain a detailed error message, see
498 * wcserr_enable(). May be NULL if an error message is
499 * not desired. Otherwise, the user is responsible for
500 * deleting the memory allocated for the wcserr struct.
501 *
502 * Function return value:
503 * int Status return value:
504 * 0: Success.
505 * 2: Invalid spectral parameters.
506 *
507 *
508 * spcxpse() - Spectral keyword synthesis
509 * -------------------------------------
510 * spcxpse(), for the spectral axis type specified and the value provided for
511 * the X-type spectral variable at the reference point, deduces the value of
512 * the FITS spectral axis keyword CRVALia and also the derivative dS/dX which
513 * may be used to compute CDELTia. See above for an explanation of the S-,
514 * P-, and X-type spectral variables.
515 *
516 * A deprecated form of this function, spcxps(), lacks the wcserr** parameter.
517 *
518 * Given:

Generated by Doxygen

19.16 spc.h 217

519 * ctypeS const char[9]
520 * The required spectral axis type, i.e. the CTYPEia
521 * keyvalue, (eight characters with null termination).
522 * For non-grism axes, the character code for the P-type
523 * spectral variable in the algorithm code (i.e. the
524 * eighth character of CTYPEia) may be set to ’?’ (it
525 * will not be reset).
526 *
527 * crvalX double Value of the X-type spectral variable at the reference
528 * point (N.B. NOT the CRVALia keyvalue), SI units.
529 *
530 * restfrq,
531 * restwav double Rest frequency [Hz] and rest wavelength in vacuo [m],
532 * only one of which need be given, the other should be
533 * set to zero.
534 *
535 * Returned:
536 * ptype char* Character code for the P-type spectral variable
537 * derived from ctypeS, one of ’F’, ’W’, ’A’, or ’V’.
538 *
539 * xtype char* Character code for the X-type spectral variable
540 * derived from ctypeS, one of ’F’, ’W’, ’A’, or ’V’.
541 * Also, ’w’ and ’a’ are synonymous to ’W’ and ’A’ for
542 * grisms; crvalX and cdeltX must conform to these.
543 *
544 * restreq int* Multivalued flag that indicates whether rest frequency
545 * or wavelength is required to compute spectral
546 * variables for this CTYPEia, as for spctype().
547 *
548 * crvalS double* Value of the S-type spectral variable at the reference
549 * point (i.e. the appropriate CRVALia keyvalue), SI
550 * units.
551 *
552 * dSdX double* The derivative, dS/dX, evaluated at the reference
553 * point, SI units. Multiply this by the pixel spacing
554 * in the X-type spectral coordinate to get the CDELTia
555 * keyvalue.
556 *
557 * err struct wcserr **
558 * If enabled, for function return values > 1, this
559 * struct will contain a detailed error message, see
560 * wcserr_enable(). May be NULL if an error message is
561 * not desired. Otherwise, the user is responsible for
562 * deleting the memory allocated for the wcserr struct.
563 *
564 * Function return value:
565 * int Status return value:
566 * 0: Success.
567 * 2: Invalid spectral parameters.
568 *
569 *
570 * spctrne() - Spectral keyword translation
571 * ---------------------------------------
572 * spctrne() translates a set of FITS spectral axis keywords into the
573 * corresponding set for the specified spectral axis type. For example, a
574 * ’FREQ’ axis may be translated into ’ZOPT-F2W’ and vice versa.
575 *
576 * A deprecated form of this function, spctrn(), lacks the wcserr** parameter.
577 *
578 * Given:
579 * ctypeS1 const char[9]
580 * Spectral axis type, i.e. the CTYPEia keyvalue, (eight
581 * characters with null termination). For non-grism
582 * axes, the character code for the P-type spectral
583 * variable in the algorithm code (i.e. the eighth
584 * character of CTYPEia) may be set to ’?’ (it will not
585 * be reset).
586 *
587 * crvalS1 double Value of the S-type spectral variable at the reference
588 * point, i.e. the CRVALia keyvalue, SI units.
589 *
590 * cdeltS1 double Increment of the S-type spectral variable at the
591 * reference point, SI units.
592 *
593 * restfrq,
594 * restwav double Rest frequency [Hz] and rest wavelength in vacuo [m],
595 * only one of which need be given, the other should be
596 * set to zero. Neither are required if the translation
597 * is between wave-characteristic types, or between
598 * velocity-characteristic types. E.g., required for
599 * ’FREQ’ -> ’ZOPT-F2W’, but not required for
600 * ’VELO-F2V’ -> ’ZOPT-F2W’.
601 *
602 * Given and returned:
603 * ctypeS2 char[9] Required spectral axis type (eight characters with
604 * null termination). The first four characters are
605 * required to be given and are never modified. The

Generated by Doxygen

218

606 * remaining four, the algorithm code, are completely
607 * determined by, and must be consistent with, ctypeS1
608 * and the first four characters of ctypeS2. A non-zero
609 * status value will be returned if they are inconsistent
610 * (see below). However, if the final three characters
611 * are specified as "???", or if just the eighth
612 * character is specified as ’?’, the correct algorithm
613 * code will be substituted (applies for grism axes as
614 * well as non-grism).
615 *
616 * Returned:
617 * crvalS2 double* Value of the new S-type spectral variable at the
618 * reference point, i.e. the new CRVALia keyvalue, SI
619 * units.
620 *
621 * cdeltS2 double* Increment of the new S-type spectral variable at the
622 * reference point, i.e. the new CDELTia keyvalue, SI
623 * units.
624 *
625 * err struct wcserr **
626 * If enabled, for function return values > 1, this
627 * struct will contain a detailed error message, see
628 * wcserr_enable(). May be NULL if an error message is
629 * not desired. Otherwise, the user is responsible for
630 * deleting the memory allocated for the wcserr struct.
631 *
632 * Function return value:
633 * int Status return value:
634 * 0: Success.
635 * 2: Invalid spectral parameters.
636 *
637 * A status value of 2 will be returned if restfrq or
638 * restwav are not specified when required, or if ctypeS1
639 * or ctypeS2 are self-inconsistent, or have different
640 * spectral X-type variables.
641 *
642 *
643 * spcaips() - Translate AIPS-convention spectral keywords
644 * ---
645 * spcaips() translates AIPS-convention spectral CTYPEia and VELREF keyvalues.
646 *
647 * Given:
648 * ctypeA const char[9]
649 * CTYPEia keyvalue possibly containing an
650 * AIPS-convention spectral code (eight characters, need
651 * not be null-terminated).
652 *
653 * velref int AIPS-convention VELREF code. It has the following
654 * integer values:
655 * 1: LSR kinematic, originally described simply as
656 * "LSR" without distinction between the kinematic
657 * and dynamic definitions.
658 * 2: Barycentric, originally described as "HEL"
659 * meaning heliocentric.
660 * 3: Topocentric, originally described as "OBS"
661 * meaning geocentric but widely interpreted as
662 * topocentric.
663 * AIPS++ extensions to VELREF are also recognized:
664 * 4: LSR dynamic.
665 * 5: Geocentric.
666 * 6: Source rest frame.
667 * 7: Galactocentric.
668 *
669 * For an AIPS ’VELO’ axis, a radio convention velocity
670 * (VRAD) is denoted by adding 256 to VELREF, otherwise
671 * an optical velocity (VOPT) is indicated (this is not
672 * applicable to ’FREQ’ or ’FELO’ axes). Setting velref
673 * to 0 or 256 chooses between optical and radio velocity
674 * without specifying a Doppler frame, provided that a
675 * frame is encoded in ctypeA. If not, i.e. for
676 * ctypeA = ’VELO’, ctype will be returned as ’VELO’.
677 *
678 * VELREF takes precedence over CTYPEia in defining the
679 * Doppler frame, e.g.
680 *
681 = ctypeA = ’VELO-HEL’
682 = velref = 1
683 *
684 * returns ctype = ’VOPT’ with specsys set to ’LSRK’.
685 *
686 * If omitted from the header, the default value of
687 * VELREF is 0.
688 *
689 * Returned:
690 * ctype char[9] Translated CTYPEia keyvalue, or a copy of ctypeA if no
691 * translation was performed (in which case any trailing
692 * blanks in ctypeA will be replaced with nulls).

Generated by Doxygen

19.16 spc.h 219

693 *
694 * specsys char[9] Doppler reference frame indicated by VELREF or else
695 * by CTYPEia with value corresponding to the SPECSYS
696 * keyvalue in the FITS WCS standard. May be returned
697 * blank if neither specifies a Doppler frame, e.g.
698 * ctypeA = ’FELO’ and velref%256 == 0.
699 *
700 * Function return value:
701 * int Status return value:
702 * -1: No translation required (not an error).
703 * 0: Success.
704 * 2: Invalid value of VELREF.
705 *
706 *
707 * spcprm struct - Spectral transformation parameters
708 * --
709 * The spcprm struct contains information required to transform spectral
710 * coordinates. It consists of certain members that must be set by the user
711 * ("given") and others that are set by the WCSLIB routines ("returned"). Some
712 * of the latter are supplied for informational purposes while others are for
713 * internal use only.
714 *
715 * int flag
716 * (Given and returned) This flag must be set to zero whenever any of the
717 * following spcprm structure members are set or changed:
718 *
719 * - spcprm::type,
720 * - spcprm::code,
721 * - spcprm::crval,
722 * - spcprm::restfrq,
723 * - spcprm::restwav,
724 * - spcprm::pv[].
725 *
726 * This signals the initialization routine, spcset(), to recompute the
727 * returned members of the spcprm struct. spcset() will reset flag to
728 * indicate that this has been done.
729 *
730 * char type[8]
731 * (Given) Four-letter spectral variable type, e.g "ZOPT" for
732 * CTYPEia = ’ZOPT-F2W’. (Declared as char[8] for alignment reasons.)
733 *
734 * char code[4]
735 * (Given) Three-letter spectral algorithm code, e.g "F2W" for
736 * CTYPEia = ’ZOPT-F2W’.
737 *
738 * double crval
739 * (Given) Reference value (CRVALia), SI units.
740 *
741 * double restfrq
742 * (Given) The rest frequency [Hz], and ...
743 *
744 * double restwav
745 * (Given) ... the rest wavelength in vacuo [m], only one of which need be
746 * given, the other should be set to zero. Neither are required if the
747 * X and S spectral variables are both wave-characteristic, or both
748 * velocity-characteristic, types.
749 *
750 * double pv[7]
751 * (Given) Grism parameters for ’GRI’ and ’GRA’ algorithm codes:
752 * - 0: G, grating ruling density.
753 * - 1: m, interference order.
754 * - 2: alpha, angle of incidence [deg].
755 * - 3: n_r, refractive index at the reference wavelength, lambda_r.
756 * - 4: n’_r, dn/dlambda at the reference wavelength, lambda_r (/m).
757 * - 5: epsilon, grating tilt angle [deg].
758 * - 6: theta, detector tilt angle [deg].
759 *
760 * The remaining members of the spcprm struct are maintained by spcset() and
761 * must not be modified elsewhere:
762 *
763 * double w[6]
764 * (Returned) Intermediate values:
765 * - 0: Rest frequency or wavelength (SI).
766 * - 1: The value of the X-type spectral variable at the reference point
767 * (SI units).
768 * - 2: dX/dS at the reference point (SI units).
769 * The remainder are grism intermediates.
770 *
771 * int isGrism
772 * (Returned) Grism coordinates?
773 * - 0: no,
774 * - 1: in vacuum,
775 * - 2: in air.
776 *
777 * int padding1
778 * (An unused variable inserted for alignment purposes only.)
779 *

Generated by Doxygen

220

780 * struct wcserr *err
781 * (Returned) If enabled, when an error status is returned, this struct
782 * contains detailed information about the error, see wcserr_enable().
783 *
784 * void *padding2
785 * (An unused variable inserted for alignment purposes only.)
786 * int (*spxX2P)(SPX_ARGS)
787 * (Returned) The first and ...
788 * int (*spxP2S)(SPX_ARGS)
789 * (Returned) ... the second of the pointers to the transformation
790 * functions in the two-step algorithm chain X -> P -> S in the
791 * pixel-to-spectral direction where the non-linear transformation is from
792 * X to P. The argument list, SPX_ARGS, is defined in spx.h.
793 *
794 * int (*spxS2P)(SPX_ARGS)
795 * (Returned) The first and ...
796 * int (*spxP2X)(SPX_ARGS)
797 * (Returned) ... the second of the pointers to the transformation
798 * functions in the two-step algorithm chain S -> P -> X in the
799 * spectral-to-pixel direction where the non-linear transformation is from
800 * P to X. The argument list, SPX_ARGS, is defined in spx.h.
801 *
802 *
803 * Global variable: const char *spc_errmsg[] - Status return messages
804 * --
805 * Error messages to match the status value returned from each function.
806 *
807 *===*/
808
809 #ifndef WCSLIB_SPC
810 #define WCSLIB_SPC
811
812 #include "spx.h"
813
814 #ifdef __cplusplus
815 extern "C" {
816 #endif
817
818
819 extern const char *spc_errmsg[];
820
821 enum spc_errmsg_enum {
822 SPCERR_NO_CHANGE = -1, // No change.
823 SPCERR_SUCCESS = 0, // Success.
824 SPCERR_NULL_POINTER = 1, // Null spcprm pointer passed.
825 SPCERR_BAD_SPEC_PARAMS = 2, // Invalid spectral parameters.
826 SPCERR_BAD_X = 3, // One or more of x coordinates were
827 // invalid.
828 SPCERR_BAD_SPEC = 4 // One or more of the spec coordinates were
829 // invalid.
830 };
831
832 struct spcprm {
833 // Initialization flag (see the prologue above).
834 //--
835 int flag; // Set to zero to force initialization.
836
837 // Parameters to be provided (see the prologue above).
838 //--
839 char type[8]; // Four-letter spectral variable type.
840 char code[4]; // Three-letter spectral algorithm code.
841
842 double crval; // Reference value (CRVALia), SI units.
843 double restfrq; // Rest frequency, Hz.
844 double restwav; // Rest wavelength, m.
845
846 double pv[7]; // Grism parameters:
847 // 0: G, grating ruling density.
848 // 1: m, interference order.
849 // 2: alpha, angle of incidence.
850 // 3: n_r, refractive index at lambda_r.
851 // 4: n’_r, dn/dlambda at lambda_r.
852 // 5: epsilon, grating tilt angle.
853 // 6: theta, detector tilt angle.
854
855 // Information derived from the parameters supplied.
856 //--
857 double w[6]; // Intermediate values.
858 // 0: Rest frequency or wavelength (SI).
859 // 1: CRVALX (SI units).
860 // 2: CDELTX/CDELTia = dX/dS (SI units).
861 // The remainder are grism intermediates.
862
863 int isGrism; // Grism coordinates? 1: vacuum, 2: air.
864 int padding1; // (Dummy inserted for alignment purposes.)
865
866 // Error handling

Generated by Doxygen

19.16 spc.h 221

867 //--
868 struct wcserr *err;
869
870 // Private
871 //--
872 void *padding2; // (Dummy inserted for alignment purposes.)
873 int (*spxX2P)(SPX_ARGS); // Pointers to the transformation functions
874 int (*spxP2S)(SPX_ARGS); // in the two-step algorithm chain in the
875 // pixel-to-spectral direction.
876
877 int (*spxS2P)(SPX_ARGS); // Pointers to the transformation functions
878 int (*spxP2X)(SPX_ARGS); // in the two-step algorithm chain in the
879 // spectral-to-pixel direction.
880 };
881
882 // Size of the spcprm struct in int units, used by the Fortran wrappers.
883 #define SPCLEN (sizeof(struct spcprm)/sizeof(int))
884
885
886 int spcini(struct spcprm *spc);
887
888 int spcfree(struct spcprm *spc);
889
890 int spcsize(const struct spcprm *spc, int sizes[2]);
891
892 int spcprt(const struct spcprm *spc);
893
894 int spcperr(const struct spcprm *spc, const char *prefix);
895
896 int spcset(struct spcprm *spc);
897
898 int spcx2s(struct spcprm *spc, int nx, int sx, int sspec,
899 const double x[], double spec[], int stat[]);
900
901 int spcs2x(struct spcprm *spc, int nspec, int sspec, int sx,
902 const double spec[], double x[], int stat[]);
903
904 int spctype(const char ctype[9], char stype[], char scode[], char sname[],
905 char units[], char *ptype, char *xtype, int *restreq,
906 struct wcserr **err);
907
908 int spcspxe(const char ctypeS[9], double crvalS, double restfrq,
909 double restwav, char *ptype, char *xtype, int *restreq,
910 double *crvalX, double *dXdS, struct wcserr **err);
911
912 int spcxpse(const char ctypeS[9], double crvalX, double restfrq,
913 double restwav, char *ptype, char *xtype, int *restreq,
914 double *crvalS, double *dSdX, struct wcserr **err);
915
916 int spctrne(const char ctypeS1[9], double crvalS1, double cdeltS1,
917 double restfrq, double restwav, char ctypeS2[9], double *crvalS2,
918 double *cdeltS2, struct wcserr **err);
919
920 int spcaips(const char ctypeA[9], int velref, char ctype[9], char specsys[9]);
921
922
923 // Deprecated.
924 #define spcini_errmsg spc_errmsg
925 #define spcprt_errmsg spc_errmsg
926 #define spcset_errmsg spc_errmsg
927 #define spcx2s_errmsg spc_errmsg
928 #define spcs2x_errmsg spc_errmsg
929
930 int spctyp(const char ctype[9], char stype[], char scode[], char sname[],
931 char units[], char *ptype, char *xtype, int *restreq);
932 int spcspx(const char ctypeS[9], double crvalS, double restfrq,
933 double restwav, char *ptype, char *xtype, int *restreq,
934 double *crvalX, double *dXdS);
935 int spcxps(const char ctypeS[9], double crvalX, double restfrq,
936 double restwav, char *ptype, char *xtype, int *restreq,
937 double *crvalS, double *dSdX);
938 int spctrn(const char ctypeS1[9], double crvalS1, double cdeltS1,
939 double restfrq, double restwav, char ctypeS2[9], double *crvalS2,
940 double *cdeltS2);
941
942 #ifdef __cplusplus
943 }
944 #endif
945
946 #endif // WCSLIB_SPC

Generated by Doxygen

222

19.17 sph.h File Reference

Functions

• int sphx2s (const double eul[5], int nphi, int ntheta, int spt, int sxy, const double phi[], const double theta[],
double lng[], double lat[])

Rotation in the pixel-to-world direction.

• int sphs2x (const double eul[5], int nlng, int nlat, int sll, int spt, const double lng[], const double lat[], double
phi[], double theta[])

Rotation in the world-to-pixel direction.

• int sphdpa (int nfield, double lng0, double lat0, const double lng[], const double lat[], double dist[], double
pa[])

Compute angular distance and position angle.

• int sphpad (int nfield, double lng0, double lat0, const double dist[], const double pa[], double lng[], double
lat[])

Compute field points offset from a given point.

19.17.1 Detailed Description

Routines in this suite implement the spherical coordinate transformations defined by the FITS World Coordinate
System (WCS) standard
"Representations of world coordinates in FITS",
Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)
"Representations of celestial coordinates in FITS",
Calabretta, M.R., & Greisen, E.W. 2002, A&A, 395, 1077 (WCS Paper II)

The transformations are implemented via separate functions, sphx2s() and sphs2x(), for the spherical rotation in
each direction.

A utility function, sphdpa(), computes the angular distances and position angles from a given point on the sky to a
number of other points. sphpad() does the complementary operation - computes the coordinates of points offset by
the given angular distances and position angles from a given point on the sky.

19.17.2 Function Documentation

19.17.2.1 sphx2s() int sphx2s (

const double eul[5],

int nphi,

int ntheta,

int spt,

int sxy,

const double phi[],

const double theta[],

double lng[],

double lat[])

sphx2s() transforms native coordinates of a projection to celestial coordinates.

Generated by Doxygen

19.17 sph.h File Reference 223

Parameters

in eul Euler angles for the transformation:

• 0: Celestial longitude of the native pole [deg].

• 1: Celestial colatitude of the native pole, or native colatitude of the celestial pole
[deg].

• 2: Native longitude of the celestial pole [deg].

• 3: cos(eul[1])

• 4: sin(eul[1])

in nphi,ntheta Vector lengths.

in spt,sxy Vector strides.

in phi,theta Longitude and latitude in the native coordinate system of the projection [deg].

out lng,lat Celestial longitude and latitude [deg]. These may refer to the same storage as phi and
theta respectively.

Returns

Status return value:

• 0: Success.

19.17.2.2 sphs2x() int sphs2x (

const double eul[5],

int nlng,

int nlat,

int sll,

int spt,

const double lng[],

const double lat[],

double phi[],

double theta[])

sphs2x() transforms celestial coordinates to the native coordinates of a projection.

Parameters

in eul Euler angles for the transformation:

• 0: Celestial longitude of the native pole [deg].

• 1: Celestial colatitude of the native pole, or native colatitude of the celestial pole
[deg].

• 2: Native longitude of the celestial pole [deg].

• 3: cos(eul[1])

• 4: sin(eul[1])

in nlng,nlat Vector lengths.

in sll,spt Vector strides.

in lng,lat Celestial longitude and latitude [deg].

out phi,theta Longitude and latitude in the native coordinate system of the projection [deg]. These may
refer to the same storage as lng and lat respectively.

Generated by Doxygen

224

Returns

Status return value:

• 0: Success.

19.17.2.3 sphdpa() int sphdpa (

int nfield,

double lng0,

double lat0,

const double lng[],

const double lat[],

double dist[],

double pa[])

sphdpa() computes the angular distance and generalized position angle (see notes) from a "reference" point to a
number of "field" points on the sphere. The points must be specified consistently in any spherical coordinate system.

sphdpa() is complementary to sphpad().

Parameters

in nfield The number of field points.

in lng0,lat0 Spherical coordinates of the reference point [deg].

in lng,lat Spherical coordinates of the field points [deg].

out dist,pa Angular distances and position angles [deg]. These may refer to the same storage as lng
and lat respectively.

Returns

Status return value:

• 0: Success.

Notes:
1. sphdpa() uses sphs2x() to rotate coordinates so that the reference point is at the north pole of the new system
with the north pole of the old system at zero longitude in the new. The Euler angles required by sphs2x() for this
rotation are
eul[0] = lng0;
eul[1] = 90.0 - lat0;
eul[2] = 0.0;

The angular distance and generalized position angle are readily obtained from the longitude and latitude of the field
point in the new system. This applies even if the reference point is at one of the poles, in which case the "position
angle" returned is as would be computed for a reference point at (α0,+90◦ − ε) or (α0,−90◦ + ε), in the limit as ε
goes to zero.

It is evident that the coordinate system in which the two points are expressed is irrelevant to the determination of
the angular separation between the points. However, this is not true of the generalized position angle.

The generalized position angle is here defined as the angle of intersection of the great circle containing the reference
and field points with that containing the reference point and the pole. It has its normal meaning when the the
reference and field points are specified in equatorial coordinates (right ascension and declination).

Generated by Doxygen

19.18 sph.h 225

Interchanging the reference and field points changes the position angle in a non-intuitive way (because the sum of
the angles of a spherical triangle normally exceeds 180◦).

The position angle is undefined if the reference and field points are coincident or antipodal. This may be detected
by checking for a distance of 0◦ or 180◦ (within rounding tolerance). sphdpa() will return an arbitrary position angle
in such circumstances.

19.17.2.4 sphpad() int sphpad (

int nfield,

double lng0,

double lat0,

const double dist[],

const double pa[],

double lng[],

double lat[])

sphpad() computes the coordinates of a set of points that are offset by the specified angular distances and position
angles from a given "reference" point on the sky. The distances and position angles must be specified consistently
in any spherical coordinate system.

sphpad() is complementary to sphdpa().

Parameters

in nfield The number of field points.

in lng0,lat0 Spherical coordinates of the reference point [deg].

in dist,pa Angular distances and position angles [deg].

out lng,lat Spherical coordinates of the field points [deg]. These may refer to the same storage as dist
and pa respectively.

Returns

Status return value:

• 0: Success.

Notes:

1. sphpad() is implemented analogously to sphdpa() although using sphx2s() for the inverse transformation.
In particular, when the reference point is at one of the poles, "position angle" is interpreted as though the
reference point was at (α0,+90◦ − ε) or (α0,−90◦ + ε), in the limit as ε goes to zero.

Applying sphpad() with the distances and position angles computed by sphdpa() should return the original field
points.

19.18 sph.h

Go to the documentation of this file.
1 /*==
2 WCSLIB 7.11 - an implementation of the FITS WCS standard.
3 Copyright (C) 1995-2022, Mark Calabretta

Generated by Doxygen

226

4
5 This file is part of WCSLIB.
6
7 WCSLIB is free software: you can redistribute it and/or modify it under the
8 terms of the GNU Lesser General Public License as published by the Free
9 Software Foundation, either version 3 of the License, or (at your option)
10 any later version.
11
12 WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
15 more details.
16
17 You should have received a copy of the GNU Lesser General Public License
18 along with WCSLIB. If not, see http://www.gnu.org/licenses.
19
20 Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
21 http://www.atnf.csiro.au/people/Mark.Calabretta
22 $Id: sph.h,v 7.11 2022/04/26 06:13:52 mcalabre Exp $
23 *===
24 *
25 * WCSLIB 7.11 - C routines that implement the FITS World Coordinate System
26 * (WCS) standard. Refer to the README file provided with WCSLIB for an
27 * overview of the library.
28 *
29 *
30 * Summary of the sph routines
31 * ---------------------------
32 * Routines in this suite implement the spherical coordinate transformations
33 * defined by the FITS World Coordinate System (WCS) standard
34 *
35 = "Representations of world coordinates in FITS",
36 = Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)
37 =
38 = "Representations of celestial coordinates in FITS",
39 = Calabretta, M.R., & Greisen, E.W. 2002, A&A, 395, 1077 (WCS Paper II)
40 *
41 * The transformations are implemented via separate functions, sphx2s() and
42 * sphs2x(), for the spherical rotation in each direction.
43 *
44 * A utility function, sphdpa(), computes the angular distances and position
45 * angles from a given point on the sky to a number of other points. sphpad()
46 * does the complementary operation - computes the coordinates of points offset
47 * by the given angular distances and position angles from a given point on the
48 * sky.
49 *
50 *
51 * sphx2s() - Rotation in the pixel-to-world direction
52 * ---
53 * sphx2s() transforms native coordinates of a projection to celestial
54 * coordinates.
55 *
56 * Given:
57 * eul const double[5]
58 * Euler angles for the transformation:
59 * 0: Celestial longitude of the native pole [deg].
60 * 1: Celestial colatitude of the native pole, or
61 * native colatitude of the celestial pole [deg].
62 * 2: Native longitude of the celestial pole [deg].
63 * 3: cos(eul[1])
64 * 4: sin(eul[1])
65 *
66 * nphi,
67 * ntheta int Vector lengths.
68 *
69 * spt,sxy int Vector strides.
70 *
71 * phi,theta const double[]
72 * Longitude and latitude in the native coordinate
73 * system of the projection [deg].
74 *
75 * Returned:
76 * lng,lat double[] Celestial longitude and latitude [deg]. These may
77 * refer to the same storage as phi and theta
78 * respectively.
79 *
80 * Function return value:
81 * int Status return value:
82 * 0: Success.
83 *
84 *
85 * sphs2x() - Rotation in the world-to-pixel direction
86 * ---
87 * sphs2x() transforms celestial coordinates to the native coordinates of a
88 * projection.
89 *
90 * Given:

Generated by Doxygen

19.18 sph.h 227

91 * eul const double[5]
92 * Euler angles for the transformation:
93 * 0: Celestial longitude of the native pole [deg].
94 * 1: Celestial colatitude of the native pole, or
95 * native colatitude of the celestial pole [deg].
96 * 2: Native longitude of the celestial pole [deg].
97 * 3: cos(eul[1])
98 * 4: sin(eul[1])
99 *
100 * nlng,nlat int Vector lengths.
101 *
102 * sll,spt int Vector strides.
103 *
104 * lng,lat const double[]
105 * Celestial longitude and latitude [deg].
106 *
107 * Returned:
108 * phi,theta double[] Longitude and latitude in the native coordinate system
109 * of the projection [deg]. These may refer to the same
110 * storage as lng and lat respectively.
111 *
112 * Function return value:
113 * int Status return value:
114 * 0: Success.
115 *
116 *
117 * sphdpa() - Compute angular distance and position angle
118 * --
119 * sphdpa() computes the angular distance and generalized position angle (see
120 * notes) from a "reference" point to a number of "field" points on the sphere.
121 * The points must be specified consistently in any spherical coordinate
122 * system.
123 *
124 * sphdpa() is complementary to sphpad().
125 *
126 * Given:
127 * nfield int The number of field points.
128 *
129 * lng0,lat0 double Spherical coordinates of the reference point [deg].
130 *
131 * lng,lat const double[]
132 * Spherical coordinates of the field points [deg].
133 *
134 * Returned:
135 * dist,pa double[] Angular distances and position angles [deg]. These
136 * may refer to the same storage as lng and lat
137 * respectively.
138 *
139 * Function return value:
140 * int Status return value:
141 * 0: Success.
142 *
143 * Notes:
144 * 1. sphdpa() uses sphs2x() to rotate coordinates so that the reference
145 * point is at the north pole of the new system with the north pole of the
146 * old system at zero longitude in the new. The Euler angles required by
147 * sphs2x() for this rotation are
148 *
149 = eul[0] = lng0;
150 = eul[1] = 90.0 - lat0;
151 = eul[2] = 0.0;
152 *
153 * The angular distance and generalized position angle are readily
154 * obtained from the longitude and latitude of the field point in the new
155 * system. This applies even if the reference point is at one of the
156 * poles, in which case the "position angle" returned is as would be
157 * computed for a reference point at (lng0,+90-epsilon) or
158 * (lng0,-90+epsilon), in the limit as epsilon goes to zero.
159 *
160 * It is evident that the coordinate system in which the two points are
161 * expressed is irrelevant to the determination of the angular separation
162 * between the points. However, this is not true of the generalized
163 * position angle.
164 *
165 * The generalized position angle is here defined as the angle of
166 * intersection of the great circle containing the reference and field
167 * points with that containing the reference point and the pole. It has
168 * its normal meaning when the the reference and field points are
169 * specified in equatorial coordinates (right ascension and declination).
170 *
171 * Interchanging the reference and field points changes the position angle
172 * in a non-intuitive way (because the sum of the angles of a spherical
173 * triangle normally exceeds 180 degrees).
174 *
175 * The position angle is undefined if the reference and field points are
176 * coincident or antipodal. This may be detected by checking for a
177 * distance of 0 or 180 degrees (within rounding tolerance). sphdpa()

Generated by Doxygen

228

178 * will return an arbitrary position angle in such circumstances.
179 *
180 *
181 * sphpad() - Compute field points offset from a given point
182 * ---
183 * sphpad() computes the coordinates of a set of points that are offset by the
184 * specified angular distances and position angles from a given "reference"
185 * point on the sky. The distances and position angles must be specified
186 * consistently in any spherical coordinate system.
187 *
188 * sphpad() is complementary to sphdpa().
189 *
190 * Given:
191 * nfield int The number of field points.
192 *
193 * lng0,lat0 double Spherical coordinates of the reference point [deg].
194 *
195 * dist,pa const double[]
196 * Angular distances and position angles [deg].
197 *
198 * Returned:
199 * lng,lat double[] Spherical coordinates of the field points [deg].
200 * These may refer to the same storage as dist and pa
201 * respectively.
202 *
203 * Function return value:
204 * int Status return value:
205 * 0: Success.
206 *
207 * Notes:
208 * 1: sphpad() is implemented analogously to sphdpa() although using sphx2s()
209 * for the inverse transformation. In particular, when the reference
210 * point is at one of the poles, "position angle" is interpreted as though
211 * the reference point was at (lng0,+90-epsilon) or (lng0,-90+epsilon), in
212 * the limit as epsilon goes to zero.
213 *
214 * Applying sphpad() with the distances and position angles computed by
215 * sphdpa() should return the original field points.
216 *
217 *===*/
218
219 #ifndef WCSLIB_SPH
220 #define WCSLIB_SPH
221
222 #ifdef __cplusplus
223 extern "C" {
224 #endif
225
226
227 int sphx2s(const double eul[5], int nphi, int ntheta, int spt, int sxy,
228 const double phi[], const double theta[],
229 double lng[], double lat[]);
230
231 int sphs2x(const double eul[5], int nlng, int nlat, int sll , int spt,
232 const double lng[], const double lat[],
233 double phi[], double theta[]);
234
235 int sphdpa(int nfield, double lng0, double lat0,
236 const double lng[], const double lat[],
237 double dist[], double pa[]);
238
239 int sphpad(int nfield, double lng0, double lat0,
240 const double dist[], const double pa[],
241 double lng[], double lat[]);
242
243
244 #ifdef __cplusplus
245 }
246 #endif
247
248 #endif // WCSLIB_SPH

19.19 spx.h File Reference

Data Structures

• struct spxprm

Spectral variables and their derivatives.

Generated by Doxygen

19.19 spx.h File Reference 229

Macros

• #define SPXLEN (sizeof(struct spxprm)/sizeof(int))

Size of the spxprm struct in int units.

• #define SPX_ARGS

For use in declaring spectral conversion function prototypes.

Enumerations

• enum spx_errmsg {
SPXERR_SUCCESS = 0 , SPXERR_NULL_POINTER = 1 , SPXERR_BAD_SPEC_PARAMS = 2 ,
SPXERR_BAD_SPEC_VAR = 3 ,
SPXERR_BAD_INSPEC_COORD = 4 }

Functions

• int specx (const char ∗type, double spec, double restfrq, double restwav, struct spxprm ∗specs)

Spectral cross conversions (scalar).

• int spxperr (const struct spxprm ∗spx, const char ∗prefix)

Print error messages from a spxprm struct.

• int freqafrq (SPX_ARGS)

Convert frequency to angular frequency (vector).

• int afrqfreq (SPX_ARGS)

Convert angular frequency to frequency (vector).

• int freqener (SPX_ARGS)

Convert frequency to photon energy (vector).

• int enerfreq (SPX_ARGS)

Convert photon energy to frequency (vector).

• int freqwavn (SPX_ARGS)

Convert frequency to wave number (vector).

• int wavnfreq (SPX_ARGS)

Convert wave number to frequency (vector).

• int freqwave (SPX_ARGS)

Convert frequency to vacuum wavelength (vector).

• int wavefreq (SPX_ARGS)

Convert vacuum wavelength to frequency (vector).

• int freqawav (SPX_ARGS)

Convert frequency to air wavelength (vector).

• int awavfreq (SPX_ARGS)

Convert air wavelength to frequency (vector).

• int waveawav (SPX_ARGS)

Convert vacuum wavelength to air wavelength (vector).

• int awavwave (SPX_ARGS)

Convert air wavelength to vacuum wavelength (vector).

• int velobeta (SPX_ARGS)

Convert relativistic velocity to relativistic beta (vector).

• int betavelo (SPX_ARGS)

Convert relativistic beta to relativistic velocity (vector).

• int freqvelo (SPX_ARGS)

Convert frequency to relativistic velocity (vector).

Generated by Doxygen

230

• int velofreq (SPX_ARGS)

Convert relativistic velocity to frequency (vector).

• int freqvrad (SPX_ARGS)

Convert frequency to radio velocity (vector).

• int vradfreq (SPX_ARGS)

Convert radio velocity to frequency (vector).

• int wavevelo (SPX_ARGS)

Conversions between wavelength and velocity types (vector).

• int velowave (SPX_ARGS)

Convert relativistic velocity to vacuum wavelength (vector).

• int awavvelo (SPX_ARGS)

Convert air wavelength to relativistic velocity (vector).

• int veloawav (SPX_ARGS)

Convert relativistic velocity to air wavelength (vector).

• int wavevopt (SPX_ARGS)

Convert vacuum wavelength to optical velocity (vector).

• int voptwave (SPX_ARGS)

Convert optical velocity to vacuum wavelength (vector).

• int wavezopt (SPX_ARGS)

Convert vacuum wavelength to redshift (vector).

• int zoptwave (SPX_ARGS)

Convert redshift to vacuum wavelength (vector).

Variables

• const char ∗ spx_errmsg []

19.19.1 Detailed Description

Routines in this suite implement the spectral coordinate systems recognized by the FITS World Coordinate System
(WCS) standard, as described in
"Representations of world coordinates in FITS",
Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)
"Representations of spectral coordinates in FITS",
Greisen, E.W., Calabretta, M.R., Valdes, F.G., & Allen, S.L.
2006, A&A, 446, 747 (WCS Paper III)

specx() is a scalar routine that, given one spectral variable (e.g. frequency), computes all the others (e.g. wave-
length, velocity, etc.) plus the required derivatives of each with respect to the others. The results are returned in the
spxprm struct.

spxperr() prints the error message(s) (if any) stored in a spxprm struct.

The remaining routines are all vector conversions from one spectral variable to another. The API of these functions
only differ in whether the rest frequency or wavelength need be supplied.

Non-linear:

• freqwave() frequency -> vacuum wavelength

• wavefreq() vacuum wavelength -> frequency

• freqawav() frequency -> air wavelength

Generated by Doxygen

19.19 spx.h File Reference 231

• awavfreq() air wavelength -> frequency

• freqvelo() frequency -> relativistic velocity

• velofreq() relativistic velocity -> frequency

• waveawav() vacuum wavelength -> air wavelength

• awavwave() air wavelength -> vacuum wavelength

• wavevelo() vacuum wavelength -> relativistic velocity

• velowave() relativistic velocity -> vacuum wavelength

• awavvelo() air wavelength -> relativistic velocity

• veloawav() relativistic velocity -> air wavelength

Linear:

• freqafrq() frequency -> angular frequency

• afrqfreq() angular frequency -> frequency

• freqener() frequency -> energy

• enerfreq() energy -> frequency

• freqwavn() frequency -> wave number

• wavnfreq() wave number -> frequency

• freqvrad() frequency -> radio velocity

• vradfreq() radio velocity -> frequency

• wavevopt() vacuum wavelength -> optical velocity

• voptwave() optical velocity -> vacuum wavelength

• wavezopt() vacuum wavelength -> redshift

• zoptwave() redshift -> vacuum wavelength

• velobeta() relativistic velocity -> beta (β = v/c)

• betavelo() beta (β = v/c) -> relativistic velocity

These are the workhorse routines, to be used for fast transformations. Conversions may be done "in place" by
calling the routine with the output vector set to the input.

Air-to-vacuum wavelength conversion:
The air-to-vacuum wavelength conversion in early drafts of WCS Paper III cites Cox (ed., 2000, Allen’s Astrophysical
Quantities, AIP Press, Springer-Verlag, New York), which itself derives from Edlén (1953, Journal of the Optical
Society of America, 43, 339). This is the IAU standard, adopted in 1957 and again in 1991. No more recent IAU
resolution replaces this relation, and it is the one used by WCSLIB.

However, the Cox relation was replaced in later drafts of Paper III, and as eventually published, by the IUGG
relation (1999, International Union of Geodesy and Geophysics, comptes rendus of the 22nd General Assembly,
Birmingham UK, p111). There is a nearly constant ratio between the two, with IUGG/Cox = 1.000015 over most of
the range between 200nm and 10,000nm.

Generated by Doxygen

232

The IUGG relation itself is derived from the work of Ciddor (1996, Applied Optics, 35, 1566), which is used directly
by the Sloan Digital Sky Survey. It agrees closely with Cox; longwards of 2500nm, the ratio Ciddor/Cox is fixed at
1.000000021, decreasing only slightly, to 1.000000018, at 1000nm.

The Cox, IUGG, and Ciddor relations all accurately provide the wavelength dependence of the air-to-vacuum wave-
length conversion. However, for full accuracy, the atmospheric temperature, pressure, and partial pressure of water
vapour must be taken into account. These will determine a small, wavelength-independent scale factor and offset,
which is not considered by WCS Paper III.

WCS Paper III is also silent on the question of the range of validity of the air-to-vacuum wavelength conversion.
Cox's relation would appear to be valid in the range 200nm to 10,000nm. Both the Cox and the Ciddor relations
have singularities below 200nm, with Cox's at 156nm and 83nm. WCSLIB checks neither the range of validity, nor
for these singularities.

Argument checking:
The input spectral values are only checked for values that would result in floating point exceptions. In particular,
negative frequencies and wavelengths are allowed, as are velocities greater than the speed of light. The same is
true for the spectral parameters - rest frequency and wavelength.

Accuracy:
No warranty is given for the accuracy of these routines (refer to the copyright notice); intending users must satisfy
for themselves their adequacy for the intended purpose. However, closure effectively to within double precision
rounding error was demonstrated by test routine tspec.c which accompanies this software.

19.19.2 Macro Definition Documentation

19.19.2.1 SPXLEN #define SPXLEN (sizeof(struct spxprm)/sizeof(int))

Size of the spxprm struct in int units, used by the Fortran wrappers.

19.19.2.2 SPX_ARGS #define SPX_ARGS

Value:
double param, int nspec, int instep, int outstep, \
const double inspec[], double outspec[], int stat[]

Preprocessor macro used for declaring spectral conversion function prototypes.

19.19.3 Enumeration Type Documentation

19.19.3.1 spx_errmsg enum spx_errmsg

Enumerator

SPXERR_SUCCESS
SPXERR_NULL_POINTER

SPXERR_BAD_SPEC_PARAMS
SPXERR_BAD_SPEC_VAR

SPXERR_BAD_INSPEC_COORD Generated by Doxygen

19.19 spx.h File Reference 233

19.19.4 Function Documentation

19.19.4.1 specx() int specx (

const char ∗ type,

double spec,

double restfrq,

double restwav,

struct spxprm ∗ specs)

Given one spectral variable specx() computes all the others, plus the required derivatives of each with respect to
the others.

Parameters

in type The type of spectral variable given by spec, FREQ, AFRQ, ENER, WAVN, VRAD,
WAVE, VOPT, ZOPT, AWAV, VELO, or BETA (case sensitive).

in spec The spectral variable given, in SI units.

in restfrq,restwav Rest frequency [Hz] or rest wavelength in vacuo [m], only one of which need be
given. The other should be set to zero. If both are zero, only a subset of the
spectral variables can be computed, the remainder are set to zero. Specifically,
given one of FREQ, AFRQ, ENER, WAVN, WAVE, or AWAV the others can be
computed without knowledge of the rest frequency. Likewise, VRAD, VOPT,
ZOPT, VELO, and BETA.

in,out specs Data structure containing all spectral variables and their derivatives, in SI units.

Returns

Status return value:

• 0: Success.

• 1: Null spxprm pointer passed.

• 2: Invalid spectral parameters.

• 3: Invalid spectral variable.

For returns > 1, a detailed error message is set in spxprm::err if enabled, see wcserr_enable().

freqafrq(), afrqfreq(), freqener(), enerfreq(), freqwavn(), wavnfreq(), freqwave(), wavefreq(), freqawav(), awavfreq(),
waveawav(), awavwave(), velobeta(), and betavelo() implement vector conversions between wave-like or velocity-
like spectral types (i.e. conversions that do not need the rest frequency or wavelength). They all have the same API.

19.19.4.2 spxperr() int spxperr (

const struct spxprm ∗ spx,

const char ∗ prefix)

spxperr() prints the error message(s) (if any) stored in a spxprm struct. If there are no errors then nothing is printed.
It uses wcserr_prt(), q.v.

Parameters

in spx Spectral variables and their derivatives.

in prefix If non-NULL, each output line will be prefixed with this string.
Generated by Doxygen

234

Returns

Status return value:

• 0: Success.

• 1: Null spxprm pointer passed.

19.19.4.3 freqafrq() int freqafrq (

SPX_ARGS)

freqafrq() converts frequency to angular frequency.

Parameters

in param Ignored.

in nspec Vector length.

in instep,outstep Vector strides.

in inspec Input spectral variables, in SI units.

out outspec Output spectral variables, in SI units.

out stat Status return value for each vector
element:

• 0: Success.

• 1: Invalid value of inspec.

Returns

Status return value:

• 0: Success.

• 2: Invalid spectral parameters.

• 4: One or more of the inspec coordinates were invalid, as indicated by the stat vector.

19.19.4.4 afrqfreq() int afrqfreq (

SPX_ARGS)

afrqfreq() converts angular frequency to frequency.

See freqafrq() for a description of the API.

19.19.4.5 freqener() int freqener (

SPX_ARGS)

freqener() converts frequency to photon energy.

See freqafrq() for a description of the API.

Generated by Doxygen

19.19 spx.h File Reference 235

19.19.4.6 enerfreq() int enerfreq (

SPX_ARGS)

enerfreq() converts photon energy to frequency.

See freqafrq() for a description of the API.

19.19.4.7 freqwavn() int freqwavn (

SPX_ARGS)

freqwavn() converts frequency to wave number.

See freqafrq() for a description of the API.

19.19.4.8 wavnfreq() int wavnfreq (

SPX_ARGS)

wavnfreq() converts wave number to frequency.

See freqafrq() for a description of the API.

19.19.4.9 freqwave() int freqwave (

SPX_ARGS)

freqwave() converts frequency to vacuum wavelength.

See freqafrq() for a description of the API.

19.19.4.10 wavefreq() int wavefreq (

SPX_ARGS)

wavefreq() converts vacuum wavelength to frequency.

See freqafrq() for a description of the API.

19.19.4.11 freqawav() int freqawav (

SPX_ARGS)

freqawav() converts frequency to air wavelength.

See freqafrq() for a description of the API.

19.19.4.12 awavfreq() int awavfreq (

SPX_ARGS)

awavfreq() converts air wavelength to frequency.

See freqafrq() for a description of the API.

Generated by Doxygen

236

19.19.4.13 waveawav() int waveawav (

SPX_ARGS)

waveawav() converts vacuum wavelength to air wavelength.

See freqafrq() for a description of the API.

19.19.4.14 awavwave() int awavwave (

SPX_ARGS)

awavwave() converts air wavelength to vacuum wavelength.

See freqafrq() for a description of the API.

19.19.4.15 velobeta() int velobeta (

SPX_ARGS)

velobeta() converts relativistic velocity to relativistic beta.

See freqafrq() for a description of the API.

19.19.4.16 betavelo() int betavelo (

SPX_ARGS)

betavelo() converts relativistic beta to relativistic velocity.

See freqafrq() for a description of the API.

19.19.4.17 freqvelo() int freqvelo (

SPX_ARGS)

freqvelo() converts frequency to relativistic velocity.

Parameters

in param Rest frequency [Hz].

in nspec Vector length.

in instep,outstep Vector strides.

in inspec Input spectral variables, in SI units.

out outspec Output spectral variables, in SI units.

out stat Status return value for each vector
element:

• 0: Success.

• 1: Invalid value of inspec.

Returns

Status return value:

Generated by Doxygen

19.19 spx.h File Reference 237

• 0: Success.

• 2: Invalid spectral parameters.

• 4: One or more of the inspec coordinates were invalid, as indicated by the stat vector.

19.19.4.18 velofreq() int velofreq (

SPX_ARGS)

velofreq() converts relativistic velocity to frequency.

See freqvelo() for a description of the API.

19.19.4.19 freqvrad() int freqvrad (

SPX_ARGS)

freqvrad() converts frequency to radio velocity.

See freqvelo() for a description of the API.

19.19.4.20 vradfreq() int vradfreq (

SPX_ARGS)

vradfreq() converts radio velocity to frequency.

See freqvelo() for a description of the API.

19.19.4.21 wavevelo() int wavevelo (

SPX_ARGS)

wavevelo() converts vacuum wavelength to relativistic velocity.

Parameters

in param Rest wavelength in vacuo [m].

in nspec Vector length.

in instep,outstep Vector strides.

in inspec Input spectral variables, in SI units.

out outspec Output spectral variables, in SI units.

out stat Status return value for each vector
element:

• 0: Success.

• 1: Invalid value of inspec.

Returns

Status return value:

Generated by Doxygen

238

• 0: Success.

• 2: Invalid spectral parameters.

• 4: One or more of the inspec coordinates were invalid, as indicated by the stat vector.

19.19.4.22 velowave() int velowave (

SPX_ARGS)

velowave() converts relativistic velocity to vacuum wavelength.

See freqvelo() for a description of the API.

19.19.4.23 awavvelo() int awavvelo (

SPX_ARGS)

awavvelo() converts air wavelength to relativistic velocity.

See freqvelo() for a description of the API.

19.19.4.24 veloawav() int veloawav (

SPX_ARGS)

veloawav() converts relativistic velocity to air wavelength.

See freqvelo() for a description of the API.

19.19.4.25 wavevopt() int wavevopt (

SPX_ARGS)

wavevopt() converts vacuum wavelength to optical velocity.

See freqvelo() for a description of the API.

19.19.4.26 voptwave() int voptwave (

SPX_ARGS)

voptwave() converts optical velocity to vacuum wavelength.

See freqvelo() for a description of the API.

19.19.4.27 wavezopt() int wavezopt (

SPX_ARGS)

wavevopt() converts vacuum wavelength to redshift.

See freqvelo() for a description of the API.

Generated by Doxygen

19.20 spx.h 239

19.19.4.28 zoptwave() int zoptwave (

SPX_ARGS)

zoptwave() converts redshift to vacuum wavelength.

See freqvelo() for a description of the API.

19.19.5 Variable Documentation

19.19.5.1 spx_errmsg const char∗ spx_errmsg[] [extern]

19.20 spx.h

Go to the documentation of this file.
1 /*==
2 WCSLIB 7.11 - an implementation of the FITS WCS standard.
3 Copyright (C) 1995-2022, Mark Calabretta
4
5 This file is part of WCSLIB.
6
7 WCSLIB is free software: you can redistribute it and/or modify it under the
8 terms of the GNU Lesser General Public License as published by the Free
9 Software Foundation, either version 3 of the License, or (at your option)
10 any later version.
11
12 WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
15 more details.
16
17 You should have received a copy of the GNU Lesser General Public License
18 along with WCSLIB. If not, see http://www.gnu.org/licenses.
19
20 Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
21 http://www.atnf.csiro.au/people/Mark.Calabretta
22 $Id: spx.h,v 7.11 2022/04/26 06:13:52 mcalabre Exp $
23 *===
24 *
25 * WCSLIB 7.11 - C routines that implement the FITS World Coordinate System
26 * (WCS) standard. Refer to the README file provided with WCSLIB for an
27 * overview of the library.
28 *
29 *
30 * Summary of the spx routines
31 * ---------------------------
32 * Routines in this suite implement the spectral coordinate systems recognized
33 * by the FITS World Coordinate System (WCS) standard, as described in
34 *
35 = "Representations of world coordinates in FITS",
36 = Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)
37 =
38 = "Representations of spectral coordinates in FITS",
39 = Greisen, E.W., Calabretta, M.R., Valdes, F.G., & Allen, S.L.
40 = 2006, A&A, 446, 747 (WCS Paper III)
41 *
42 * specx() is a scalar routine that, given one spectral variable (e.g.
43 * frequency), computes all the others (e.g. wavelength, velocity, etc.) plus
44 * the required derivatives of each with respect to the others. The results
45 * are returned in the spxprm struct.
46 *
47 * spxperr() prints the error message(s) (if any) stored in a spxprm struct.
48 *
49 * The remaining routines are all vector conversions from one spectral
50 * variable to another. The API of these functions only differ in whether the
51 * rest frequency or wavelength need be supplied.
52 *
53 * Non-linear:
54 * - freqwave() frequency -> vacuum wavelength
55 * - wavefreq() vacuum wavelength -> frequency
56 *

Generated by Doxygen

240

57 * - freqawav() frequency -> air wavelength
58 * - awavfreq() air wavelength -> frequency
59 *
60 * - freqvelo() frequency -> relativistic velocity
61 * - velofreq() relativistic velocity -> frequency
62 *
63 * - waveawav() vacuum wavelength -> air wavelength
64 * - awavwave() air wavelength -> vacuum wavelength
65 *
66 * - wavevelo() vacuum wavelength -> relativistic velocity
67 * - velowave() relativistic velocity -> vacuum wavelength
68 *
69 * - awavvelo() air wavelength -> relativistic velocity
70 * - veloawav() relativistic velocity -> air wavelength
71 *
72 * Linear:
73 * - freqafrq() frequency -> angular frequency
74 * - afrqfreq() angular frequency -> frequency
75 *
76 * - freqener() frequency -> energy
77 * - enerfreq() energy -> frequency
78 *
79 * - freqwavn() frequency -> wave number
80 * - wavnfreq() wave number -> frequency
81 *
82 * - freqvrad() frequency -> radio velocity
83 * - vradfreq() radio velocity -> frequency
84 *
85 * - wavevopt() vacuum wavelength -> optical velocity
86 * - voptwave() optical velocity -> vacuum wavelength
87 *
88 * - wavezopt() vacuum wavelength -> redshift
89 * - zoptwave() redshift -> vacuum wavelength
90 *
91 * - velobeta() relativistic velocity -> beta (= v/c)
92 * - betavelo() beta (= v/c) -> relativistic velocity
93 *
94 * These are the workhorse routines, to be used for fast transformations.
95 * Conversions may be done "in place" by calling the routine with the output
96 * vector set to the input.
97 *
98 * Air-to-vacuum wavelength conversion:
99 * ------------------------------------
100 * The air-to-vacuum wavelength conversion in early drafts of WCS Paper III
101 * cites Cox (ed., 2000, Allen’s Astrophysical Quantities, AIP Press,
102 * Springer-Verlag, New York), which itself derives from Edlén (1953, Journal
103 * of the Optical Society of America, 43, 339). This is the IAU standard,
104 * adopted in 1957 and again in 1991. No more recent IAU resolution replaces
105 * this relation, and it is the one used by WCSLIB.
106 *
107 * However, the Cox relation was replaced in later drafts of Paper III, and as
108 * eventually published, by the IUGG relation (1999, International Union of
109 * Geodesy and Geophysics, comptes rendus of the 22nd General Assembly,
110 * Birmingham UK, p111). There is a nearly constant ratio between the two,
111 * with IUGG/Cox = 1.000015 over most of the range between 200nm and 10,000nm.
112 *
113 * The IUGG relation itself is derived from the work of Ciddor (1996, Applied
114 * Optics, 35, 1566), which is used directly by the Sloan Digital Sky Survey.
115 * It agrees closely with Cox; longwards of 2500nm, the ratio Ciddor/Cox is
116 * fixed at 1.000000021, decreasing only slightly, to 1.000000018, at 1000nm.
117 *
118 * The Cox, IUGG, and Ciddor relations all accurately provide the wavelength
119 * dependence of the air-to-vacuum wavelength conversion. However, for full
120 * accuracy, the atmospheric temperature, pressure, and partial pressure of
121 * water vapour must be taken into account. These will determine a small,
122 * wavelength-independent scale factor and offset, which is not considered by
123 * WCS Paper III.
124 *
125 * WCS Paper III is also silent on the question of the range of validity of the
126 * air-to-vacuum wavelength conversion. Cox’s relation would appear to be
127 * valid in the range 200nm to 10,000nm. Both the Cox and the Ciddor relations
128 * have singularities below 200nm, with Cox’s at 156nm and 83nm. WCSLIB checks
129 * neither the range of validity, nor for these singularities.
130 *
131 * Argument checking:
132 * ------------------
133 * The input spectral values are only checked for values that would result
134 * in floating point exceptions. In particular, negative frequencies and
135 * wavelengths are allowed, as are velocities greater than the speed of
136 * light. The same is true for the spectral parameters - rest frequency and
137 * wavelength.
138 *
139 * Accuracy:
140 * ---------
141 * No warranty is given for the accuracy of these routines (refer to the
142 * copyright notice); intending users must satisfy for themselves their
143 * adequacy for the intended purpose. However, closure effectively to within

Generated by Doxygen

19.20 spx.h 241

144 * double precision rounding error was demonstrated by test routine tspec.c
145 * which accompanies this software.
146 *
147 *
148 * specx() - Spectral cross conversions (scalar)
149 * ---
150 * Given one spectral variable specx() computes all the others, plus the
151 * required derivatives of each with respect to the others.
152 *
153 * Given:
154 * type const char*
155 * The type of spectral variable given by spec, FREQ,
156 * AFRQ, ENER, WAVN, VRAD, WAVE, VOPT, ZOPT, AWAV, VELO,
157 * or BETA (case sensitive).
158 *
159 * spec double The spectral variable given, in SI units.
160 *
161 * restfrq,
162 * restwav double Rest frequency [Hz] or rest wavelength in vacuo [m],
163 * only one of which need be given. The other should be
164 * set to zero. If both are zero, only a subset of the
165 * spectral variables can be computed, the remainder are
166 * set to zero. Specifically, given one of FREQ, AFRQ,
167 * ENER, WAVN, WAVE, or AWAV the others can be computed
168 * without knowledge of the rest frequency. Likewise,
169 * VRAD, VOPT, ZOPT, VELO, and BETA.
170 *
171 * Given and returned:
172 * specs struct spxprm*
173 * Data structure containing all spectral variables and
174 * their derivatives, in SI units.
175 *
176 * Function return value:
177 * int Status return value:
178 * 0: Success.
179 * 1: Null spxprm pointer passed.
180 * 2: Invalid spectral parameters.
181 * 3: Invalid spectral variable.
182 *
183 * For returns > 1, a detailed error message is set in
184 * spxprm::err if enabled, see wcserr_enable().
185 *
186 * freqafrq(), afrqfreq(), freqener(), enerfreq(), freqwavn(), wavnfreq(),
187 * freqwave(), wavefreq(), freqawav(), awavfreq(), waveawav(), awavwave(),
188 * velobeta(), and betavelo() implement vector conversions between wave-like
189 * or velocity-like spectral types (i.e. conversions that do not need the rest
190 * frequency or wavelength). They all have the same API.
191 *
192 *
193 * spxperr() - Print error messages from a spxprm struct
194 * ---
195 * spxperr() prints the error message(s) (if any) stored in a spxprm struct.
196 * If there are no errors then nothing is printed. It uses wcserr_prt(), q.v.
197 *
198 * Given:
199 * spx const struct spxprm*
200 * Spectral variables and their derivatives.
201 *
202 * prefix const char *
203 * If non-NULL, each output line will be prefixed with
204 * this string.
205 *
206 * Function return value:
207 * int Status return value:
208 * 0: Success.
209 * 1: Null spxprm pointer passed.
210 *
211 *
212 * freqafrq() - Convert frequency to angular frequency (vector)
213 * --
214 * freqafrq() converts frequency to angular frequency.
215 *
216 * Given:
217 * param double Ignored.
218 *
219 * nspec int Vector length.
220 *
221 * instep,
222 * outstep int Vector strides.
223 *
224 * inspec const double[]
225 * Input spectral variables, in SI units.
226 *
227 * Returned:
228 * outspec double[] Output spectral variables, in SI units.
229 *
230 * stat int[] Status return value for each vector element:

Generated by Doxygen

242

231 * 0: Success.
232 * 1: Invalid value of inspec.
233 *
234 * Function return value:
235 * int Status return value:
236 * 0: Success.
237 * 2: Invalid spectral parameters.
238 * 4: One or more of the inspec coordinates were
239 * invalid, as indicated by the stat vector.
240 *
241 *
242 * freqvelo(), velofreq(), freqvrad(), and vradfreq() implement vector
243 * conversions between frequency and velocity spectral types. They all have
244 * the same API.
245 *
246 *
247 * freqvelo() - Convert frequency to relativistic velocity (vector)
248 * --
249 * freqvelo() converts frequency to relativistic velocity.
250 *
251 * Given:
252 * param double Rest frequency [Hz].
253 *
254 * nspec int Vector length.
255 *
256 * instep,
257 * outstep int Vector strides.
258 *
259 * inspec const double[]
260 * Input spectral variables, in SI units.
261 *
262 * Returned:
263 * outspec double[] Output spectral variables, in SI units.
264 *
265 * stat int[] Status return value for each vector element:
266 * 0: Success.
267 * 1: Invalid value of inspec.
268 *
269 * Function return value:
270 * int Status return value:
271 * 0: Success.
272 * 2: Invalid spectral parameters.
273 * 4: One or more of the inspec coordinates were
274 * invalid, as indicated by the stat vector.
275 *
276 *
277 * wavevelo(), velowave(), awavvelo(), veloawav(), wavevopt(), voptwave(),
278 * wavezopt(), and zoptwave() implement vector conversions between wavelength
279 * and velocity spectral types. They all have the same API.
280 *
281 *
282 * wavevelo() - Conversions between wavelength and velocity types (vector)
283 * ---
284 * wavevelo() converts vacuum wavelength to relativistic velocity.
285 *
286 * Given:
287 * param double Rest wavelength in vacuo [m].
288 *
289 * nspec int Vector length.
290 *
291 * instep,
292 * outstep int Vector strides.
293 *
294 * inspec const double[]
295 * Input spectral variables, in SI units.
296 *
297 * Returned:
298 * outspec double[] Output spectral variables, in SI units.
299 *
300 * stat int[] Status return value for each vector element:
301 * 0: Success.
302 * 1: Invalid value of inspec.
303 *
304 * Function return value:
305 * int Status return value:
306 * 0: Success.
307 * 2: Invalid spectral parameters.
308 * 4: One or more of the inspec coordinates were
309 * invalid, as indicated by the stat vector.
310 *
311 *
312 * spxprm struct - Spectral variables and their derivatives
313 * --
314 * The spxprm struct contains the value of all spectral variables and their
315 * derivatives. It is used solely by specx() which constructs it from
316 * information provided via its function arguments.
317 *

Generated by Doxygen

19.20 spx.h 243

318 * This struct should be considered read-only, no members need ever be set nor
319 * should ever be modified by the user.
320 *
321 * double restfrq
322 * (Returned) Rest frequency [Hz].
323 *
324 * double restwav
325 * (Returned) Rest wavelength [m].
326 *
327 * int wavetype
328 * (Returned) True if wave types have been computed, and ...
329 *
330 * int velotype
331 * (Returned) ... true if velocity types have been computed; types are
332 * defined below.
333 *
334 * If one or other of spxprm::restfrq and spxprm::restwav is given
335 * (non-zero) then all spectral variables may be computed. If both are
336 * given, restfrq is used. If restfrq and restwav are both zero, only wave
337 * characteristic xor velocity type spectral variables may be computed
338 * depending on the variable given. These flags indicate what is
339 * available.
340 *
341 * double freq
342 * (Returned) Frequency [Hz] (wavetype).
343 *
344 * double afrq
345 * (Returned) Angular frequency [rad/s] (wavetype).
346 *
347 * double ener
348 * (Returned) Photon energy [J] (wavetype).
349 *
350 * double wavn
351 * (Returned) Wave number [/m] (wavetype).
352 *
353 * double vrad
354 * (Returned) Radio velocity [m/s] (velotype).
355 *
356 * double wave
357 * (Returned) Vacuum wavelength [m] (wavetype).
358 *
359 * double vopt
360 * (Returned) Optical velocity [m/s] (velotype).
361 *
362 * double zopt
363 * (Returned) Redshift [dimensionless] (velotype).
364 *
365 * double awav
366 * (Returned) Air wavelength [m] (wavetype).
367 *
368 * double velo
369 * (Returned) Relativistic velocity [m/s] (velotype).
370 *
371 * double beta
372 * (Returned) Relativistic beta [dimensionless] (velotype).
373 *
374 * double dfreqafrq
375 * (Returned) Derivative of frequency with respect to angular frequency
376 * [/rad] (constant, = 1 / 2*pi), and ...
377 * double dafrqfreq
378 * (Returned) ... vice versa [rad] (constant, = 2*pi, always available).
379 *
380 * double dfreqener
381 * (Returned) Derivative of frequency with respect to photon energy
382 * [/J/s] (constant, = 1/h), and ...
383 * double denerfreq
384 * (Returned) ... vice versa [Js] (constant, = h, Planck’s constant,
385 * always available).
386 *
387 * double dfreqwavn
388 * (Returned) Derivative of frequency with respect to wave number [m/s]
389 * (constant, = c, the speed of light in vacuo), and ...
390 * double dwavnfreq
391 * (Returned) ... vice versa [s/m] (constant, = 1/c, always available).
392 *
393 * double dfreqvrad
394 * (Returned) Derivative of frequency with respect to radio velocity [/m],
395 * and ...
396 * double dvradfreq
397 * (Returned) ... vice versa [m] (wavetype && velotype).
398 *
399 * double dfreqwave
400 * (Returned) Derivative of frequency with respect to vacuum wavelength
401 * [/m/s], and ...
402 * double dwavefreq
403 * (Returned) ... vice versa [m s] (wavetype).
404 *

Generated by Doxygen

244

405 * double dfreqawav
406 * (Returned) Derivative of frequency with respect to air wavelength,
407 * [/m/s], and ...
408 * double dawavfreq
409 * (Returned) ... vice versa [m s] (wavetype).
410 *
411 * double dfreqvelo
412 * (Returned) Derivative of frequency with respect to relativistic
413 * velocity [/m], and ...
414 * double dvelofreq
415 * (Returned) ... vice versa [m] (wavetype && velotype).
416 *
417 * double dwavevopt
418 * (Returned) Derivative of vacuum wavelength with respect to optical
419 * velocity [s], and ...
420 * double dvoptwave
421 * (Returned) ... vice versa [/s] (wavetype && velotype).
422 *
423 * double dwavezopt
424 * (Returned) Derivative of vacuum wavelength with respect to redshift [m],
425 * and ...
426 * double dzoptwave
427 * (Returned) ... vice versa [/m] (wavetype && velotype).
428 *
429 * double dwaveawav
430 * (Returned) Derivative of vacuum wavelength with respect to air
431 * wavelength [dimensionless], and ...
432 * double dawavwave
433 * (Returned) ... vice versa [dimensionless] (wavetype).
434 *
435 * double dwavevelo
436 * (Returned) Derivative of vacuum wavelength with respect to relativistic
437 * velocity [s], and ...
438 * double dvelowave
439 * (Returned) ... vice versa [/s] (wavetype && velotype).
440 *
441 * double dawavvelo
442 * (Returned) Derivative of air wavelength with respect to relativistic
443 * velocity [s], and ...
444 * double dveloawav
445 * (Returned) ... vice versa [/s] (wavetype && velotype).
446 *
447 * double dvelobeta
448 * (Returned) Derivative of relativistic velocity with respect to
449 * relativistic beta [m/s] (constant, = c, the speed of light in vacuo),
450 * and ...
451 * double dbetavelo
452 * (Returned) ... vice versa [s/m] (constant, = 1/c, always available).
453 *
454 * struct wcserr *err
455 * (Returned) If enabled, when an error status is returned, this struct
456 * contains detailed information about the error, see wcserr_enable().
457 *
458 * void *padding
459 * (An unused variable inserted for alignment purposes only.)
460 *
461 * Global variable: const char *spx_errmsg[] - Status return messages
462 * --
463 * Error messages to match the status value returned from each function.
464 *
465 *===*/
466
467 #ifndef WCSLIB_SPEC
468 #define WCSLIB_SPEC
469
470 #ifdef __cplusplus
471 extern "C" {
472 #endif
473
474 extern const char *spx_errmsg[];
475
476 enum spx_errmsg {
477 SPXERR_SUCCESS = 0, // Success.
478 SPXERR_NULL_POINTER = 1, // Null spxprm pointer passed.
479 SPXERR_BAD_SPEC_PARAMS = 2, // Invalid spectral parameters.
480 SPXERR_BAD_SPEC_VAR = 3, // Invalid spectral variable.
481 SPXERR_BAD_INSPEC_COORD = 4 // One or more of the inspec coordinates were
482 // invalid.
483 };
484
485 struct spxprm {
486 double restfrq, restwav; // Rest frequency [Hz] and wavelength [m].
487
488 int wavetype, velotype; // True if wave/velocity types have been
489 // computed; types are defined below.
490
491 // Spectral variables computed by specx().

Generated by Doxygen

19.20 spx.h 245

492 //--
493 double freq, // wavetype: Frequency [Hz].
494 afrq, // wavetype: Angular frequency [rad/s].
495 ener, // wavetype: Photon energy [J].
496 wavn, // wavetype: Wave number [/m].
497 vrad, // velotype: Radio velocity [m/s].
498 wave, // wavetype: Vacuum wavelength [m].
499 vopt, // velotype: Optical velocity [m/s].
500 zopt, // velotype: Redshift.
501 awav, // wavetype: Air wavelength [m].
502 velo, // velotype: Relativistic velocity [m/s].
503 beta; // velotype: Relativistic beta.
504
505 // Derivatives of spectral variables computed by specx().
506 //--
507 double dfreqafrq, dafrqfreq, // Constant, always available.
508 dfreqener, denerfreq, // Constant, always available.
509 dfreqwavn, dwavnfreq, // Constant, always available.
510 dfreqvrad, dvradfreq, // wavetype && velotype.
511 dfreqwave, dwavefreq, // wavetype.
512 dfreqawav, dawavfreq, // wavetype.
513 dfreqvelo, dvelofreq, // wavetype && velotype.
514 dwavevopt, dvoptwave, // wavetype && velotype.
515 dwavezopt, dzoptwave, // wavetype && velotype.
516 dwaveawav, dawavwave, // wavetype.
517 dwavevelo, dvelowave, // wavetype && velotype.
518 dawavvelo, dveloawav, // wavetype && velotype.
519 dvelobeta, dbetavelo; // Constant, always available.
520
521 // Error handling
522 //--
523 struct wcserr *err;
524
525 // Private
526 //--
527 void *padding; // (Dummy inserted for alignment purposes.)
528 };
529
530 // Size of the spxprm struct in int units, used by the Fortran wrappers.
531 #define SPXLEN (sizeof(struct spxprm)/sizeof(int))
532
533
534 int specx(const char *type, double spec, double restfrq, double restwav,
535 struct spxprm *specs);
536
537 int spxperr(const struct spxprm *spx, const char *prefix);
538
539 // For use in declaring function prototypes, e.g. in spcprm.
540 #define SPX_ARGS double param, int nspec, int instep, int outstep, \
541 const double inspec[], double outspec[], int stat[]
542
543 int freqafrq(SPX_ARGS);
544 int afrqfreq(SPX_ARGS);
545
546 int freqener(SPX_ARGS);
547 int enerfreq(SPX_ARGS);
548
549 int freqwavn(SPX_ARGS);
550 int wavnfreq(SPX_ARGS);
551
552 int freqwave(SPX_ARGS);
553 int wavefreq(SPX_ARGS);
554
555 int freqawav(SPX_ARGS);
556 int awavfreq(SPX_ARGS);
557
558 int waveawav(SPX_ARGS);
559 int awavwave(SPX_ARGS);
560
561 int velobeta(SPX_ARGS);
562 int betavelo(SPX_ARGS);
563
564
565 int freqvelo(SPX_ARGS);
566 int velofreq(SPX_ARGS);
567
568 int freqvrad(SPX_ARGS);
569 int vradfreq(SPX_ARGS);
570
571
572 int wavevelo(SPX_ARGS);
573 int velowave(SPX_ARGS);
574
575 int awavvelo(SPX_ARGS);
576 int veloawav(SPX_ARGS);
577
578 int wavevopt(SPX_ARGS);

Generated by Doxygen

246

579 int voptwave(SPX_ARGS);
580
581 int wavezopt(SPX_ARGS);
582 int zoptwave(SPX_ARGS);
583
584
585 #ifdef __cplusplus
586 }
587 #endif
588
589 #endif // WCSLIB_SPEC

19.21 tab.h File Reference

Data Structures

• struct tabprm

Tabular transformation parameters.

Macros

• #define TABLEN (sizeof(struct tabprm)/sizeof(int))

Size of the tabprm struct in int units.

• #define tabini_errmsg tab_errmsg

Deprecated.

• #define tabcpy_errmsg tab_errmsg

Deprecated.

• #define tabfree_errmsg tab_errmsg

Deprecated.

• #define tabprt_errmsg tab_errmsg

Deprecated.

• #define tabset_errmsg tab_errmsg

Deprecated.

• #define tabx2s_errmsg tab_errmsg

Deprecated.

• #define tabs2x_errmsg tab_errmsg

Deprecated.

Enumerations

• enum tab_errmsg_enum {
TABERR_SUCCESS = 0 , TABERR_NULL_POINTER = 1 , TABERR_MEMORY = 2 , TABERR_BAD_PARAMS
= 3 ,
TABERR_BAD_X = 4 , TABERR_BAD_WORLD = 5 }

Generated by Doxygen

19.21 tab.h File Reference 247

Functions

• int tabini (int alloc, int M, const int K[], struct tabprm ∗tab)

Default constructor for the tabprm struct.
• int tabmem (struct tabprm ∗tab)

Acquire tabular memory.
• int tabcpy (int alloc, const struct tabprm ∗tabsrc, struct tabprm ∗tabdst)

Copy routine for the tabprm struct.
• int tabcmp (int cmp, double tol, const struct tabprm ∗tab1, const struct tabprm ∗tab2, int ∗equal)

Compare two tabprm structs for equality.
• int tabfree (struct tabprm ∗tab)

Destructor for the tabprm struct.
• int tabsize (const struct tabprm ∗tab, int size[2])

Compute the size of a tabprm struct.
• int tabprt (const struct tabprm ∗tab)

Print routine for the tabprm struct.
• int tabperr (const struct tabprm ∗tab, const char ∗prefix)

Print error messages from a tabprm struct.
• int tabset (struct tabprm ∗tab)

Setup routine for the tabprm struct.
• int tabx2s (struct tabprm ∗tab, int ncoord, int nelem, const double x[], double world[], int stat[])

Pixel-to-world transformation.
• int tabs2x (struct tabprm ∗tab, int ncoord, int nelem, const double world[], double x[], int stat[])

World-to-pixel transformation.

Variables

• const char ∗ tab_errmsg []

Status return messages.

19.21.1 Detailed Description

Routines in this suite implement the part of the FITS World Coordinate System (WCS) standard that deals with
tabular coordinates, i.e. coordinates that are defined via a lookup table, as described in
"Representations of world coordinates in FITS",
Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)
"Representations of spectral coordinates in FITS",
Greisen, E.W., Calabretta, M.R., Valdes, F.G., & Allen, S.L.
2006, A&A, 446, 747 (WCS Paper III)

These routines define methods to be used for computing tabular world coordinates from intermediate world coor-
dinates (a linear transformation of image pixel coordinates), and vice versa. They are based on the tabprm struct
which contains all information needed for the computations. The struct contains some members that must be set by
the user, and others that are maintained by these routines, somewhat like a C++ class but with no encapsulation.

tabini(), tabmem(), tabcpy(), and tabfree() are provided to manage the tabprm struct, tabsize() computes its total
size including allocated memory, and tabprt() prints its contents.

tabperr() prints the error message(s) (if any) stored in a tabprm struct.

A setup routine, tabset(), computes intermediate values in the tabprm struct from parameters in it that were supplied
by the user. The struct always needs to be set up by tabset() but it need not be called explicitly - refer to the
explanation of tabprm::flag.

tabx2s() and tabs2x() implement the WCS tabular coordinate transformations.

Accuracy:
No warranty is given for the accuracy of these routines (refer to the copyright notice); intending users must satisfy
for themselves their adequacy for the intended purpose. However, closure effectively to within double precision
rounding error was demonstrated by test routine ttab.c which accompanies this software.

Generated by Doxygen

248

19.21.2 Macro Definition Documentation

19.21.2.1 TABLEN #define TABLEN (sizeof(struct tabprm)/sizeof(int))

Size of the tabprm struct in int units, used by the Fortran wrappers.

19.21.2.2 tabini_errmsg #define tabini_errmsg tab_errmsg

Deprecated Added for backwards compatibility, use tab_errmsg directly now instead.

19.21.2.3 tabcpy_errmsg #define tabcpy_errmsg tab_errmsg

Deprecated Added for backwards compatibility, use tab_errmsg directly now instead.

19.21.2.4 tabfree_errmsg #define tabfree_errmsg tab_errmsg

Deprecated Added for backwards compatibility, use tab_errmsg directly now instead.

19.21.2.5 tabprt_errmsg #define tabprt_errmsg tab_errmsg

Deprecated Added for backwards compatibility, use tab_errmsg directly now instead.

19.21.2.6 tabset_errmsg #define tabset_errmsg tab_errmsg

Deprecated Added for backwards compatibility, use tab_errmsg directly now instead.

19.21.2.7 tabx2s_errmsg #define tabx2s_errmsg tab_errmsg

Deprecated Added for backwards compatibility, use tab_errmsg directly now instead.

19.21.2.8 tabs2x_errmsg #define tabs2x_errmsg tab_errmsg

Deprecated Added for backwards compatibility, use tab_errmsg directly now instead.

19.21.3 Enumeration Type Documentation

19.21.3.1 tab_errmsg_enum enum tab_errmsg_enum

Generated by Doxygen

19.21 tab.h File Reference 249

Enumerator

TABERR_SUCCESS
TABERR_NULL_POINTER

TABERR_MEMORY
TABERR_BAD_PARAMS

TABERR_BAD_X
TABERR_BAD_WORLD

19.21.4 Function Documentation

19.21.4.1 tabini() int tabini (

int alloc,

int M,

const int K[],

struct tabprm ∗ tab)

tabini() allocates memory for arrays in a tabprm struct and sets all members of the struct to default values.

PLEASE NOTE: every tabprm struct should be initialized by tabini(), possibly repeatedly. On the first invokation,
and only the first invokation, the flag member of the tabprm struct must be set to -1 to initialize memory management,
regardless of whether tabini() will actually be used to allocate memory.

Parameters

in alloc If true, allocate memory unconditionally for arrays in the tabprm struct.
If false, it is assumed that pointers to these arrays have been set by the user except if they
are null pointers in which case memory will be allocated for them regardless. (In other
words, setting alloc true saves having to initalize these pointers to zero.)

in M The number of tabular coordinate axes.

in K Vector of length M whose elements (K1,K2, ...KM) record the lengths of the axes of the
coordinate array and of each indexing vector. M and K[] are used to determine the length
of the various tabprm arrays and therefore the amount of memory to allocate for them.
Their values are copied into the tabprm struct.
It is permissible to set K (i.e. the address of the array) to zero which has the same effect
as setting each element of K[] to zero. In this case no memory will be allocated for the
index vectors or coordinate array in the tabprm struct. These together with the K vector
must be set separately before calling tabset().

in,out tab Tabular transformation parameters. Note that, in order to initialize memory management
tabprm::flag should be set to -1 when tab is initialized for the first time (memory leaks may
result if it had already been initialized).

Returns

Status return value:

• 0: Success.

• 1: Null tabprm pointer passed.

• 2: Memory allocation failed.

Generated by Doxygen

250

• 3: Invalid tabular parameters.

For returns > 1, a detailed error message is set in tabprm::err if enabled, see wcserr_enable().

19.21.4.2 tabmem() int tabmem (

struct tabprm ∗ tab)

tabmem() takes control of memory allocated by the user for arrays in the tabprm struct.

Parameters

in,out tab Tabular transformation parameters.

Returns

Status return value:

• 0: Success.

• 1: Null tabprm pointer passed.

• 2: Memory allocation failed.

For returns > 1, a detailed error message is set in tabprm::err if enabled, see wcserr_enable().

19.21.4.3 tabcpy() int tabcpy (

int alloc,

const struct tabprm ∗ tabsrc,

struct tabprm ∗ tabdst)

tabcpy() does a deep copy of one tabprm struct to another, using tabini() to allocate memory for its arrays if required.
Only the "information to be provided" part of the struct is copied; a call to tabset() is required to set up the remainder.

Parameters

in alloc If true, allocate memory unconditionally for arrays in the tabprm struct.
If false, it is assumed that pointers to these arrays have been set by the user except if
they are null pointers in which case memory will be allocated for them regardless. (In
other words, setting alloc true saves having to initalize these pointers to zero.)

in tabsrc Struct to copy from.

in,out tabdst Struct to copy to. tabprm::flag should be set to -1 if tabdst was not previously initialized
(memory leaks may result if it was previously initialized).

Returns

Status return value:

• 0: Success.

• 1: Null tabprm pointer passed.

Generated by Doxygen

19.21 tab.h File Reference 251

• 2: Memory allocation failed.

For returns > 1, a detailed error message is set in tabprm::err (associated with tabdst) if enabled, see
wcserr_enable().

19.21.4.4 tabcmp() int tabcmp (

int cmp,

double tol,

const struct tabprm ∗ tab1,

const struct tabprm ∗ tab2,

int ∗ equal)

tabcmp() compares two tabprm structs for equality.

Parameters

in cmp A bit field controlling the strictness of the comparison. At present, this value must always be
0, indicating a strict comparison. In the future, other options may be added.

in tol Tolerance for comparison of floating-point values. For example, for tol == 1e-6, all
floating-point values in the structs must be equal to the first 6 decimal places. A value of 0
implies exact equality.

in tab1 The first tabprm struct to compare.

in tab2 The second tabprm struct to compare.

out equal Non-zero when the given structs are equal.

Returns

Status return value:

• 0: Success.

• 1: Null pointer passed.

19.21.4.5 tabfree() int tabfree (

struct tabprm ∗ tab)

tabfree() frees memory allocated for the tabprm arrays by tabini(). tabini() records the memory it allocates and
tabfree() will only attempt to free this.

PLEASE NOTE: tabfree() must not be invoked on a tabprm struct that was not initialized by tabini().

Parameters

out tab Coordinate transformation parameters.

Returns

Status return value:

Generated by Doxygen

252

• 0: Success.

• 1: Null tabprm pointer passed.

19.21.4.6 tabsize() int tabsize (

const struct tabprm ∗ tab,

int size[2])

tabsize() computes the full size of a tabprm struct, including allocated memory.

Parameters

in tab Tabular transformation parameters.
If NULL, the base size of the struct and the allocated size are both set to zero.

out sizes The first element is the base size of the struct as returned by sizeof(struct tabprm). The
second element is the total allocated size, in bytes, assuming that the allocation was done by
tabini(). This figure includes memory allocated for the constituent struct, tabprm::err.
It is not an error for the struct not to have been set up via tabset(), which normally results in
additional memory allocation.

Returns

Status return value:

• 0: Success.

19.21.4.7 tabprt() int tabprt (

const struct tabprm ∗ tab)

tabprt() prints the contents of a tabprm struct using wcsprintf(). Mainly intended for diagnostic purposes.

Parameters

in tab Tabular transformation parameters.

Returns

Status return value:

• 0: Success.

• 1: Null tabprm pointer passed.

19.21.4.8 tabperr() int tabperr (

const struct tabprm ∗ tab,

const char ∗ prefix)

Generated by Doxygen

19.21 tab.h File Reference 253

tabperr() prints the error message(s) (if any) stored in a tabprm struct. If there are no errors then nothing is printed.
It uses wcserr_prt(), q.v.

Generated by Doxygen

254

Parameters

in tab Tabular transformation parameters.

in prefix If non-NULL, each output line will be prefixed with this string.

Returns

Status return value:

• 0: Success.

• 1: Null tabprm pointer passed.

19.21.4.9 tabset() int tabset (

struct tabprm ∗ tab)

tabset() allocates memory for work arrays in the tabprm struct and sets up the struct according to information
supplied within it.

Note that this routine need not be called directly; it will be invoked by tabx2s() and tabs2x() if tabprm::flag is anything
other than a predefined magic value.

Parameters

in,out tab Tabular transformation parameters.

Returns

Status return value:

• 0: Success.

• 1: Null tabprm pointer passed.

• 3: Invalid tabular parameters.

For returns > 1, a detailed error message is set in tabprm::err if enabled, see wcserr_enable().

19.21.4.10 tabx2s() int tabx2s (

struct tabprm ∗ tab,

int ncoord,

int nelem,

const double x[],

double world[],

int stat[])

tabx2s() transforms intermediate world coordinates to world coordinates using coordinate lookup.

Generated by Doxygen

19.21 tab.h File Reference 255

Parameters

in,out tab Tabular transformation parameters.

in ncoord,nelem The number of coordinates, each of vector length nelem.

in x Array of intermediate world coordinates, SI units.

out world Array of world coordinates, in SI units.

out stat Status return value status for each coordinate:

• 0: Success.

• 1: Invalid intermediate world coordinate.

Returns

Status return value:

• 0: Success.

• 1: Null tabprm pointer passed.

• 3: Invalid tabular parameters.

• 4: One or more of the x coordinates were invalid, as indicated by the stat vector.

For returns > 1, a detailed error message is set in tabprm::err if enabled, see wcserr_enable().

19.21.4.11 tabs2x() int tabs2x (

struct tabprm ∗ tab,

int ncoord,

int nelem,

const double world[],

double x[],

int stat[])

tabs2x() transforms world coordinates to intermediate world coordinates.

Parameters

in,out tab Tabular transformation parameters.

in ncoord,nelem The number of coordinates, each of vector length nelem.

in world Array of world coordinates, in SI units.

out x Array of intermediate world coordinates, SI units.

out stat Status return value status for each vector element:

• 0: Success.

• 1: Invalid world coordinate.

Returns

Status return value:

• 0: Success.

Generated by Doxygen

256

• 1: Null tabprm pointer passed.

• 3: Invalid tabular parameters.

• 5: One or more of the world coordinates were invalid, as indicated by the stat vector.

For returns > 1, a detailed error message is set in tabprm::err if enabled, see wcserr_enable().

19.21.5 Variable Documentation

19.21.5.1 tab_errmsg const char ∗ tab_errmsg[] [extern]

Error messages to match the status value returned from each function.

19.22 tab.h

Go to the documentation of this file.
1 /*==
2 WCSLIB 7.11 - an implementation of the FITS WCS standard.
3 Copyright (C) 1995-2022, Mark Calabretta
4
5 This file is part of WCSLIB.
6
7 WCSLIB is free software: you can redistribute it and/or modify it under the
8 terms of the GNU Lesser General Public License as published by the Free
9 Software Foundation, either version 3 of the License, or (at your option)
10 any later version.
11
12 WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
15 more details.
16
17 You should have received a copy of the GNU Lesser General Public License
18 along with WCSLIB. If not, see http://www.gnu.org/licenses.
19
20 Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
21 http://www.atnf.csiro.au/people/Mark.Calabretta
22 $Id: tab.h,v 7.11 2022/04/26 06:13:52 mcalabre Exp $
23 *===
24 *
25 * WCSLIB 7.11 - C routines that implement the FITS World Coordinate System
26 * (WCS) standard. Refer to the README file provided with WCSLIB for an
27 * overview of the library.
28 *
29 *
30 * Summary of the tab routines
31 * ---------------------------
32 * Routines in this suite implement the part of the FITS World Coordinate
33 * System (WCS) standard that deals with tabular coordinates, i.e. coordinates
34 * that are defined via a lookup table, as described in
35 *
36 = "Representations of world coordinates in FITS",
37 = Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)
38 =
39 = "Representations of spectral coordinates in FITS",
40 = Greisen, E.W., Calabretta, M.R., Valdes, F.G., & Allen, S.L.
41 = 2006, A&A, 446, 747 (WCS Paper III)
42 *
43 * These routines define methods to be used for computing tabular world
44 * coordinates from intermediate world coordinates (a linear transformation
45 * of image pixel coordinates), and vice versa. They are based on the tabprm
46 * struct which contains all information needed for the computations. The
47 * struct contains some members that must be set by the user, and others that
48 * are maintained by these routines, somewhat like a C++ class but with no
49 * encapsulation.
50 *
51 * tabini(), tabmem(), tabcpy(), and tabfree() are provided to manage the
52 * tabprm struct, tabsize() computes its total size including allocated memory,
53 * and tabprt() prints its contents.
54 *

Generated by Doxygen

19.22 tab.h 257

55 * tabperr() prints the error message(s) (if any) stored in a tabprm struct.
56 *
57 * A setup routine, tabset(), computes intermediate values in the tabprm struct
58 * from parameters in it that were supplied by the user. The struct always
59 * needs to be set up by tabset() but it need not be called explicitly - refer
60 * to the explanation of tabprm::flag.
61 *
62 * tabx2s() and tabs2x() implement the WCS tabular coordinate transformations.
63 *
64 * Accuracy:
65 * ---------
66 * No warranty is given for the accuracy of these routines (refer to the
67 * copyright notice); intending users must satisfy for themselves their
68 * adequacy for the intended purpose. However, closure effectively to within
69 * double precision rounding error was demonstrated by test routine ttab.c
70 * which accompanies this software.
71 *
72 *
73 * tabini() - Default constructor for the tabprm struct
74 * --
75 * tabini() allocates memory for arrays in a tabprm struct and sets all members
76 * of the struct to default values.
77 *
78 * PLEASE NOTE: every tabprm struct should be initialized by tabini(), possibly
79 * repeatedly. On the first invokation, and only the first invokation, the
80 * flag member of the tabprm struct must be set to -1 to initialize memory
81 * management, regardless of whether tabini() will actually be used to allocate
82 * memory.
83 *
84 * Given:
85 * alloc int If true, allocate memory unconditionally for arrays in
86 * the tabprm struct.
87 *
88 * If false, it is assumed that pointers to these arrays
89 * have been set by the user except if they are null
90 * pointers in which case memory will be allocated for
91 * them regardless. (In other words, setting alloc true
92 * saves having to initalize these pointers to zero.)
93 *
94 * M int The number of tabular coordinate axes.
95 *
96 * K const int[]
97 * Vector of length M whose elements (K_1, K_2,... K_M)
98 * record the lengths of the axes of the coordinate array
99 * and of each indexing vector. M and K[] are used to
100 * determine the length of the various tabprm arrays and
101 * therefore the amount of memory to allocate for them.
102 * Their values are copied into the tabprm struct.
103 *
104 * It is permissible to set K (i.e. the address of the
105 * array) to zero which has the same effect as setting
106 * each element of K[] to zero. In this case no memory
107 * will be allocated for the index vectors or coordinate
108 * array in the tabprm struct. These together with the
109 * K vector must be set separately before calling
110 * tabset().
111 *
112 * Given and returned:
113 * tab struct tabprm*
114 * Tabular transformation parameters. Note that, in
115 * order to initialize memory management tabprm::flag
116 * should be set to -1 when tab is initialized for the
117 * first time (memory leaks may result if it had already
118 * been initialized).
119 *
120 * Function return value:
121 * int Status return value:
122 * 0: Success.
123 * 1: Null tabprm pointer passed.
124 * 2: Memory allocation failed.
125 * 3: Invalid tabular parameters.
126 *
127 * For returns > 1, a detailed error message is set in
128 * tabprm::err if enabled, see wcserr_enable().
129 *
130 *
131 * tabmem() - Acquire tabular memory
132 * ---------------------------------
133 * tabmem() takes control of memory allocated by the user for arrays in the
134 * tabprm struct.
135 *
136 * Given and returned:
137 * tab struct tabprm*
138 * Tabular transformation parameters.
139 *
140 * Function return value:
141 * int Status return value:

Generated by Doxygen

258

142 * 0: Success.
143 * 1: Null tabprm pointer passed.
144 * 2: Memory allocation failed.
145 *
146 * For returns > 1, a detailed error message is set in
147 * tabprm::err if enabled, see wcserr_enable().
148 *
149 *
150 * tabcpy() - Copy routine for the tabprm struct
151 * ---
152 * tabcpy() does a deep copy of one tabprm struct to another, using tabini() to
153 * allocate memory for its arrays if required. Only the "information to be
154 * provided" part of the struct is copied; a call to tabset() is required to
155 * set up the remainder.
156 *
157 * Given:
158 * alloc int If true, allocate memory unconditionally for arrays in
159 * the tabprm struct.
160 *
161 * If false, it is assumed that pointers to these arrays
162 * have been set by the user except if they are null
163 * pointers in which case memory will be allocated for
164 * them regardless. (In other words, setting alloc true
165 * saves having to initalize these pointers to zero.)
166 *
167 * tabsrc const struct tabprm*
168 * Struct to copy from.
169 *
170 * Given and returned:
171 * tabdst struct tabprm*
172 * Struct to copy to. tabprm::flag should be set to -1
173 * if tabdst was not previously initialized (memory leaks
174 * may result if it was previously initialized).
175 *
176 * Function return value:
177 * int Status return value:
178 * 0: Success.
179 * 1: Null tabprm pointer passed.
180 * 2: Memory allocation failed.
181 *
182 * For returns > 1, a detailed error message is set in
183 * tabprm::err (associated with tabdst) if enabled, see
184 * wcserr_enable().
185 *
186 *
187 * tabcmp() - Compare two tabprm structs for equality
188 * --
189 * tabcmp() compares two tabprm structs for equality.
190 *
191 * Given:
192 * cmp int A bit field controlling the strictness of the
193 * comparison. At present, this value must always be 0,
194 * indicating a strict comparison. In the future, other
195 * options may be added.
196 *
197 * tol double Tolerance for comparison of floating-point values.
198 * For example, for tol == 1e-6, all floating-point
199 * values in the structs must be equal to the first 6
200 * decimal places. A value of 0 implies exact equality.
201 *
202 * tab1 const struct tabprm*
203 * The first tabprm struct to compare.
204 *
205 * tab2 const struct tabprm*
206 * The second tabprm struct to compare.
207 *
208 * Returned:
209 * equal int* Non-zero when the given structs are equal.
210 *
211 * Function return value:
212 * int Status return value:
213 * 0: Success.
214 * 1: Null pointer passed.
215 *
216 *
217 * tabfree() - Destructor for the tabprm struct
218 * --
219 * tabfree() frees memory allocated for the tabprm arrays by tabini().
220 * tabini() records the memory it allocates and tabfree() will only attempt to
221 * free this.
222 *
223 * PLEASE NOTE: tabfree() must not be invoked on a tabprm struct that was not
224 * initialized by tabini().
225 *
226 * Returned:
227 * tab struct tabprm*
228 * Coordinate transformation parameters.

Generated by Doxygen

19.22 tab.h 259

229 *
230 * Function return value:
231 * int Status return value:
232 * 0: Success.
233 * 1: Null tabprm pointer passed.
234 *
235 *
236 * tabsize() - Compute the size of a tabprm struct
237 * ---
238 * tabsize() computes the full size of a tabprm struct, including allocated
239 * memory.
240 *
241 * Given:
242 * tab const struct tabprm*
243 * Tabular transformation parameters.
244 *
245 * If NULL, the base size of the struct and the allocated
246 * size are both set to zero.
247 *
248 * Returned:
249 * sizes int[2] The first element is the base size of the struct as
250 * returned by sizeof(struct tabprm). The second element
251 * is the total allocated size, in bytes, assuming that
252 * the allocation was done by tabini(). This figure
253 * includes memory allocated for the constituent struct,
254 * tabprm::err.
255 *
256 * It is not an error for the struct not to have been set
257 * up via tabset(), which normally results in additional
258 * memory allocation.
259 *
260 * Function return value:
261 * int Status return value:
262 * 0: Success.
263 *
264 *
265 * tabprt() - Print routine for the tabprm struct
266 * --
267 * tabprt() prints the contents of a tabprm struct using wcsprintf(). Mainly
268 * intended for diagnostic purposes.
269 *
270 * Given:
271 * tab const struct tabprm*
272 * Tabular transformation parameters.
273 *
274 * Function return value:
275 * int Status return value:
276 * 0: Success.
277 * 1: Null tabprm pointer passed.
278 *
279 *
280 * tabperr() - Print error messages from a tabprm struct
281 * ---
282 * tabperr() prints the error message(s) (if any) stored in a tabprm struct.
283 * If there are no errors then nothing is printed. It uses wcserr_prt(), q.v.
284 *
285 * Given:
286 * tab const struct tabprm*
287 * Tabular transformation parameters.
288 *
289 * prefix const char *
290 * If non-NULL, each output line will be prefixed with
291 * this string.
292 *
293 * Function return value:
294 * int Status return value:
295 * 0: Success.
296 * 1: Null tabprm pointer passed.
297 *
298 *
299 * tabset() - Setup routine for the tabprm struct
300 * ---
301 * tabset() allocates memory for work arrays in the tabprm struct and sets up
302 * the struct according to information supplied within it.
303 *
304 * Note that this routine need not be called directly; it will be invoked by
305 * tabx2s() and tabs2x() if tabprm::flag is anything other than a predefined
306 * magic value.
307 *
308 * Given and returned:
309 * tab struct tabprm*
310 * Tabular transformation parameters.
311 *
312 * Function return value:
313 * int Status return value:
314 * 0: Success.
315 * 1: Null tabprm pointer passed.

Generated by Doxygen

260

316 * 3: Invalid tabular parameters.
317 *
318 * For returns > 1, a detailed error message is set in
319 * tabprm::err if enabled, see wcserr_enable().
320 *
321 *
322 * tabx2s() - Pixel-to-world transformation
323 * --
324 * tabx2s() transforms intermediate world coordinates to world coordinates
325 * using coordinate lookup.
326 *
327 * Given and returned:
328 * tab struct tabprm*
329 * Tabular transformation parameters.
330 *
331 * Given:
332 * ncoord,
333 * nelem int The number of coordinates, each of vector length
334 * nelem.
335 *
336 * x const double[ncoord][nelem]
337 * Array of intermediate world coordinates, SI units.
338 *
339 * Returned:
340 * world double[ncoord][nelem]
341 * Array of world coordinates, in SI units.
342 *
343 * stat int[ncoord]
344 * Status return value status for each coordinate:
345 * 0: Success.
346 * 1: Invalid intermediate world coordinate.
347 *
348 * Function return value:
349 * int Status return value:
350 * 0: Success.
351 * 1: Null tabprm pointer passed.
352 * 3: Invalid tabular parameters.
353 * 4: One or more of the x coordinates were invalid,
354 * as indicated by the stat vector.
355 *
356 * For returns > 1, a detailed error message is set in
357 * tabprm::err if enabled, see wcserr_enable().
358 *
359 *
360 * tabs2x() - World-to-pixel transformation
361 * --
362 * tabs2x() transforms world coordinates to intermediate world coordinates.
363 *
364 * Given and returned:
365 * tab struct tabprm*
366 * Tabular transformation parameters.
367 *
368 * Given:
369 * ncoord,
370 * nelem int The number of coordinates, each of vector length
371 * nelem.
372 * world const double[ncoord][nelem]
373 * Array of world coordinates, in SI units.
374 *
375 * Returned:
376 * x double[ncoord][nelem]
377 * Array of intermediate world coordinates, SI units.
378 * stat int[ncoord]
379 * Status return value status for each vector element:
380 * 0: Success.
381 * 1: Invalid world coordinate.
382 *
383 * Function return value:
384 * int Status return value:
385 * 0: Success.
386 * 1: Null tabprm pointer passed.
387 * 3: Invalid tabular parameters.
388 * 5: One or more of the world coordinates were
389 * invalid, as indicated by the stat vector.
390 *
391 * For returns > 1, a detailed error message is set in
392 * tabprm::err if enabled, see wcserr_enable().
393 *
394 *
395 * tabprm struct - Tabular transformation parameters
396 * ---
397 * The tabprm struct contains information required to transform tabular
398 * coordinates. It consists of certain members that must be set by the user
399 * ("given") and others that are set by the WCSLIB routines ("returned"). Some
400 * of the latter are supplied for informational purposes while others are for
401 * internal use only.
402 *

Generated by Doxygen

19.22 tab.h 261

403 * int flag
404 * (Given and returned) This flag must be set to zero whenever any of the
405 * following tabprm structure members are set or changed:
406 *
407 * - tabprm::M (q.v., not normally set by the user),
408 * - tabprm::K (q.v., not normally set by the user),
409 * - tabprm::map,
410 * - tabprm::crval,
411 * - tabprm::index,
412 * - tabprm::coord.
413 *
414 * This signals the initialization routine, tabset(), to recompute the
415 * returned members of the tabprm struct. tabset() will reset flag to
416 * indicate that this has been done.
417 *
418 * PLEASE NOTE: flag should be set to -1 when tabini() is called for the
419 * first time for a particular tabprm struct in order to initialize memory
420 * management. It must ONLY be used on the first initialization otherwise
421 * memory leaks may result.
422 *
423 * int M
424 * (Given or returned) Number of tabular coordinate axes.
425 *
426 * If tabini() is used to initialize the tabprm struct (as would normally
427 * be the case) then it will set M from the value passed to it as a
428 * function argument. The user should not subsequently modify it.
429 *
430 * int *K
431 * (Given or returned) Pointer to the first element of a vector of length
432 * tabprm::M whose elements (K_1, K_2,... K_M) record the lengths of the
433 * axes of the coordinate array and of each indexing vector.
434 *
435 * If tabini() is used to initialize the tabprm struct (as would normally
436 * be the case) then it will set K from the array passed to it as a
437 * function argument. The user should not subsequently modify it.
438 *
439 * int *map
440 * (Given) Pointer to the first element of a vector of length tabprm::M
441 * that defines the association between axis m in the M-dimensional
442 * coordinate array (1 <= m <= M) and the indices of the intermediate world
443 * coordinate and world coordinate arrays, x[] and world[], in the argument
444 * lists for tabx2s() and tabs2x().
445 *
446 * When x[] and world[] contain the full complement of coordinate elements
447 * in image-order, as will usually be the case, then map[m-1] == i-1 for
448 * axis i in the N-dimensional image (1 <= i <= N). In terms of the FITS
449 * keywords
450 *
451 * map[PVi_3a - 1] == i - 1.
452 *
453 * However, a different association may result if x[], for example, only
454 * contains a (relevant) subset of intermediate world coordinate elements.
455 * For example, if M == 1 for an image with N > 1, it is possible to fill
456 * x[] with the relevant coordinate element with nelem set to 1. In this
457 * case map[0] = 0 regardless of the value of i.
458 *
459 * double *crval
460 * (Given) Pointer to the first element of a vector of length tabprm::M
461 * whose elements contain the index value for the reference pixel for each
462 * of the tabular coordinate axes.
463 *
464 * double **index
465 * (Given) Pointer to the first element of a vector of length tabprm::M of
466 * pointers to vectors of lengths (K_1, K_2,... K_M) of 0-relative indexes
467 * (see tabprm::K).
468 *
469 * The address of any or all of these index vectors may be set to zero,
470 * i.e.
471 *
472 = index[m] == 0;
473 *
474 * this is interpreted as default indexing, i.e.
475 *
476 = index[m][k] = k;
477 *
478 * double *coord
479 * (Given) Pointer to the first element of the tabular coordinate array,
480 * treated as though it were defined as
481 *
482 = double coord[K_M]...[K_2][K_1][M];
483 *
484 * (see tabprm::K) i.e. with the M dimension varying fastest so that the
485 * M elements of a coordinate vector are stored contiguously in memory.
486 *
487 * int nc
488 * (Returned) Total number of coordinate vectors in the coordinate array
489 * being the product K_1 * K_2 * ... * K_M (see tabprm::K).

Generated by Doxygen

262

490 *
491 * int padding
492 * (An unused variable inserted for alignment purposes only.)
493 *
494 * int *sense
495 * (Returned) Pointer to the first element of a vector of length tabprm::M
496 * whose elements indicate whether the corresponding indexing vector is
497 * monotonic increasing (+1), or decreasing (-1).
498 *
499 * int *p0
500 * (Returned) Pointer to the first element of a vector of length tabprm::M
501 * of interpolated indices into the coordinate array such that Upsilon_m,
502 * as defined in Paper III, is equal to (p0[m] + 1) + tabprm::delta[m].
503 *
504 * double *delta
505 * (Returned) Pointer to the first element of a vector of length tabprm::M
506 * of interpolated indices into the coordinate array such that Upsilon_m,
507 * as defined in Paper III, is equal to (tabprm::p0[m] + 1) + delta[m].
508 *
509 * double *extrema
510 * (Returned) Pointer to the first element of an array that records the
511 * minimum and maximum value of each element of the coordinate vector in
512 * each row of the coordinate array, treated as though it were defined as
513 *
514 = double extrema[K_M]...[K_2][2][M]
515 *
516 * (see tabprm::K). The minimum is recorded in the first element of the
517 * compressed K_1 dimension, then the maximum. This array is used by the
518 * inverse table lookup function, tabs2x(), to speed up table searches.
519 *
520 * struct wcserr *err
521 * (Returned) If enabled, when an error status is returned, this struct
522 * contains detailed information about the error, see wcserr_enable().
523 *
524 * int m_flag
525 * (For internal use only.)
526 * int m_M
527 * (For internal use only.)
528 * int m_N
529 * (For internal use only.)
530 * int set_M
531 * (For internal use only.)
532 * int m_K
533 * (For internal use only.)
534 * int m_map
535 * (For internal use only.)
536 * int m_crval
537 * (For internal use only.)
538 * int m_index
539 * (For internal use only.)
540 * int m_indxs
541 * (For internal use only.)
542 * int m_coord
543 * (For internal use only.)
544 *
545 *
546 * Global variable: const char *tab_errmsg[] - Status return messages
547 * --
548 * Error messages to match the status value returned from each function.
549 *
550 *===*/
551
552 #ifndef WCSLIB_TAB
553 #define WCSLIB_TAB
554
555 #ifdef __cplusplus
556 extern "C" {
557 #endif
558
559
560 extern const char *tab_errmsg[];
561
562 enum tab_errmsg_enum {
563 TABERR_SUCCESS = 0, // Success.
564 TABERR_NULL_POINTER = 1, // Null tabprm pointer passed.
565 TABERR_MEMORY = 2, // Memory allocation failed.
566 TABERR_BAD_PARAMS = 3, // Invalid tabular parameters.
567 TABERR_BAD_X = 4, // One or more of the x coordinates were
568 // invalid.
569 TABERR_BAD_WORLD = 5 // One or more of the world coordinates were
570 // invalid.
571 };
572
573 struct tabprm {
574 // Initialization flag (see the prologue above).
575 //--
576 int flag; // Set to zero to force initialization.

Generated by Doxygen

19.22 tab.h 263

577
578 // Parameters to be provided (see the prologue above).
579 //--
580 int M; // Number of tabular coordinate axes.
581 int *K; // Vector of length M whose elements
582 // (K_1, K_2,... K_M) record the lengths of
583 // the axes of the coordinate array and of
584 // each indexing vector.
585 int *map; // Vector of length M usually such that
586 // map[m-1] == i-1 for coordinate array
587 // axis m and image axis i (see above).
588 double *crval; // Vector of length M containing the index
589 // value for the reference pixel for each
590 // of the tabular coordinate axes.
591 double **index; // Vector of pointers to M indexing vectors
592 // of lengths (K_1, K_2,... K_M).
593 double *coord; // (1+M)-dimensional tabular coordinate
594 // array (see above).
595
596 // Information derived from the parameters supplied.
597 //--
598 int nc; // Number of coordinate vectors (of length
599 // M) in the coordinate array.
600 int padding; // (Dummy inserted for alignment purposes.)
601 int *sense; // Vector of M flags that indicate whether
602 // the Mth indexing vector is monotonic
603 // increasing, or else decreasing.
604 int *p0; // Vector of M indices.
605 double *delta; // Vector of M increments.
606 double *extrema; // (1+M)-dimensional array of coordinate
607 // extrema.
608
609 // Error handling
610 //--
611 struct wcserr *err;
612
613 // Private - the remainder are for memory management.
614 //--
615 int m_flag, m_M, m_N;
616 int set_M;
617 int *m_K, *m_map;
618 double *m_crval, **m_index, **m_indxs, *m_coord;
619 };
620
621 // Size of the tabprm struct in int units, used by the Fortran wrappers.
622 #define TABLEN (sizeof(struct tabprm)/sizeof(int))
623
624
625 int tabini(int alloc, int M, const int K[], struct tabprm *tab);
626
627 int tabmem(struct tabprm *tab);
628
629 int tabcpy(int alloc, const struct tabprm *tabsrc, struct tabprm *tabdst);
630
631 int tabcmp(int cmp, double tol, const struct tabprm *tab1,
632 const struct tabprm *tab2, int *equal);
633
634 int tabfree(struct tabprm *tab);
635
636 int tabsize(const struct tabprm *tab, int size[2]);
637
638 int tabprt(const struct tabprm *tab);
639
640 int tabperr(const struct tabprm *tab, const char *prefix);
641
642 int tabset(struct tabprm *tab);
643
644 int tabx2s(struct tabprm *tab, int ncoord, int nelem, const double x[],
645 double world[], int stat[]);
646
647 int tabs2x(struct tabprm *tab, int ncoord, int nelem, const double world[],
648 double x[], int stat[]);
649
650
651 // Deprecated.
652 #define tabini_errmsg tab_errmsg
653 #define tabcpy_errmsg tab_errmsg
654 #define tabfree_errmsg tab_errmsg
655 #define tabprt_errmsg tab_errmsg
656 #define tabset_errmsg tab_errmsg
657 #define tabx2s_errmsg tab_errmsg
658 #define tabs2x_errmsg tab_errmsg
659
660 #ifdef __cplusplus
661 }
662 #endif
663

Generated by Doxygen

264

664 #endif // WCSLIB_TAB

19.23 wcs.h File Reference

#include "lin.h"
#include "cel.h"
#include "spc.h"

Data Structures

• struct pvcard

Store for PVi_ma keyrecords.

• struct pscard

Store for PSi_ma keyrecords.

• struct auxprm

Additional auxiliary parameters.

• struct wcsprm

Coordinate transformation parameters.

Macros

• #define WCSSUB_LONGITUDE 0x1001

Mask for extraction of longitude axis by wcssub().

• #define WCSSUB_LATITUDE 0x1002

Mask for extraction of latitude axis by wcssub().

• #define WCSSUB_CUBEFACE 0x1004

Mask for extraction of CUBEFACE axis by wcssub().

• #define WCSSUB_CELESTIAL 0x1007

Mask for extraction of celestial axes by wcssub().

• #define WCSSUB_SPECTRAL 0x1008

Mask for extraction of spectral axis by wcssub().

• #define WCSSUB_STOKES 0x1010

Mask for extraction of STOKES axis by wcssub().

• #define WCSSUB_TIME 0x1020
• #define WCSCOMPARE_ANCILLARY 0x0001
• #define WCSCOMPARE_TILING 0x0002
• #define WCSCOMPARE_CRPIX 0x0004
• #define PVLEN (sizeof(struct pvcard)/sizeof(int))
• #define PSLEN (sizeof(struct pscard)/sizeof(int))
• #define AUXLEN (sizeof(struct auxprm)/sizeof(int))
• #define WCSLEN (sizeof(struct wcsprm)/sizeof(int))

Size of the wcsprm struct in int units.

• #define wcscopy(alloc, wcssrc, wcsdst) wcssub(alloc, wcssrc, 0x0, 0x0, wcsdst)

Copy routine for the wcsprm struct.

• #define wcsini_errmsg wcs_errmsg

Deprecated.

• #define wcssub_errmsg wcs_errmsg

Deprecated.

Generated by Doxygen

19.23 wcs.h File Reference 265

• #define wcscopy_errmsg wcs_errmsg

Deprecated.

• #define wcsfree_errmsg wcs_errmsg

Deprecated.

• #define wcsprt_errmsg wcs_errmsg

Deprecated.

• #define wcsset_errmsg wcs_errmsg

Deprecated.

• #define wcsp2s_errmsg wcs_errmsg

Deprecated.

• #define wcss2p_errmsg wcs_errmsg

Deprecated.

• #define wcsmix_errmsg wcs_errmsg

Deprecated.

Enumerations

• enum wcs_errmsg_enum {
WCSERR_SUCCESS = 0 , WCSERR_NULL_POINTER = 1 , WCSERR_MEMORY = 2 , WCSERR_SINGULAR_MTX
= 3 ,
WCSERR_BAD_CTYPE = 4 , WCSERR_BAD_PARAM = 5 , WCSERR_BAD_COORD_TRANS = 6 ,
WCSERR_ILL_COORD_TRANS = 7 ,
WCSERR_BAD_PIX = 8 , WCSERR_BAD_WORLD = 9 , WCSERR_BAD_WORLD_COORD = 10 ,
WCSERR_NO_SOLUTION = 11 ,
WCSERR_BAD_SUBIMAGE = 12 , WCSERR_NON_SEPARABLE = 13 , WCSERR_UNSET = 14 }

Functions

• int wcsnpv (int n)

Memory allocation for PVi_ma.

• int wcsnps (int n)

Memory allocation for PSi_ma.

• int wcsini (int alloc, int naxis, struct wcsprm ∗wcs)

Default constructor for the wcsprm struct.

• int wcsinit (int alloc, int naxis, struct wcsprm ∗wcs, int npvmax, int npsmax, int ndpmax)

Default constructor for the wcsprm struct.

• int wcsauxi (int alloc, struct wcsprm ∗wcs)

Default constructor for the auxprm struct.

• int wcssub (int alloc, const struct wcsprm ∗wcssrc, int ∗nsub, int axes[], struct wcsprm ∗wcsdst)

Subimage extraction routine for the wcsprm struct.

• int wcscompare (int cmp, double tol, const struct wcsprm ∗wcs1, const struct wcsprm ∗wcs2, int ∗equal)

Compare two wcsprm structs for equality.

• int wcsfree (struct wcsprm ∗wcs)

Destructor for the wcsprm struct.

• int wcstrim (struct wcsprm ∗wcs)

Free unused arrays in the wcsprm struct.

• int wcssize (const struct wcsprm ∗wcs, int sizes[2])

Compute the size of a wcsprm struct.

• int auxsize (const struct auxprm ∗aux, int sizes[2])

Compute the size of a auxprm struct.

Generated by Doxygen

266

• int wcsprt (const struct wcsprm ∗wcs)

Print routine for the wcsprm struct.

• int wcsperr (const struct wcsprm ∗wcs, const char ∗prefix)

Print error messages from a wcsprm struct.

• int wcsbchk (struct wcsprm ∗wcs, int bounds)

Enable/disable bounds checking.

• int wcsset (struct wcsprm ∗wcs)

Setup routine for the wcsprm struct.

• int wcsp2s (struct wcsprm ∗wcs, int ncoord, int nelem, const double pixcrd[], double imgcrd[], double phi[],
double theta[], double world[], int stat[])

Pixel-to-world transformation.

• int wcss2p (struct wcsprm ∗wcs, int ncoord, int nelem, const double world[], double phi[], double theta[],
double imgcrd[], double pixcrd[], int stat[])

World-to-pixel transformation.

• int wcsmix (struct wcsprm ∗wcs, int mixpix, int mixcel, const double vspan[2], double vstep, int viter, double
world[], double phi[], double theta[], double imgcrd[], double pixcrd[])

Hybrid coordinate transformation.

• int wcsccs (struct wcsprm ∗wcs, double lng2p1, double lat2p1, double lng1p2, const char ∗clng, const char
∗clat, const char ∗radesys, double equinox, const char ∗alt)

Change celestial coordinate system.

• int wcssptr (struct wcsprm ∗wcs, int ∗i, char ctype[9])

Spectral axis translation.

• const char ∗ wcslib_version (int vers[3])

Variables

• const char ∗ wcs_errmsg []

Status return messages.

19.23.1 Detailed Description

Routines in this suite implement the FITS World Coordinate System (WCS) standard which defines methods to be
used for computing world coordinates from image pixel coordinates, and vice versa. The standard, and proposed
extensions for handling distortions, are described in
"Representations of world coordinates in FITS",
Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)
"Representations of celestial coordinates in FITS",
Calabretta, M.R., & Greisen, E.W. 2002, A&A, 395, 1077 (WCS Paper II)
"Representations of spectral coordinates in FITS",
Greisen, E.W., Calabretta, M.R., Valdes, F.G., & Allen, S.L.
2006, A&A, 446, 747 (WCS Paper III)
"Representations of distortions in FITS world coordinate systems",
Calabretta, M.R. et al. (WCS Paper IV, draft dated 2004/04/22),
available from http://www.atnf.csiro.au/people/Mark.Calabretta
"Mapping on the HEALPix grid",
Calabretta, M.R., & Roukema, B.F. 2007, MNRAS, 381, 865 (WCS Paper V)
"Representing the ’Butterfly’ Projection in FITS -- Projection Code XPH",
Calabretta, M.R., & Lowe, S.R. 2013, PASA, 30, e050 (WCS Paper VI)
"Representations of time coordinates in FITS -
Time and relative dimension in space",
Rots, A.H., Bunclark, P.S., Calabretta, M.R., Allen, S.L.,
Manchester, R.N., & Thompson, W.T. 2015, A&A, 574, A36 (WCS Paper VII)

These routines are based on the wcsprm struct which contains all information needed for the computations. The
struct contains some members that must be set by the user, and others that are maintained by these routines,
somewhat like a C++ class but with no encapsulation.

wcsnpv(), wcsnps(), wcsini(), wcsinit(), wcssub(), wcsfree(), and wcstrim(), are provided to manage the wcsprm
struct, wcssize() computes its total size including allocated memory, and wcsprt() prints its contents. Refer to the

Generated by Doxygen

19.23 wcs.h File Reference 267

description of the wcsprm struct for an explanation of the anticipated usage of these routines. wcscopy(), which does
a deep copy of one wcsprm struct to another, is defined as a preprocessor macro function that invokes wcssub().

wcsperr() prints the error message(s) (if any) stored in a wcsprm struct, and the linprm, celprm, prjprm, spcprm,
and tabprm structs that it contains.

A setup routine, wcsset(), computes intermediate values in the wcsprm struct from parameters in it that were
supplied by the user. The struct always needs to be set up by wcsset() but this need not be called explicitly - refer
to the explanation of wcsprm::flag.

wcsp2s() and wcss2p() implement the WCS world coordinate transformations. In fact, they are high level driver
routines for the WCS linear, logarithmic, celestial, spectral and tabular transformation routines described in lin.h,
log.h, cel.h, spc.h and tab.h.

Given either the celestial longitude or latitude plus an element of the pixel coordinate a hybrid routine, wcsmix(),
iteratively solves for the unknown elements.

wcsccs() changes the celestial coordinate system of a wcsprm struct, for example, from equatorial to galactic, and
wcssptr() translates the spectral axis. For example, a 'FREQ' axis may be translated into 'ZOPT-F2W' and vice
versa.

wcslib_version() returns the WCSLIB version number.

Quadcube projections:
The quadcube projections (TSC, CSC, QSC) may be represented in FITS in either of two ways:

a: The six faces may be laid out in one plane and numbered as follows:
0

4 3 2 1 4 3 2
5

Faces 2, 3 and 4 may appear on one side or the other (or both). The world-to-pixel routines map faces 2, 3 and 4 to
the left but the pixel-to-world routines accept them on either side.

b: The "COBE" convention in which the six faces are stored in a three-dimensional structure using a CUBEFACE
axis indexed from 0 to 5 as above.

These routines support both methods; wcsset() determines which is being used by the presence or absence of a
CUBEFACE axis in ctype[]. wcsp2s() and wcss2p() translate the CUBEFACE axis representation to the single plane
representation understood by the lower-level WCSLIB projection routines.

19.23.2 Macro Definition Documentation

19.23.2.1 WCSSUB_LONGITUDE #define WCSSUB_LONGITUDE 0x1001

Mask to use for extracting the longitude axis when sub-imaging, refer to the axes argument of wcssub().

19.23.2.2 WCSSUB_LATITUDE #define WCSSUB_LATITUDE 0x1002

Mask to use for extracting the latitude axis when sub-imaging, refer to the axes argument of wcssub().

Generated by Doxygen

268

19.23.2.3 WCSSUB_CUBEFACE #define WCSSUB_CUBEFACE 0x1004

Mask to use for extracting the CUBEFACE axis when sub-imaging, refer to the axes argument of wcssub().

19.23.2.4 WCSSUB_CELESTIAL #define WCSSUB_CELESTIAL 0x1007

Mask to use for extracting the celestial axes (longitude, latitude and cubeface) when sub-imaging, refer to the axes
argument of wcssub().

19.23.2.5 WCSSUB_SPECTRAL #define WCSSUB_SPECTRAL 0x1008

Mask to use for extracting the spectral axis when sub-imaging, refer to the axes argument of wcssub().

19.23.2.6 WCSSUB_STOKES #define WCSSUB_STOKES 0x1010

Mask to use for extracting the STOKES axis when sub-imaging, refer to the axes argument of wcssub().

19.23.2.7 WCSSUB_TIME #define WCSSUB_TIME 0x1020

19.23.2.8 WCSCOMPARE_ANCILLARY #define WCSCOMPARE_ANCILLARY 0x0001

19.23.2.9 WCSCOMPARE_TILING #define WCSCOMPARE_TILING 0x0002

19.23.2.10 WCSCOMPARE_CRPIX #define WCSCOMPARE_CRPIX 0x0004

19.23.2.11 PVLEN #define PVLEN (sizeof(struct pvcard)/sizeof(int))

19.23.2.12 PSLEN #define PSLEN (sizeof(struct pscard)/sizeof(int))

19.23.2.13 AUXLEN #define AUXLEN (sizeof(struct auxprm)/sizeof(int))

Generated by Doxygen

19.23 wcs.h File Reference 269

19.23.2.14 WCSLEN #define WCSLEN (sizeof(struct wcsprm)/sizeof(int))

Size of the wcsprm struct in int units, used by the Fortran wrappers.

19.23.2.15 wcscopy #define wcscopy(

alloc,

wcssrc,

wcsdst) wcssub(alloc, wcssrc, 0x0, 0x0, wcsdst)

wcscopy() does a deep copy of one wcsprm struct to another. As of WCSLIB 3.6, it is implemented as a prepro-
cessor macro that invokes wcssub() with the nsub and axes pointers both set to zero.

19.23.2.16 wcsini_errmsg #define wcsini_errmsg wcs_errmsg

Deprecated Added for backwards compatibility, use wcs_errmsg directly now instead.

19.23.2.17 wcssub_errmsg #define wcssub_errmsg wcs_errmsg

Deprecated Added for backwards compatibility, use wcs_errmsg directly now instead.

19.23.2.18 wcscopy_errmsg #define wcscopy_errmsg wcs_errmsg

Deprecated Added for backwards compatibility, use wcs_errmsg directly now instead.

19.23.2.19 wcsfree_errmsg #define wcsfree_errmsg wcs_errmsg

Deprecated Added for backwards compatibility, use wcs_errmsg directly now instead.

19.23.2.20 wcsprt_errmsg #define wcsprt_errmsg wcs_errmsg

Deprecated Added for backwards compatibility, use wcs_errmsg directly now instead.

Generated by Doxygen

270

19.23.2.21 wcsset_errmsg #define wcsset_errmsg wcs_errmsg

Deprecated Added for backwards compatibility, use wcs_errmsg directly now instead.

19.23.2.22 wcsp2s_errmsg #define wcsp2s_errmsg wcs_errmsg

Deprecated Added for backwards compatibility, use wcs_errmsg directly now instead.

19.23.2.23 wcss2p_errmsg #define wcss2p_errmsg wcs_errmsg

Deprecated Added for backwards compatibility, use wcs_errmsg directly now instead.

19.23.2.24 wcsmix_errmsg #define wcsmix_errmsg wcs_errmsg

Deprecated Added for backwards compatibility, use wcs_errmsg directly now instead.

19.23.3 Enumeration Type Documentation

19.23.3.1 wcs_errmsg_enum enum wcs_errmsg_enum

Enumerator

WCSERR_SUCCESS
WCSERR_NULL_POINTER

WCSERR_MEMORY
WCSERR_SINGULAR_MTX

WCSERR_BAD_CTYPE
WCSERR_BAD_PARAM

WCSERR_BAD_COORD_TRANS
WCSERR_ILL_COORD_TRANS

WCSERR_BAD_PIX
WCSERR_BAD_WORLD

WCSERR_BAD_WORLD_COORD
WCSERR_NO_SOLUTION

WCSERR_BAD_SUBIMAGE
WCSERR_NON_SEPARABLE

WCSERR_UNSET
Generated by Doxygen

19.23 wcs.h File Reference 271

19.23.4 Function Documentation

19.23.4.1 wcsnpv() int wcsnpv (

int n)

wcsnpv() sets or gets the value of NPVMAX (default 64). This global variable controls the number of pvcard structs,
for holding PVi_ma keyvalues, that wcsini() should allocate space for. It is also used by wcsinit() as the default
value of npvmax.

PLEASE NOTE: This function is not thread-safe.

Parameters

in n Value of NPVMAX; ignored if < 0. Use a value less than zero to get the current value.

Returns

Current value of NPVMAX.

19.23.4.2 wcsnps() int wcsnps (

int n)

wcsnps() sets or gets the value of NPSMAX (default 8). This global variable controls the number of pscard structs,
for holding PSi_ma keyvalues, that wcsini() should allocate space for. It is also used by wcsinit() as the default
value of npsmax.

PLEASE NOTE: This function is not thread-safe.

Parameters

in n Value of NPSMAX; ignored if < 0. Use a value less than zero to get the current value.

Returns

Current value of NPSMAX.

19.23.4.3 wcsini() int wcsini (

int alloc,

int naxis,

struct wcsprm ∗ wcs)

wcsini() is a thin wrapper on wcsinit(). It invokes it with npvmax, npsmax, and ndpmax set to -1 which causes it
to use the values of the global variables NDPMAX, NPSMAX, and NDPMAX. It is thereby potentially thread-unsafe
if these variables are altered dynamically via wcsnpv(), wcsnps(), and disndp(). Use wcsinit() for a thread-safe
alternative in this case.

Generated by Doxygen

272

19.23.4.4 wcsinit() int wcsinit (

int alloc,

int naxis,

struct wcsprm ∗ wcs,

int npvmax,

int npsmax,

int ndpmax)

wcsinit() optionally allocates memory for arrays in a wcsprm struct and sets all members of the struct to default
values.

PLEASE NOTE: every wcsprm struct should be initialized by wcsinit(), possibly repeatedly. On the first invokation,
and only the first invokation, wcsprm::flag must be set to -1 to initialize memory management, regardless of whether
wcsinit() will actually be used to allocate memory.

Parameters

in alloc If true, allocate memory unconditionally for the crpix, etc. arrays. Please note that
memory is never allocated by wcsinit() for the auxprm, tabprm, nor wtbarr structs.
If false, it is assumed that pointers to these arrays have been set by the user except if
they are null pointers in which case memory will be allocated for them regardless. (In
other words, setting alloc true saves having to initalize these pointers to zero.)

in naxis The number of world coordinate axes. This is used to determine the length of the
various wcsprm vectors and matrices and therefore the amount of memory to allocate
for them.

in,out wcs Coordinate transformation parameters.
Note that, in order to initialize memory management, wcsprm::flag should be set to -1
when wcs is initialized for the first time (memory leaks may result if it had already been
initialized).

in npvmax The number of PVi_ma keywords to allocate space for. If set to -1, the value of the
global variable NPVMAX will be used. This is potentially thread-unsafe if wcsnpv() is
being used dynamically to alter its value.

in npsmax The number of PSi_ma keywords to allocate space for. If set to -1, the value of the
global variable NPSMAX will be used. This is potentially thread-unsafe if wcsnps() is
being used dynamically to alter its value.

in ndpmax The number of DPja or DQia keywords to allocate space for. If set to -1, the value of
the global variable NDPMAX will be used. This is potentially thread-unsafe if disndp()
is being used dynamically to alter its value.

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

For returns > 1, a detailed error message is set in wcsprm::err if enabled, see wcserr_enable().

19.23.4.5 wcsauxi() int wcsauxi (

int alloc,

struct wcsprm ∗ wcs)

wcsauxi() optionally allocates memory for an auxprm struct, attaches it to wcsprm, and sets all members of the
struct to default values.

Generated by Doxygen

19.23 wcs.h File Reference 273

Parameters

in alloc If true, allocate memory unconditionally for the auxprm struct.
If false, it is assumed that wcsprm::aux has already been set to point to an auxprm struct,
in which case the user is responsible for managing that memory. However, if wcsprm::aux
is a null pointer, memory will be allocated regardless. (In other words, setting alloc true
saves having to initalize the pointer to zero.)

in,out wcs Coordinate transformation parameters.

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

19.23.4.6 wcssub() int wcssub (

int alloc,

const struct wcsprm ∗ wcssrc,

int ∗ nsub,

int axes[],

struct wcsprm ∗ wcsdst)

wcssub() extracts the coordinate description for a subimage from a wcsprm struct. It does a deep copy, using
wcsinit() to allocate memory for its arrays if required. Only the "information to be provided" part of the struct is
extracted. Consequently, wcsset() need not have been, and won't be invoked on the struct from which the subimage
is extracted. A call to wcsset() is required to set up the subimage struct.

The world coordinate system of the subimage must be separable in the sense that the world coordinates at any
point in the subimage must depend only on the pixel coordinates of the axes extracted. In practice, this means that
the linear transformation matrix of the original image must not contain non-zero off-diagonal terms that associate
any of the subimage axes with any of the non-subimage axes. Likewise, if any distortions are associated with the
subimage axes, they must not depend on any of the axes that are not being extracted.

Note that while the required elements of the tabprm array are extracted, the wtbarr array is not. (Thus it is not
appropriate to call wcssub() after wcstab() but before filling the tabprm structs - refer to wcshdr.h.)

wcssub() can also add axes to a wcsprm struct. The new axes will be created using the defaults set by wcsinit()
which produce a simple, unnamed, linear axis with world coordinate equal to the pixel coordinate. These default
values can be changed afterwards, before invoking wcsset().

Parameters

in alloc If true, allocate memory for the crpix, etc. arrays in the destination. Otherwise, it is
assumed that pointers to these arrays have been set by the user except if they are null
pointers in which case memory will be allocated for them regardless.

in wcssrc Struct to extract from.
in,out nsub

Generated by Doxygen

274

Parameters

in,out axes Vector of length ∗nsub containing the image axis numbers (1-relative) to extract. Order
is significant; axes[0] is the axis number of the input image that corresponds to the first
axis in the subimage, etc.
Use an axis number of 0 to create a new axis using the defaults set by wcsinit(). They
can be changed later.
nsub (the pointer) may be set to zero, and so also may ∗nsub, which is interpreted to
mean all axes in the input image; the number of axes will be returned if nsub != 0x0.
axes itself (the pointer) may be set to zero to indicate the first ∗nsub axes in their
original order.
Set both nsub (or ∗nsub) and axes to zero to do a deep copy of one wcsprm struct to
another.
Subimage extraction by coordinate axis type may be done by setting the elements of
axes[] to the following special preprocessor macro values:

• WCSSUB_LONGITUDE: Celestial longitude.

• WCSSUB_LATITUDE: Celestial latitude.

• WCSSUB_CUBEFACE: Quadcube CUBEFACE axis.

• WCSSUB_SPECTRAL: Spectral axis.

• WCSSUB_STOKES: Stokes axis.

• WCSSUB_TIME: Time axis.

Refer to the notes (below) for further usage examples.
On return, ∗nsub will be set to the number of axes in the subimage; this may be zero if
there were no axes of the required type(s) (in which case no memory will be allocated).
axes[] will contain the axis numbers that were extracted, or 0 for newly created axes.
The vector length must be sufficient to contain all axis numbers. No checks are
performed to verify that the coordinate axes are consistent, this is done by wcsset().

in,out wcsdst Struct describing the subimage. wcsprm::flag should be set to -1 if wcsdst was not
previously initialized (memory leaks may result if it was previously initialized).

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

• 12: Invalid subimage specification.

• 13: Non-separable subimage coordinate system.

For returns > 1, a detailed error message is set in wcsprm::err if enabled, see wcserr_enable().

Notes:

1. Combinations of subimage axes of particular types may be extracted in the same order as they occur in the
input image by combining preprocessor codes, for example
*nsub = 1;
axes[0] = WCSSUB_LONGITUDE | WCSSUB_LATITUDE | WCSSUB_SPECTRAL;

Generated by Doxygen

19.23 wcs.h File Reference 275

would extract the longitude, latitude, and spectral axes in the same order as the input image. If one of each
were present, ∗nsub = 3 would be returned.

For convenience, WCSSUB_CELESTIAL is defined as the combination WCSSUB_LONGITUDE |
WCSSUB_LATITUDE |WCSSUB_CUBEFACE.

The codes may also be negated to extract all but the types specified, for example
*nsub = 4;
axes[0] = WCSSUB_LONGITUDE;
axes[1] = WCSSUB_LATITUDE;
axes[2] = WCSSUB_CUBEFACE;
axes[3] = -(WCSSUB_SPECTRAL | WCSSUB_STOKES);

The last of these specifies all axis types other than spectral or Stokes. Extraction is done in the order specified
by axes[] a longitude axis (if present) would be extracted first (via axes[0]) and not subsequently (via axes[3]).
Likewise for the latitude and cubeface axes in this example.

From the foregoing, it is apparent that the value of ∗nsub returned may be less than or greater than that given.
However, it will never exceed the number of axes in the input image (plus the number of newly-created axes
if any were specified on input).

19.23.4.7 wcscompare() int wcscompare (

int cmp,

double tol,

const struct wcsprm ∗ wcs1,

const struct wcsprm ∗ wcs2,

int ∗ equal)

wcscompare() compares two wcsprm structs for equality.

Parameters

in cmp A bit field controlling the strictness of the comparison. When 0, all fields must be identical.
The following constants may be or'ed together to relax the comparison:

• WCSCOMPARE_ANCILLARY: Ignore ancillary keywords that don't change the WCS
transformation, such as DATE-OBS or EQUINOX.

• WCSCOMPARE_TILING: Ignore integral differences in CRPIXja. This is the 'tiling'
condition, where two WCSes cover different regions of the same map projection and
align on the same map grid.

• WCSCOMPARE_CRPIX: Ignore any differences at all in CRPIXja. The two WCSes
cover different regions of the same map projection but may not align on the same map
grid. Overrides WCSCOMPARE_TILING.

in tol Tolerance for comparison of floating-point values. For example, for tol == 1e-6, all
floating-point values in the structs must be equal to the first 6 decimal places. A value of 0
implies exact equality.

in wcs1 The first wcsprm struct to compare.

in wcs2 The second wcsprm struct to compare.

out equal Non-zero when the given structs are equal.

Returns

Status return value:

• 0: Success.

Generated by Doxygen

276

• 1: Null pointer passed.

19.23.4.8 wcsfree() int wcsfree (

struct wcsprm ∗ wcs)

wcsfree() frees memory allocated for the wcsprm arrays by wcsinit() and/or wcsset(). wcsinit() records the memory
it allocates and wcsfree() will only attempt to free this.

PLEASE NOTE: wcsfree() must not be invoked on a wcsprm struct that was not initialized by wcsinit().

Parameters

in,out wcs Coordinate transformation parameters.

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

19.23.4.9 wcstrim() int wcstrim (

struct wcsprm ∗ wcs)

wcstrim() frees memory allocated by wcsinit() for arrays in the wcsprm struct that remains unused after it has been
set up by wcsset().

The free'd array members are associated with FITS WCS keyrecords that are rarely used and usually just bloat
the struct: wcsprm::crota, wcsprm::colax, wcsprm::cname, wcsprm::crder, wcsprm::csyer, wcsprm::czphs, and
wcsprm::cperi. If unused, wcsprm::pv, wcsprm::ps, and wcsprm::cd are also freed.

Once these arrays have been freed, a test such as
if (!undefined(wcs->cname[i])) {...}

must be protected as follows
if (wcs->cname && !undefined(wcs->cname[i])) {...}

In addition, if wcsprm::npv is non-zero but less than wcsprm::npvmax, then the unused space in wcsprm::pv will be
recovered (using realloc()). Likewise for wcsprm::ps.

Parameters

in,out wcs Coordinate transformation parameters.

Returns

Status return value:

Generated by Doxygen

19.23 wcs.h File Reference 277

• 0: Success.

• 1: Null wcsprm pointer passed.

• 14: wcsprm struct is unset.

19.23.4.10 wcssize() int wcssize (

const struct wcsprm ∗ wcs,

int sizes[2])

wcssize() computes the full size of a wcsprm struct, including allocated memory.

Parameters

in wcs Coordinate transformation parameters.
If NULL, the base size of the struct and the allocated size are both set to zero.

out sizes The first element is the base size of the struct as returned by sizeof(struct wcsprm). The
second element is the total allocated size, in bytes, assuming that the allocation was done by
wcsini(). This figure includes memory allocated for members of constituent structs, such as
wcsprm::lin.
It is not an error for the struct not to have been set up via wcsset(), which normally results in
additional memory allocation.

Returns

Status return value:

• 0: Success.

19.23.4.11 auxsize() int auxsize (

const struct auxprm ∗ aux,

int sizes[2])

auxsize() computes the full size of a auxprm struct, including allocated memory.

Parameters

in aux Auxiliary coordinate information.
If NULL, the base size of the struct and the allocated size are both set to zero.

out sizes The first element is the base size of the struct as returned by sizeof(struct auxprm). The
second element is the total allocated size, in bytes, currently zero.

Returns

Status return value:

• 0: Success.

Generated by Doxygen

278

19.23.4.12 wcsprt() int wcsprt (

const struct wcsprm ∗ wcs)

wcsprt() prints the contents of a wcsprm struct using wcsprintf(). Mainly intended for diagnostic purposes.

Parameters

in wcs Coordinate transformation parameters.

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

19.23.4.13 wcsperr() int wcsperr (

const struct wcsprm ∗ wcs,

const char ∗ prefix)

wcsperr() prints the error message(s), if any, stored in a wcsprm struct, and the linprm, celprm, prjprm, spcprm,
and tabprm structs that it contains. If there are no errors then nothing is printed. It uses wcserr_prt(), q.v.

Parameters

in wcs Coordinate transformation parameters.

in prefix If non-NULL, each output line will be prefixed with this string.

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

19.23.4.14 wcsbchk() int wcsbchk (

struct wcsprm ∗ wcs,

int bounds)

wcsbchk() is used to control bounds checking in the projection routines. Note that wcsset() always enables bounds
checking. wcsbchk() will invoke wcsset() on the wcsprm struct beforehand if necessary.

Parameters

in,out wcs Coordinate transformation parameters.

Generated by Doxygen

19.23 wcs.h File Reference 279

Parameters

in bounds If bounds&1 then enable strict bounds checking for the spherical-to-Cartesian (s2x)
transformation for the AZP, SZP, TAN, SIN, ZPN, and COP projections.
If bounds&2 then enable strict bounds checking for the Cartesian-to-spherical (x2s)
transformation for the HPX and XPH projections.
If bounds&4 then enable bounds checking on the native coordinates returned by the
Cartesian-to-spherical (x2s) transformations using prjchk().
Zero it to disable all checking.

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

19.23.4.15 wcsset() int wcsset (

struct wcsprm ∗ wcs)

wcsset() sets up a wcsprm struct according to information supplied within it (refer to the description of the wcsprm
struct).

wcsset() recognizes the NCP projection and converts it to the equivalent SIN projection and likewise translates
GLS into SFL. It also translates the AIPS spectral types ('FREQ-LSR', 'FELO-HEL', etc.), possibly changing
the input header keywords wcsprm::ctype and/or wcsprm::specsys if necessary.

Note that this routine need not be called directly; it will be invoked by wcsp2s() and wcss2p() if the wcsprm::flag is
anything other than a predefined magic value.

Parameters

in,out wcs Coordinate transformation parameters.

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

• 3: Linear transformation matrix is singular.

• 4: Inconsistent or unrecognized coordinate axis types.

• 5: Invalid parameter value.

• 6: Invalid coordinate transformation parameters.

• 7: Ill-conditioned coordinate transformation parameters.

For returns > 1, a detailed error message is set in wcsprm::err if enabled, see wcserr_enable().

Notes:

Generated by Doxygen

280

1. wcsset() always enables strict bounds checking in the projection routines (via a call to prjini()). Use wcsbchk()
to modify bounds-checking after wcsset() is invoked.

19.23.4.16 wcsp2s() int wcsp2s (

struct wcsprm ∗ wcs,

int ncoord,

int nelem,

const double pixcrd[],

double imgcrd[],

double phi[],

double theta[],

double world[],

int stat[])

wcsp2s() transforms pixel coordinates to world coordinates.

Parameters

in,out wcs Coordinate transformation parameters.

in ncoord,nelem The number of coordinates, each of vector length nelem but containing
wcs.naxis coordinate elements. Thus nelem must equal or exceed the value of
the NAXIS keyword unless ncoord == 1, in which case nelem is not used.

in pixcrd Array of pixel coordinates.

out imgcrd Array of intermediate world coordinates. For celestial axes, imgcrd[][wcs.lng] and
imgcrd[][wcs.lat] are the projected x-, and y-coordinates in pseudo "degrees".
For spectral axes, imgcrd[][wcs.spec] is the intermediate spectral coordinate, in
SI units.

out phi,theta Longitude and latitude in the native coordinate system of the projection [deg].

out world Array of world coordinates. For celestial axes, world[][wcs.lng] and
world[][wcs.lat] are the celestial longitude and latitude [deg]. For spectral axes,
imgcrd[][wcs.spec] is the intermediate spectral coordinate, in SI units.

out stat Status return value for each coordinate:

• 0: Success.

1+: A bit mask indicating invalid pixel coordinate element(s).

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

• 3: Linear transformation matrix is singular.

• 4: Inconsistent or unrecognized coordinate axis types.

• 5: Invalid parameter value.

• 6: Invalid coordinate transformation parameters.

• 7: Ill-conditioned coordinate transformation parameters.

• 8: One or more of the pixel coordinates were invalid, as indicated by the stat vector.

Generated by Doxygen

19.23 wcs.h File Reference 281

For returns > 1, a detailed error message is set in wcsprm::err if enabled, see wcserr_enable().

19.23.4.17 wcss2p() int wcss2p (

struct wcsprm ∗ wcs,

int ncoord,

int nelem,

const double world[],

double phi[],

double theta[],

double imgcrd[],

double pixcrd[],

int stat[])

wcss2p() transforms world coordinates to pixel coordinates.

Parameters

in,out wcs Coordinate transformation parameters.

in ncoord,nelem The number of coordinates, each of vector length nelem but containing
wcs.naxis coordinate elements. Thus nelem must equal or exceed the value of
the NAXIS keyword unless ncoord == 1, in which case nelem is not used.

in world Array of world coordinates. For celestial axes, world[][wcs.lng] and
world[][wcs.lat] are the celestial longitude and latitude [deg]. For spectral axes,
world[][wcs.spec] is the spectral coordinate, in SI units.

out phi,theta Longitude and latitude in the native coordinate system of the projection [deg].

out imgcrd Array of intermediate world coordinates. For celestial axes, imgcrd[][wcs.lng] and
imgcrd[][wcs.lat] are the projected x-, and y-coordinates in pseudo "degrees".
For quadcube projections with a CUBEFACE axis the face number is also
returned in imgcrd[][wcs.cubeface]. For spectral axes, imgcrd[][wcs.spec] is the
intermediate spectral coordinate, in SI units.

out pixcrd Array of pixel coordinates.

out stat Status return value for each coordinate:

• 0: Success.

1+: A bit mask indicating invalid world coordinate element(s).

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

• 3: Linear transformation matrix is singular.

• 4: Inconsistent or unrecognized coordinate axis types.

• 5: Invalid parameter value.

• 6: Invalid coordinate transformation parameters.

• 7: Ill-conditioned coordinate transformation parameters.

• 9: One or more of the world coordinates were invalid, as indicated by the stat vector.

Generated by Doxygen

282

For returns > 1, a detailed error message is set in wcsprm::err if enabled, see wcserr_enable().

19.23.4.18 wcsmix() int wcsmix (

struct wcsprm ∗ wcs,

int mixpix,

int mixcel,

const double vspan[2],

double vstep,

int viter,

double world[],

double phi[],

double theta[],

double imgcrd[],

double pixcrd[])

wcsmix(), given either the celestial longitude or latitude plus an element of the pixel coordinate, solves for the
remaining elements by iterating on the unknown celestial coordinate element using wcss2p(). Refer also to the
notes below.

Parameters

in,out wcs Indices for the celestial coordinates obtained by parsing the wcsprm::ctype[].

in mixpix Which element of the pixel coordinate is given.

in mixcel Which element of the celestial coordinate is given:

• 1: Celestial longitude is given in world[wcs.lng], latitude returned in
world[wcs.lat].

• 2: Celestial latitude is given in world[wcs.lat], longitude returned in
world[wcs.lng].

in vspan Solution interval for the celestial coordinate [deg]. The ordering of the two limits is
irrelevant. Longitude ranges may be specified with any convenient normalization, for
example [-120,+120] is the same as [240,480], except that the solution will be
returned with the same normalization, i.e. lie within the interval specified.

in vstep Step size for solution search [deg]. If zero, a sensible, although perhaps non-optimal
default will be used.

in viter If a solution is not found then the step size will be halved and the search
recommenced. viter controls how many times the step size is halved. The allowed
range is 5 - 10.

in,out world World coordinate elements. world[wcs.lng] and world[wcs.lat] are the celestial
longitude and latitude [deg]. Which is given and which returned depends on the value
of mixcel. All other elements are given.

out phi,theta Longitude and latitude in the native coordinate system of the projection [deg].

out imgcrd Image coordinate elements. imgcrd[wcs.lng] and imgcrd[wcs.lat] are the projected x-,
and y-coordinates in pseudo "degrees".

in,out pixcrd Pixel coordinate. The element indicated by mixpix is given and the remaining
elements are returned.

Returns

Status return value:

Generated by Doxygen

19.23 wcs.h File Reference 283

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

• 3: Linear transformation matrix is singular.

• 4: Inconsistent or unrecognized coordinate axis types.

• 5: Invalid parameter value.

• 6: Invalid coordinate transformation parameters.

• 7: Ill-conditioned coordinate transformation parameters.

• 10: Invalid world coordinate.

• 11: No solution found in the specified interval.

For returns > 1, a detailed error message is set in wcsprm::err if enabled, see wcserr_enable().

Notes:

1. Initially the specified solution interval is checked to see if it's a "crossing" interval. If it isn't, a search is
made for a crossing solution by iterating on the unknown celestial coordinate starting at the upper limit of
the solution interval and decrementing by the specified step size. A crossing is indicated if the trial value
of the pixel coordinate steps through the value specified. If a crossing interval is found then the solution is
determined by a modified form of "regula falsi" division of the crossing interval. If no crossing interval was
found within the specified solution interval then a search is made for a "non-crossing" solution as may arise
from a point of tangency. The process is complicated by having to make allowance for the discontinuities that
occur in all map projections.

Once one solution has been determined others may be found by subsequent invokations of wcsmix() with
suitably restricted solution intervals.

Note the circumstance that arises when the solution point lies at a native pole of a projection in which the
pole is represented as a finite curve, for example the zenithals and conics. In such cases two or more valid
solutions may exist but wcsmix() only ever returns one.

Because of its generality wcsmix() is very compute-intensive. For compute-limited applications more efficient
special-case solvers could be written for simple projections, for example non-oblique cylindrical projections.

19.23.4.19 wcsccs() int wcsccs (

struct wcsprm ∗ wcs,

double lng2p1,

double lat2p1,

double lng1p2,

const char ∗ clng,

const char ∗ clat,

const char ∗ radesys,

double equinox,

const char ∗ alt)

wcsccs() changes the celestial coordinate system of a wcsprm struct. For example, from equatorial to galactic
coordinates.

Parameters that define the spherical coordinate transformation, essentially being three Euler angles, must be pro-
vided. Thereby wcsccs() does not need prior knowledge of specific celestial coordinate systems. It also has the
advantage of making it completely general.

Generated by Doxygen

284

Auxiliary members of the wcsprm struct relating to equatorial celestial coordinate systems may also be changed.

Only orthodox spherical coordinate systems are supported. That is, they must be right-handed, with latitude in-
creasing from zero at the equator to +90 degrees at the pole. This precludes systems such as aziumuth and zenith
distance, which, however, could be handled as negative azimuth and elevation.

PLEASE NOTE: Information in the wcsprm struct relating to the original coordinate system will be overwritten and
therefore lost. If this is undesirable, invoke wcsccs() on a copy of the struct made with wcssub(). The wcsprm struct
is reset on return with an explicit call to wcsset().

Parameters

in,out wcs Coordinate transformation parameters. Particular "values to be given" elements
of the wcsprm struct are modified.

in lng2p1,lat2p1 Longitude and latitude in the new celestial coordinate system of the pole (i.e.
latitude +90) of the original system [deg]. See notes 1 and 2 below.

in lng1p2 Longitude in the original celestial coordinate system of the pole (i.e. latitude +90)
of the new system [deg]. See note 1 below.

in clng,clat Longitude and latitude identifiers of the new CTYPEia celestial axis codes,
without trailing dashes. For example, "RA" and "DEC" or "GLON" and "GLAT".
Up to four characters are used, longer strings need not be null-terminated.

in radesys Used when transforming to equatorial coordinates, identified by clng == "RA" and
clat = "DEC". May be set to the null pointer to preserve the current value. Up to
71 characters are used, longer strings need not be null-terminated.
If the new coordinate system is anything other than equatorial, then
wcsprm::radesys will be cleared.

in equinox Used when transforming to equatorial coordinates. May be set to zero to
preserve the current value.
If the new coordinate system is not equatorial, then wcsprm::equinox will be
marked as undefined.

in alt Character code for alternate coordinate descriptions (i.e. the 'a' in keyword
names such as CTYPEia). This is blank for the primary coordinate description,
or one of the 26 upper-case letters, A-Z. May be set to the null pointer, or null
string if no change is required.

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

• 12: Invalid subimage specification (no celestial axes).

Notes:

1. Follows the prescription given in WCS Paper II, Sect. 2.7 for changing celestial coordinates.

The implementation takes account of indeterminacies that arise in that prescription in the particular cases
where one of the poles of the new system is at the fiducial point, or one of them is at the native pole.

2. If lat2p1 == +90, i.e. where the poles of the two coordinate systems coincide, then the spherical coordinate
transformation becomes a simple change in origin of longitude given by lng2 = lng1 + (lng2p1 - lng1p2 - 180),
and lat2 = lat1, where (lng2,lat2) are coordinates in the new system, and (lng1,lat1) are coordinates in the
original system.

Likewise, if lat2p1 == -90, then lng2 = -lng1 + (lng2p1 + lng1p2), and lat2 = -lat1.

Generated by Doxygen

19.23 wcs.h File Reference 285

3. For example, if the original coordinate system is B1950 equatorial and the desired new coordinate system is
galactic, then

• (lng2p1,lat2p1) are the galactic coordinates of the B1950 celestial pole, defined by the IAU to be (123.←↩

0,+27.4), and lng1p2 is the B1950 right ascension of the galactic pole, defined as 192.25. Clearly these
coordinates are fixed for a particular coordinate transformation.

• (clng,clat) would be 'GLON' and 'GLAT', these being the FITS standard identifiers for galactic coordi-
nates.

• Since the new coordinate system is not equatorial, wcsprm::radesys and wcsprm::equinox will be
cleared.

4. The coordinates required for some common transformations (obtained from https://ned.ipac.←↩

caltech.edu/coordinate_calculator) are as follows:
(123.0000,+27.4000) galactic coordinates of B1950 celestial pole,
(192.2500,+27.4000) B1950 equatorial coordinates of galactic pole.
(122.9319,+27.1283) galactic coordinates of J2000 celestial pole,
(192.8595,+27.1283) J2000 equatorial coordinates of galactic pole.
(359.6774,+89.7217) B1950 equatorial coordinates of J2000 pole,
(180.3162,+89.7217) J2000 equatorial coordinates of B1950 pole.
(270.0000,+66.5542) B1950 equatorial coordinates of B1950 ecliptic pole,
(90.0000,+66.5542) B1950 ecliptic coordinates of B1950 celestial pole.
(270.0000,+66.5607) J2000 equatorial coordinates of J2000 ecliptic pole,
(90.0000,+66.5607) J2000 ecliptic coordinates of J2000 celestial pole.
(26.7315,+15.6441) supergalactic coordinates of B1950 celestial pole,
(283.1894,+15.6441) B1950 equatorial coordinates of supergalactic pole.
(26.4505,+15.7089) supergalactic coordinates of J2000 celestial pole,
(283.7542,+15.7089) J2000 equatorial coordinates of supergalactic pole.

19.23.4.20 wcssptr() int wcssptr (

struct wcsprm ∗ wcs,

int ∗ i,

char ctype[9])

wcssptr() translates the spectral axis in a wcsprm struct. For example, a 'FREQ' axis may be translated into
'ZOPT-F2W' and vice versa.

PLEASE NOTE: Information in the wcsprm struct relating to the original coordinate system will be overwritten and
therefore lost. If this is undesirable, invoke wcssptr() on a copy of the struct made with wcssub(). The wcsprm
struct is reset on return with an explicit call to wcsset().

Parameters

in,out wcs Coordinate transformation parameters.

in,out i Index of the spectral axis (0-relative). If given < 0 it will be set to the first spectral axis
identified from the ctype[] keyvalues in the wcsprm struct.

in,out ctype Desired spectral CTYPEia. Wildcarding may be used as for the ctypeS2 argument to
spctrn() as described in the prologue of spc.h, i.e. if the final three characters are
specified as "???", or if just the eighth character is specified as '?', the correct algorithm
code will be substituted and returned.

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

Generated by Doxygen

https://ned.ipac.caltech.edu/coordinate_calculator
https://ned.ipac.caltech.edu/coordinate_calculator

286

• 3: Linear transformation matrix is singular.

• 4: Inconsistent or unrecognized coordinate axis types.

• 5: Invalid parameter value.

• 6: Invalid coordinate transformation parameters.

• 7: Ill-conditioned coordinate transformation parameters.

• 12: Invalid subimage specification (no spectral axis).

For returns > 1, a detailed error message is set in wcsprm::err if enabled, see wcserr_enable().

19.23.4.21 wcslib_version() const char ∗ wcslib_version (

int vers[3])

19.23.5 Variable Documentation

19.23.5.1 wcs_errmsg const char ∗ wcs_errmsg[] [extern]

Error messages to match the status value returned from each function.

19.24 wcs.h

Go to the documentation of this file.
1 /*==
2 WCSLIB 7.11 - an implementation of the FITS WCS standard.
3 Copyright (C) 1995-2022, Mark Calabretta
4
5 This file is part of WCSLIB.
6
7 WCSLIB is free software: you can redistribute it and/or modify it under the
8 terms of the GNU Lesser General Public License as published by the Free
9 Software Foundation, either version 3 of the License, or (at your option)
10 any later version.
11
12 WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
15 more details.
16
17 You should have received a copy of the GNU Lesser General Public License
18 along with WCSLIB. If not, see http://www.gnu.org/licenses.
19
20 Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
21 http://www.atnf.csiro.au/people/Mark.Calabretta
22 $Id: wcs.h,v 7.11 2022/04/26 06:13:52 mcalabre Exp $
23 *===
24 *
25 * WCSLIB 7.11 - C routines that implement the FITS World Coordinate System
26 * (WCS) standard. Refer to the README file provided with WCSLIB for an
27 * overview of the library.
28 *
29 *
30 * Summary of the wcs routines
31 * ---------------------------
32 * Routines in this suite implement the FITS World Coordinate System (WCS)
33 * standard which defines methods to be used for computing world coordinates
34 * from image pixel coordinates, and vice versa. The standard, and proposed
35 * extensions for handling distortions, are described in
36 *
37 = "Representations of world coordinates in FITS",
38 = Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)

Generated by Doxygen

19.24 wcs.h 287

39 =
40 = "Representations of celestial coordinates in FITS",
41 = Calabretta, M.R., & Greisen, E.W. 2002, A&A, 395, 1077 (WCS Paper II)
42 =
43 = "Representations of spectral coordinates in FITS",
44 = Greisen, E.W., Calabretta, M.R., Valdes, F.G., & Allen, S.L.
45 = 2006, A&A, 446, 747 (WCS Paper III)
46 =
47 = "Representations of distortions in FITS world coordinate systems",
48 = Calabretta, M.R. et al. (WCS Paper IV, draft dated 2004/04/22),
49 = available from http://www.atnf.csiro.au/people/Mark.Calabretta
50 =
51 = "Mapping on the HEALPix grid",
52 = Calabretta, M.R., & Roukema, B.F. 2007, MNRAS, 381, 865 (WCS Paper V)
53 =
54 = "Representing the ’Butterfly’ Projection in FITS -- Projection Code XPH",
55 = Calabretta, M.R., & Lowe, S.R. 2013, PASA, 30, e050 (WCS Paper VI)
56 =
57 = "Representations of time coordinates in FITS -
58 = Time and relative dimension in space",
59 = Rots, A.H., Bunclark, P.S., Calabretta, M.R., Allen, S.L.,
60 = Manchester, R.N., & Thompson, W.T. 2015, A&A, 574, A36 (WCS Paper VII)
61 *
62 * These routines are based on the wcsprm struct which contains all information
63 * needed for the computations. The struct contains some members that must be
64 * set by the user, and others that are maintained by these routines, somewhat
65 * like a C++ class but with no encapsulation.
66 *
67 * wcsnpv(), wcsnps(), wcsini(), wcsinit(), wcssub(), wcsfree(), and wcstrim(),
68 * are provided to manage the wcsprm struct, wcssize() computes its total size
69 * including allocated memory, and wcsprt() prints its contents. Refer to the
70 * description of the wcsprm struct for an explanation of the anticipated usage
71 * of these routines. wcscopy(), which does a deep copy of one wcsprm struct
72 * to another, is defined as a preprocessor macro function that invokes
73 * wcssub().
74 *
75 * wcsperr() prints the error message(s) (if any) stored in a wcsprm struct,
76 * and the linprm, celprm, prjprm, spcprm, and tabprm structs that it contains.
77 *
78 * A setup routine, wcsset(), computes intermediate values in the wcsprm struct
79 * from parameters in it that were supplied by the user. The struct always
80 * needs to be set up by wcsset() but this need not be called explicitly -
81 * refer to the explanation of wcsprm::flag.
82 *
83 * wcsp2s() and wcss2p() implement the WCS world coordinate transformations.
84 * In fact, they are high level driver routines for the WCS linear,
85 * logarithmic, celestial, spectral and tabular transformation routines
86 * described in lin.h, log.h, cel.h, spc.h and tab.h.
87 *
88 * Given either the celestial longitude or latitude plus an element of the
89 * pixel coordinate a hybrid routine, wcsmix(), iteratively solves for the
90 * unknown elements.
91 *
92 * wcsccs() changes the celestial coordinate system of a wcsprm struct, for
93 * example, from equatorial to galactic, and wcssptr() translates the spectral
94 * axis. For example, a ’FREQ’ axis may be translated into ’ZOPT-F2W’ and vice
95 * versa.
96 *
97 * wcslib_version() returns the WCSLIB version number.
98 *
99 * Quadcube projections:
100 * ---------------------
101 * The quadcube projections (TSC, CSC, QSC) may be represented in FITS in
102 * either of two ways:
103 *
104 * a: The six faces may be laid out in one plane and numbered as follows:
105 *
106 = 0
107 =
108 = 4 3 2 1 4 3 2
109 =
110 = 5
111 *
112 * Faces 2, 3 and 4 may appear on one side or the other (or both). The
113 * world-to-pixel routines map faces 2, 3 and 4 to the left but the
114 * pixel-to-world routines accept them on either side.
115 *
116 * b: The "COBE" convention in which the six faces are stored in a
117 * three-dimensional structure using a CUBEFACE axis indexed from
118 * 0 to 5 as above.
119 *
120 * These routines support both methods; wcsset() determines which is being
121 * used by the presence or absence of a CUBEFACE axis in ctype[]. wcsp2s()
122 * and wcss2p() translate the CUBEFACE axis representation to the single
123 * plane representation understood by the lower-level WCSLIB projection
124 * routines.
125 *

Generated by Doxygen

288

126 *
127 * wcsnpv() - Memory allocation for PVi_ma
128 * ---------------------------------------
129 * wcsnpv() sets or gets the value of NPVMAX (default 64). This global
130 * variable controls the number of pvcard structs, for holding PVi_ma
131 * keyvalues, that wcsini() should allocate space for. It is also used by
132 * wcsinit() as the default value of npvmax.
133 *
134 * PLEASE NOTE: This function is not thread-safe.
135 *
136 * Given:
137 * n int Value of NPVMAX; ignored if < 0. Use a value less
138 * than zero to get the current value.
139 *
140 * Function return value:
141 * int Current value of NPVMAX.
142 *
143 *
144 * wcsnps() - Memory allocation for PSi_ma
145 * ---------------------------------------
146 * wcsnps() sets or gets the value of NPSMAX (default 8). This global variable
147 * controls the number of pscard structs, for holding PSi_ma keyvalues, that
148 * wcsini() should allocate space for. It is also used by wcsinit() as the
149 * default value of npsmax.
150 *
151 * PLEASE NOTE: This function is not thread-safe.
152 *
153 * Given:
154 * n int Value of NPSMAX; ignored if < 0. Use a value less
155 * than zero to get the current value.
156 *
157 * Function return value:
158 * int Current value of NPSMAX.
159 *
160 *
161 * wcsini() - Default constructor for the wcsprm struct
162 * --
163 * wcsini() is a thin wrapper on wcsinit(). It invokes it with npvmax,
164 * npsmax, and ndpmax set to -1 which causes it to use the values of the
165 * global variables NDPMAX, NPSMAX, and NDPMAX. It is thereby potentially
166 * thread-unsafe if these variables are altered dynamically via wcsnpv(),
167 * wcsnps(), and disndp(). Use wcsinit() for a thread-safe alternative in
168 * this case.
169 *
170 *
171 * wcsinit() - Default constructor for the wcsprm struct
172 * ---
173 * wcsinit() optionally allocates memory for arrays in a wcsprm struct and sets
174 * all members of the struct to default values.
175 *
176 * PLEASE NOTE: every wcsprm struct should be initialized by wcsinit(),
177 * possibly repeatedly. On the first invokation, and only the first
178 * invokation, wcsprm::flag must be set to -1 to initialize memory management,
179 * regardless of whether wcsinit() will actually be used to allocate memory.
180 *
181 * Given:
182 * alloc int If true, allocate memory unconditionally for the
183 * crpix, etc. arrays. Please note that memory is never
184 * allocated by wcsinit() for the auxprm, tabprm, nor
185 * wtbarr structs.
186 *
187 * If false, it is assumed that pointers to these arrays
188 * have been set by the user except if they are null
189 * pointers in which case memory will be allocated for
190 * them regardless. (In other words, setting alloc true
191 * saves having to initalize these pointers to zero.)
192 *
193 * naxis int The number of world coordinate axes. This is used to
194 * determine the length of the various wcsprm vectors and
195 * matrices and therefore the amount of memory to
196 * allocate for them.
197 *
198 * Given and returned:
199 * wcs struct wcsprm*
200 * Coordinate transformation parameters.
201 *
202 * Note that, in order to initialize memory management,
203 * wcsprm::flag should be set to -1 when wcs is
204 * initialized for the first time (memory leaks may
205 * result if it had already been initialized).
206 *
207 * Given:
208 * npvmax int The number of PVi_ma keywords to allocate space for.
209 * If set to -1, the value of the global variable NPVMAX
210 * will be used. This is potentially thread-unsafe if
211 * wcsnpv() is being used dynamically to alter its value.
212 *

Generated by Doxygen

19.24 wcs.h 289

213 * npsmax int The number of PSi_ma keywords to allocate space for.
214 * If set to -1, the value of the global variable NPSMAX
215 * will be used. This is potentially thread-unsafe if
216 * wcsnps() is being used dynamically to alter its value.
217 *
218 * ndpmax int The number of DPja or DQia keywords to allocate space
219 * for. If set to -1, the value of the global variable
220 * NDPMAX will be used. This is potentially
221 * thread-unsafe if disndp() is being used dynamically to
222 * alter its value.
223 *
224 * Function return value:
225 * int Status return value:
226 * 0: Success.
227 * 1: Null wcsprm pointer passed.
228 * 2: Memory allocation failed.
229 *
230 * For returns > 1, a detailed error message is set in
231 * wcsprm::err if enabled, see wcserr_enable().
232 *
233 *
234 * wcsauxi() - Default constructor for the auxprm struct
235 * ---
236 * wcsauxi() optionally allocates memory for an auxprm struct, attaches it to
237 * wcsprm, and sets all members of the struct to default values.
238 *
239 * Given:
240 * alloc int If true, allocate memory unconditionally for the
241 * auxprm struct.
242 *
243 * If false, it is assumed that wcsprm::aux has already
244 * been set to point to an auxprm struct, in which case
245 * the user is responsible for managing that memory.
246 * However, if wcsprm::aux is a null pointer, memory will
247 * be allocated regardless. (In other words, setting
248 * alloc true saves having to initalize the pointer to
249 * zero.)
250 *
251 * Given and returned:
252 * wcs struct wcsprm*
253 * Coordinate transformation parameters.
254 *
255 * Function return value:
256 * int Status return value:
257 * 0: Success.
258 * 1: Null wcsprm pointer passed.
259 * 2: Memory allocation failed.
260 *
261 *
262 * wcssub() - Subimage extraction routine for the wcsprm struct
263 * --
264 * wcssub() extracts the coordinate description for a subimage from a wcsprm
265 * struct. It does a deep copy, using wcsinit() to allocate memory for its
266 * arrays if required. Only the "information to be provided" part of the
267 * struct is extracted. Consequently, wcsset() need not have been, and won’t
268 * be invoked on the struct from which the subimage is extracted. A call to
269 * wcsset() is required to set up the subimage struct.
270 *
271 * The world coordinate system of the subimage must be separable in the sense
272 * that the world coordinates at any point in the subimage must depend only on
273 * the pixel coordinates of the axes extracted. In practice, this means that
274 * the linear transformation matrix of the original image must not contain
275 * non-zero off-diagonal terms that associate any of the subimage axes with any
276 * of the non-subimage axes. Likewise, if any distortions are associated with
277 * the subimage axes, they must not depend on any of the axes that are not
278 * being extracted.
279 *
280 * Note that while the required elements of the tabprm array are extracted, the
281 * wtbarr array is not. (Thus it is not appropriate to call wcssub() after
282 * wcstab() but before filling the tabprm structs - refer to wcshdr.h.)
283 *
284 * wcssub() can also add axes to a wcsprm struct. The new axes will be created
285 * using the defaults set by wcsinit() which produce a simple, unnamed, linear
286 * axis with world coordinate equal to the pixel coordinate. These default
287 * values can be changed afterwards, before invoking wcsset().
288 *
289 * Given:
290 * alloc int If true, allocate memory for the crpix, etc. arrays in
291 * the destination. Otherwise, it is assumed that
292 * pointers to these arrays have been set by the user
293 * except if they are null pointers in which case memory
294 * will be allocated for them regardless.
295 *
296 * wcssrc const struct wcsprm*
297 * Struct to extract from.
298 *
299 * Given and returned:

Generated by Doxygen

290

300 * nsub int*
301 * axes int[] Vector of length *nsub containing the image axis
302 * numbers (1-relative) to extract. Order is
303 * significant; axes[0] is the axis number of the input
304 * image that corresponds to the first axis in the
305 * subimage, etc.
306 *
307 * Use an axis number of 0 to create a new axis using
308 * the defaults set by wcsinit(). They can be changed
309 * later.
310 *
311 * nsub (the pointer) may be set to zero, and so also may
312 * *nsub, which is interpreted to mean all axes in the
313 * input image; the number of axes will be returned if
314 * nsub != 0x0. axes itself (the pointer) may be set to
315 * zero to indicate the first *nsub axes in their
316 * original order.
317 *
318 * Set both nsub (or *nsub) and axes to zero to do a deep
319 * copy of one wcsprm struct to another.
320 *
321 * Subimage extraction by coordinate axis type may be
322 * done by setting the elements of axes[] to the
323 * following special preprocessor macro values:
324 *
325 * WCSSUB_LONGITUDE: Celestial longitude.
326 * WCSSUB_LATITUDE: Celestial latitude.
327 * WCSSUB_CUBEFACE: Quadcube CUBEFACE axis.
328 * WCSSUB_SPECTRAL: Spectral axis.
329 * WCSSUB_STOKES: Stokes axis.
330 * WCSSUB_TIME: Time axis.
331 *
332 * Refer to the notes (below) for further usage examples.
333 *
334 * On return, *nsub will be set to the number of axes in
335 * the subimage; this may be zero if there were no axes
336 * of the required type(s) (in which case no memory will
337 * be allocated). axes[] will contain the axis numbers
338 * that were extracted, or 0 for newly created axes. The
339 * vector length must be sufficient to contain all axis
340 * numbers. No checks are performed to verify that the
341 * coordinate axes are consistent, this is done by
342 * wcsset().
343 *
344 * wcsdst struct wcsprm*
345 * Struct describing the subimage. wcsprm::flag should
346 * be set to -1 if wcsdst was not previously initialized
347 * (memory leaks may result if it was previously
348 * initialized).
349 *
350 * Function return value:
351 * int Status return value:
352 * 0: Success.
353 * 1: Null wcsprm pointer passed.
354 * 2: Memory allocation failed.
355 * 12: Invalid subimage specification.
356 * 13: Non-separable subimage coordinate system.
357 *
358 * For returns > 1, a detailed error message is set in
359 * wcsprm::err if enabled, see wcserr_enable().
360 *
361 * Notes:
362 * 1: Combinations of subimage axes of particular types may be extracted in
363 * the same order as they occur in the input image by combining
364 * preprocessor codes, for example
365 *
366 = *nsub = 1;
367 = axes[0] = WCSSUB_LONGITUDE | WCSSUB_LATITUDE | WCSSUB_SPECTRAL;
368 *
369 * would extract the longitude, latitude, and spectral axes in the same
370 * order as the input image. If one of each were present, *nsub = 3 would
371 * be returned.
372 *
373 * For convenience, WCSSUB_CELESTIAL is defined as the combination
374 * WCSSUB_LONGITUDE | WCSSUB_LATITUDE | WCSSUB_CUBEFACE.
375 *
376 * The codes may also be negated to extract all but the types specified,
377 * for example
378 *
379 = *nsub = 4;
380 = axes[0] = WCSSUB_LONGITUDE;
381 = axes[1] = WCSSUB_LATITUDE;
382 = axes[2] = WCSSUB_CUBEFACE;
383 = axes[3] = -(WCSSUB_SPECTRAL | WCSSUB_STOKES);
384 *
385 * The last of these specifies all axis types other than spectral or
386 * Stokes. Extraction is done in the order specified by axes[] a

Generated by Doxygen

19.24 wcs.h 291

387 * longitude axis (if present) would be extracted first (via axes[0]) and
388 * not subsequently (via axes[3]). Likewise for the latitude and cubeface
389 * axes in this example.
390 *
391 * From the foregoing, it is apparent that the value of *nsub returned may
392 * be less than or greater than that given. However, it will never exceed
393 * the number of axes in the input image (plus the number of newly-created
394 * axes if any were specified on input).
395 *
396 *
397 * wcscompare() - Compare two wcsprm structs for equality
398 * --
399 * wcscompare() compares two wcsprm structs for equality.
400 *
401 * Given:
402 * cmp int A bit field controlling the strictness of the
403 * comparison. When 0, all fields must be identical.
404 *
405 * The following constants may be or’ed together to
406 * relax the comparison:
407 * WCSCOMPARE_ANCILLARY: Ignore ancillary keywords
408 * that don’t change the WCS transformation, such
409 * as DATE-OBS or EQUINOX.
410 * WCSCOMPARE_TILING: Ignore integral differences in
411 * CRPIXja. This is the ’tiling’ condition, where
412 * two WCSes cover different regions of the same
413 * map projection and align on the same map grid.
414 * WCSCOMPARE_CRPIX: Ignore any differences at all in
415 * CRPIXja. The two WCSes cover different regions
416 * of the same map projection but may not align on
417 * the same map grid. Overrides WCSCOMPARE_TILING.
418 *
419 * tol double Tolerance for comparison of floating-point values.
420 * For example, for tol == 1e-6, all floating-point
421 * values in the structs must be equal to the first 6
422 * decimal places. A value of 0 implies exact equality.
423 *
424 * wcs1 const struct wcsprm*
425 * The first wcsprm struct to compare.
426 *
427 * wcs2 const struct wcsprm*
428 * The second wcsprm struct to compare.
429 *
430 * Returned:
431 * equal int* Non-zero when the given structs are equal.
432 *
433 * Function return value:
434 * int Status return value:
435 * 0: Success.
436 * 1: Null pointer passed.
437 *
438 *
439 * wcscopy() macro - Copy routine for the wcsprm struct
440 * --
441 * wcscopy() does a deep copy of one wcsprm struct to another. As of
442 * WCSLIB 3.6, it is implemented as a preprocessor macro that invokes
443 * wcssub() with the nsub and axes pointers both set to zero.
444 *
445 *
446 * wcsfree() - Destructor for the wcsprm struct
447 * --
448 * wcsfree() frees memory allocated for the wcsprm arrays by wcsinit() and/or
449 * wcsset(). wcsinit() records the memory it allocates and wcsfree() will only
450 * attempt to free this.
451 *
452 * PLEASE NOTE: wcsfree() must not be invoked on a wcsprm struct that was not
453 * initialized by wcsinit().
454 *
455 * Given and returned:
456 * wcs struct wcsprm*
457 * Coordinate transformation parameters.
458 *
459 * Function return value:
460 * int Status return value:
461 * 0: Success.
462 * 1: Null wcsprm pointer passed.
463 *
464 *
465 * wcstrim() - Free unused arrays in the wcsprm struct
466 * ---
467 * wcstrim() frees memory allocated by wcsinit() for arrays in the wcsprm
468 * struct that remains unused after it has been set up by wcsset().
469 *
470 * The free’d array members are associated with FITS WCS keyrecords that are
471 * rarely used and usually just bloat the struct: wcsprm::crota, wcsprm::colax,
472 * wcsprm::cname, wcsprm::crder, wcsprm::csyer, wcsprm::czphs, and
473 * wcsprm::cperi. If unused, wcsprm::pv, wcsprm::ps, and wcsprm::cd are also

Generated by Doxygen

292

474 * freed.
475 *
476 * Once these arrays have been freed, a test such as
477 =
478 = if (!undefined(wcs->cname[i])) {...}
479 =
480 * must be protected as follows
481 =
482 = if (wcs->cname && !undefined(wcs->cname[i])) {...}
483 =
484 * In addition, if wcsprm::npv is non-zero but less than wcsprm::npvmax, then
485 * the unused space in wcsprm::pv will be recovered (using realloc()).
486 * Likewise for wcsprm::ps.
487 *
488 * Given and returned:
489 * wcs struct wcsprm*
490 * Coordinate transformation parameters.
491 *
492 * Function return value:
493 * int Status return value:
494 * 0: Success.
495 * 1: Null wcsprm pointer passed.
496 * 14: wcsprm struct is unset.
497 *
498 *
499 * wcssize() - Compute the size of a wcsprm struct
500 * ---
501 * wcssize() computes the full size of a wcsprm struct, including allocated
502 * memory.
503 *
504 * Given:
505 * wcs const struct wcsprm*
506 * Coordinate transformation parameters.
507 *
508 * If NULL, the base size of the struct and the allocated
509 * size are both set to zero.
510 *
511 * Returned:
512 * sizes int[2] The first element is the base size of the struct as
513 * returned by sizeof(struct wcsprm). The second element
514 * is the total allocated size, in bytes, assuming that
515 * the allocation was done by wcsini(). This figure
516 * includes memory allocated for members of constituent
517 * structs, such as wcsprm::lin.
518 *
519 * It is not an error for the struct not to have been set
520 * up via wcsset(), which normally results in additional
521 * memory allocation.
522 *
523 * Function return value:
524 * int Status return value:
525 * 0: Success.
526 *
527 *
528 * auxsize() - Compute the size of a auxprm struct
529 * ---
530 * auxsize() computes the full size of a auxprm struct, including allocated
531 * memory.
532 *
533 * Given:
534 * aux const struct auxprm*
535 * Auxiliary coordinate information.
536 *
537 * If NULL, the base size of the struct and the allocated
538 * size are both set to zero.
539 *
540 * Returned:
541 * sizes int[2] The first element is the base size of the struct as
542 * returned by sizeof(struct auxprm). The second element
543 * is the total allocated size, in bytes, currently zero.
544 *
545 * Function return value:
546 * int Status return value:
547 * 0: Success.
548 *
549 *
550 * wcsprt() - Print routine for the wcsprm struct
551 * --
552 * wcsprt() prints the contents of a wcsprm struct using wcsprintf(). Mainly
553 * intended for diagnostic purposes.
554 *
555 * Given:
556 * wcs const struct wcsprm*
557 * Coordinate transformation parameters.
558 *
559 * Function return value:
560 * int Status return value:

Generated by Doxygen

19.24 wcs.h 293

561 * 0: Success.
562 * 1: Null wcsprm pointer passed.
563 *
564 *
565 * wcsperr() - Print error messages from a wcsprm struct
566 * ---
567 * wcsperr() prints the error message(s), if any, stored in a wcsprm struct,
568 * and the linprm, celprm, prjprm, spcprm, and tabprm structs that it contains.
569 * If there are no errors then nothing is printed. It uses wcserr_prt(), q.v.
570 *
571 * Given:
572 * wcs const struct wcsprm*
573 * Coordinate transformation parameters.
574 *
575 * prefix const char *
576 * If non-NULL, each output line will be prefixed with
577 * this string.
578 *
579 * Function return value:
580 * int Status return value:
581 * 0: Success.
582 * 1: Null wcsprm pointer passed.
583 *
584 *
585 * wcsbchk() - Enable/disable bounds checking
586 * --
587 * wcsbchk() is used to control bounds checking in the projection routines.
588 * Note that wcsset() always enables bounds checking. wcsbchk() will invoke
589 * wcsset() on the wcsprm struct beforehand if necessary.
590 *
591 * Given and returned:
592 * wcs struct wcsprm*
593 * Coordinate transformation parameters.
594 *
595 * Given:
596 * bounds int If bounds&1 then enable strict bounds checking for the
597 * spherical-to-Cartesian (s2x) transformation for the
598 * AZP, SZP, TAN, SIN, ZPN, and COP projections.
599 *
600 * If bounds&2 then enable strict bounds checking for the
601 * Cartesian-to-spherical (x2s) transformation for the
602 * HPX and XPH projections.
603 *
604 * If bounds&4 then enable bounds checking on the native
605 * coordinates returned by the Cartesian-to-spherical
606 * (x2s) transformations using prjchk().
607 *
608 * Zero it to disable all checking.
609 *
610 * Function return value:
611 * int Status return value:
612 * 0: Success.
613 * 1: Null wcsprm pointer passed.
614 *
615 *
616 * wcsset() - Setup routine for the wcsprm struct
617 * --
618 * wcsset() sets up a wcsprm struct according to information supplied within
619 * it (refer to the description of the wcsprm struct).
620 *
621 * wcsset() recognizes the NCP projection and converts it to the equivalent SIN
622 * projection and likewise translates GLS into SFL. It also translates the
623 * AIPS spectral types (’FREQ-LSR’, ’FELO-HEL’, etc.), possibly changing the
624 * input header keywords wcsprm::ctype and/or wcsprm::specsys if necessary.
625 *
626 * Note that this routine need not be called directly; it will be invoked by
627 * wcsp2s() and wcss2p() if the wcsprm::flag is anything other than a
628 * predefined magic value.
629 *
630 * Given and returned:
631 * wcs struct wcsprm*
632 * Coordinate transformation parameters.
633 *
634 * Function return value:
635 * int Status return value:
636 * 0: Success.
637 * 1: Null wcsprm pointer passed.
638 * 2: Memory allocation failed.
639 * 3: Linear transformation matrix is singular.
640 * 4: Inconsistent or unrecognized coordinate axis
641 * types.
642 * 5: Invalid parameter value.
643 * 6: Invalid coordinate transformation parameters.
644 * 7: Ill-conditioned coordinate transformation
645 * parameters.
646 *
647 * For returns > 1, a detailed error message is set in

Generated by Doxygen

294

648 * wcsprm::err if enabled, see wcserr_enable().
649 *
650 * Notes:
651 * 1: wcsset() always enables strict bounds checking in the projection
652 * routines (via a call to prjini()). Use wcsbchk() to modify
653 * bounds-checking after wcsset() is invoked.
654 *
655 *
656 * wcsp2s() - Pixel-to-world transformation
657 * --
658 * wcsp2s() transforms pixel coordinates to world coordinates.
659 *
660 * Given and returned:
661 * wcs struct wcsprm*
662 * Coordinate transformation parameters.
663 *
664 * Given:
665 * ncoord,
666 * nelem int The number of coordinates, each of vector length
667 * nelem but containing wcs.naxis coordinate elements.
668 * Thus nelem must equal or exceed the value of the
669 * NAXIS keyword unless ncoord == 1, in which case nelem
670 * is not used.
671 *
672 * pixcrd const double[ncoord][nelem]
673 * Array of pixel coordinates.
674 *
675 * Returned:
676 * imgcrd double[ncoord][nelem]
677 * Array of intermediate world coordinates. For
678 * celestial axes, imgcrd[][wcs.lng] and
679 * imgcrd[][wcs.lat] are the projected x-, and
680 * y-coordinates in pseudo "degrees". For spectral
681 * axes, imgcrd[][wcs.spec] is the intermediate spectral
682 * coordinate, in SI units.
683 *
684 * phi,theta double[ncoord]
685 * Longitude and latitude in the native coordinate system
686 * of the projection [deg].
687 *
688 * world double[ncoord][nelem]
689 * Array of world coordinates. For celestial axes,
690 * world[][wcs.lng] and world[][wcs.lat] are the
691 * celestial longitude and latitude [deg]. For
692 * spectral axes, imgcrd[][wcs.spec] is the intermediate
693 * spectral coordinate, in SI units.
694 *
695 * stat int[ncoord]
696 * Status return value for each coordinate:
697 * 0: Success.
698 * 1+: A bit mask indicating invalid pixel coordinate
699 * element(s).
700 *
701 * Function return value:
702 * int Status return value:
703 * 0: Success.
704 * 1: Null wcsprm pointer passed.
705 * 2: Memory allocation failed.
706 * 3: Linear transformation matrix is singular.
707 * 4: Inconsistent or unrecognized coordinate axis
708 * types.
709 * 5: Invalid parameter value.
710 * 6: Invalid coordinate transformation parameters.
711 * 7: Ill-conditioned coordinate transformation
712 * parameters.
713 * 8: One or more of the pixel coordinates were
714 * invalid, as indicated by the stat vector.
715 *
716 * For returns > 1, a detailed error message is set in
717 * wcsprm::err if enabled, see wcserr_enable().
718 *
719 *
720 * wcss2p() - World-to-pixel transformation
721 * --
722 * wcss2p() transforms world coordinates to pixel coordinates.
723 *
724 * Given and returned:
725 * wcs struct wcsprm*
726 * Coordinate transformation parameters.
727 *
728 * Given:
729 * ncoord,
730 * nelem int The number of coordinates, each of vector length nelem
731 * but containing wcs.naxis coordinate elements. Thus
732 * nelem must equal or exceed the value of the NAXIS
733 * keyword unless ncoord == 1, in which case nelem is not
734 * used.

Generated by Doxygen

19.24 wcs.h 295

735 *
736 * world const double[ncoord][nelem]
737 * Array of world coordinates. For celestial axes,
738 * world[][wcs.lng] and world[][wcs.lat] are the
739 * celestial longitude and latitude [deg]. For spectral
740 * axes, world[][wcs.spec] is the spectral coordinate, in
741 * SI units.
742 *
743 * Returned:
744 * phi,theta double[ncoord]
745 * Longitude and latitude in the native coordinate
746 * system of the projection [deg].
747 *
748 * imgcrd double[ncoord][nelem]
749 * Array of intermediate world coordinates. For
750 * celestial axes, imgcrd[][wcs.lng] and
751 * imgcrd[][wcs.lat] are the projected x-, and
752 * y-coordinates in pseudo "degrees". For quadcube
753 * projections with a CUBEFACE axis the face number is
754 * also returned in imgcrd[][wcs.cubeface]. For
755 * spectral axes, imgcrd[][wcs.spec] is the intermediate
756 * spectral coordinate, in SI units.
757 *
758 * pixcrd double[ncoord][nelem]
759 * Array of pixel coordinates.
760 *
761 * stat int[ncoord]
762 * Status return value for each coordinate:
763 * 0: Success.
764 * 1+: A bit mask indicating invalid world coordinate
765 * element(s).
766 *
767 * Function return value:
768 * int Status return value:
769 * 0: Success.
770 * 1: Null wcsprm pointer passed.
771 * 2: Memory allocation failed.
772 * 3: Linear transformation matrix is singular.
773 * 4: Inconsistent or unrecognized coordinate axis
774 * types.
775 * 5: Invalid parameter value.
776 * 6: Invalid coordinate transformation parameters.
777 * 7: Ill-conditioned coordinate transformation
778 * parameters.
779 * 9: One or more of the world coordinates were
780 * invalid, as indicated by the stat vector.
781 *
782 * For returns > 1, a detailed error message is set in
783 * wcsprm::err if enabled, see wcserr_enable().
784 *
785 *
786 * wcsmix() - Hybrid coordinate transformation
787 * ---
788 * wcsmix(), given either the celestial longitude or latitude plus an element
789 * of the pixel coordinate, solves for the remaining elements by iterating on
790 * the unknown celestial coordinate element using wcss2p(). Refer also to the
791 * notes below.
792 *
793 * Given and returned:
794 * wcs struct wcsprm*
795 * Indices for the celestial coordinates obtained
796 * by parsing the wcsprm::ctype[].
797 *
798 * Given:
799 * mixpix int Which element of the pixel coordinate is given.
800 *
801 * mixcel int Which element of the celestial coordinate is given:
802 * 1: Celestial longitude is given in
803 * world[wcs.lng], latitude returned in
804 * world[wcs.lat].
805 * 2: Celestial latitude is given in
806 * world[wcs.lat], longitude returned in
807 * world[wcs.lng].
808 *
809 * vspan const double[2]
810 * Solution interval for the celestial coordinate [deg].
811 * The ordering of the two limits is irrelevant.
812 * Longitude ranges may be specified with any convenient
813 * normalization, for example [-120,+120] is the same as
814 * [240,480], except that the solution will be returned
815 * with the same normalization, i.e. lie within the
816 * interval specified.
817 *
818 * vstep const double
819 * Step size for solution search [deg]. If zero, a
820 * sensible, although perhaps non-optimal default will be
821 * used.

Generated by Doxygen

296

822 *
823 * viter int If a solution is not found then the step size will be
824 * halved and the search recommenced. viter controls how
825 * many times the step size is halved. The allowed range
826 * is 5 - 10.
827 *
828 * Given and returned:
829 * world double[naxis]
830 * World coordinate elements. world[wcs.lng] and
831 * world[wcs.lat] are the celestial longitude and
832 * latitude [deg]. Which is given and which returned
833 * depends on the value of mixcel. All other elements
834 * are given.
835 *
836 * Returned:
837 * phi,theta double[naxis]
838 * Longitude and latitude in the native coordinate
839 * system of the projection [deg].
840 *
841 * imgcrd double[naxis]
842 * Image coordinate elements. imgcrd[wcs.lng] and
843 * imgcrd[wcs.lat] are the projected x-, and
844 * y-coordinates in pseudo "degrees".
845 *
846 * Given and returned:
847 * pixcrd double[naxis]
848 * Pixel coordinate. The element indicated by mixpix is
849 * given and the remaining elements are returned.
850 *
851 * Function return value:
852 * int Status return value:
853 * 0: Success.
854 * 1: Null wcsprm pointer passed.
855 * 2: Memory allocation failed.
856 * 3: Linear transformation matrix is singular.
857 * 4: Inconsistent or unrecognized coordinate axis
858 * types.
859 * 5: Invalid parameter value.
860 * 6: Invalid coordinate transformation parameters.
861 * 7: Ill-conditioned coordinate transformation
862 * parameters.
863 * 10: Invalid world coordinate.
864 * 11: No solution found in the specified interval.
865 *
866 * For returns > 1, a detailed error message is set in
867 * wcsprm::err if enabled, see wcserr_enable().
868 *
869 * Notes:
870 * 1: Initially the specified solution interval is checked to see if it’s a
871 * "crossing" interval. If it isn’t, a search is made for a crossing
872 * solution by iterating on the unknown celestial coordinate starting at
873 * the upper limit of the solution interval and decrementing by the
874 * specified step size. A crossing is indicated if the trial value of the
875 * pixel coordinate steps through the value specified. If a crossing
876 * interval is found then the solution is determined by a modified form of
877 * "regula falsi" division of the crossing interval. If no crossing
878 * interval was found within the specified solution interval then a search
879 * is made for a "non-crossing" solution as may arise from a point of
880 * tangency. The process is complicated by having to make allowance for
881 * the discontinuities that occur in all map projections.
882 *
883 * Once one solution has been determined others may be found by subsequent
884 * invokations of wcsmix() with suitably restricted solution intervals.
885 *
886 * Note the circumstance that arises when the solution point lies at a
887 * native pole of a projection in which the pole is represented as a
888 * finite curve, for example the zenithals and conics. In such cases two
889 * or more valid solutions may exist but wcsmix() only ever returns one.
890 *
891 * Because of its generality wcsmix() is very compute-intensive. For
892 * compute-limited applications more efficient special-case solvers could
893 * be written for simple projections, for example non-oblique cylindrical
894 * projections.
895 *
896 *
897 * wcsccs() - Change celestial coordinate system
898 * ---
899 * wcsccs() changes the celestial coordinate system of a wcsprm struct. For
900 * example, from equatorial to galactic coordinates.
901 *
902 * Parameters that define the spherical coordinate transformation, essentially
903 * being three Euler angles, must be provided. Thereby wcsccs() does not need
904 * prior knowledge of specific celestial coordinate systems. It also has the
905 * advantage of making it completely general.
906 *
907 * Auxiliary members of the wcsprm struct relating to equatorial celestial
908 * coordinate systems may also be changed.

Generated by Doxygen

19.24 wcs.h 297

909 *
910 * Only orthodox spherical coordinate systems are supported. That is, they
911 * must be right-handed, with latitude increasing from zero at the equator to
912 * +90 degrees at the pole. This precludes systems such as aziumuth and zenith
913 * distance, which, however, could be handled as negative azimuth and
914 * elevation.
915 *
916 * PLEASE NOTE: Information in the wcsprm struct relating to the original
917 * coordinate system will be overwritten and therefore lost. If this is
918 * undesirable, invoke wcsccs() on a copy of the struct made with wcssub().
919 * The wcsprm struct is reset on return with an explicit call to wcsset().
920 *
921 * Given and returned:
922 * wcs struct wcsprm*
923 * Coordinate transformation parameters. Particular
924 * "values to be given" elements of the wcsprm struct
925 * are modified.
926 *
927 * Given:
928 * lng2p1,
929 * lat2p1 double Longitude and latitude in the new celestial coordinate
930 * system of the pole (i.e. latitude +90) of the original
931 * system [deg]. See notes 1 and 2 below.
932 *
933 * lng1p2 double Longitude in the original celestial coordinate system
934 * of the pole (i.e. latitude +90) of the new system
935 * [deg]. See note 1 below.
936 *
937 * clng,clat const char*
938 * Longitude and latitude identifiers of the new CTYPEia
939 * celestial axis codes, without trailing dashes. For
940 * example, "RA" and "DEC" or "GLON" and "GLAT". Up to
941 * four characters are used, longer strings need not be
942 * null-terminated.
943 *
944 * radesys const char*
945 * Used when transforming to equatorial coordinates,
946 * identified by clng == "RA" and clat = "DEC". May be
947 * set to the null pointer to preserve the current value.
948 * Up to 71 characters are used, longer strings need not
949 * be null-terminated.
950 *
951 * If the new coordinate system is anything other than
952 * equatorial, then wcsprm::radesys will be cleared.
953 *
954 * equinox double Used when transforming to equatorial coordinates. May
955 * be set to zero to preserve the current value.
956 *
957 * If the new coordinate system is not equatorial, then
958 * wcsprm::equinox will be marked as undefined.
959 *
960 * alt const char*
961 * Character code for alternate coordinate descriptions
962 * (i.e. the ’a’ in keyword names such as CTYPEia). This
963 * is blank for the primary coordinate description, or
964 * one of the 26 upper-case letters, A-Z. May be set to
965 * the null pointer, or null string if no change is
966 * required.
967 *
968 * Function return value:
969 * int Status return value:
970 * 0: Success.
971 * 1: Null wcsprm pointer passed.
972 * 12: Invalid subimage specification (no celestial
973 * axes).
974 *
975 * Notes:
976 * 1: Follows the prescription given in WCS Paper II, Sect. 2.7 for changing
977 * celestial coordinates.
978 *
979 * The implementation takes account of indeterminacies that arise in that
980 * prescription in the particular cases where one of the poles of the new
981 * system is at the fiducial point, or one of them is at the native pole.
982 *
983 * 2: If lat2p1 == +90, i.e. where the poles of the two coordinate systems
984 * coincide, then the spherical coordinate transformation becomes a simple
985 * change in origin of longitude given by
986 * lng2 = lng1 + (lng2p1 - lng1p2 - 180), and lat2 = lat1, where
987 * (lng2,lat2) are coordinates in the new system, and (lng1,lat1) are
988 * coordinates in the original system.
989 *
990 * Likewise, if lat2p1 == -90, then lng2 = -lng1 + (lng2p1 + lng1p2), and
991 * lat2 = -lat1.
992 *
993 * 3: For example, if the original coordinate system is B1950 equatorial and
994 * the desired new coordinate system is galactic, then
995 *

Generated by Doxygen

298

996 * - (lng2p1,lat2p1) are the galactic coordinates of the B1950 celestial
997 * pole, defined by the IAU to be (123.0,+27.4), and lng1p2 is the B1950
998 * right ascension of the galactic pole, defined as 192.25. Clearly
999 * these coordinates are fixed for a particular coordinate
1000 * transformation.
1001 *
1002 * - (clng,clat) would be ’GLON’ and ’GLAT’, these being the FITS standard
1003 * identifiers for galactic coordinates.
1004 *
1005 * - Since the new coordinate system is not equatorial, wcsprm::radesys
1006 * and wcsprm::equinox will be cleared.
1007 *
1008 * 4. The coordinates required for some common transformations (obtained from
1009 * https://ned.ipac.caltech.edu/coordinate_calculator) are as follows:
1010 *
1011 = (123.0000,+27.4000) galactic coordinates of B1950 celestial pole,
1012 = (192.2500,+27.4000) B1950 equatorial coordinates of galactic pole.
1013 *
1014 = (122.9319,+27.1283) galactic coordinates of J2000 celestial pole,
1015 = (192.8595,+27.1283) J2000 equatorial coordinates of galactic pole.
1016 *
1017 = (359.6774,+89.7217) B1950 equatorial coordinates of J2000 pole,
1018 = (180.3162,+89.7217) J2000 equatorial coordinates of B1950 pole.
1019 *
1020 = (270.0000,+66.5542) B1950 equatorial coordinates of B1950 ecliptic pole,
1021 = (90.0000,+66.5542) B1950 ecliptic coordinates of B1950 celestial pole.
1022 *
1023 = (270.0000,+66.5607) J2000 equatorial coordinates of J2000 ecliptic pole,
1024 = (90.0000,+66.5607) J2000 ecliptic coordinates of J2000 celestial pole.
1025 *
1026 = (26.7315,+15.6441) supergalactic coordinates of B1950 celestial pole,
1027 = (283.1894,+15.6441) B1950 equatorial coordinates of supergalactic pole.
1028 *
1029 = (26.4505,+15.7089) supergalactic coordinates of J2000 celestial pole,
1030 = (283.7542,+15.7089) J2000 equatorial coordinates of supergalactic pole.
1031 *
1032 *
1033 * wcssptr() - Spectral axis translation
1034 * -------------------------------------
1035 * wcssptr() translates the spectral axis in a wcsprm struct. For example, a
1036 * ’FREQ’ axis may be translated into ’ZOPT-F2W’ and vice versa.
1037 *
1038 * PLEASE NOTE: Information in the wcsprm struct relating to the original
1039 * coordinate system will be overwritten and therefore lost. If this is
1040 * undesirable, invoke wcssptr() on a copy of the struct made with wcssub().
1041 * The wcsprm struct is reset on return with an explicit call to wcsset().
1042 *
1043 * Given and returned:
1044 * wcs struct wcsprm*
1045 * Coordinate transformation parameters.
1046 *
1047 * i int* Index of the spectral axis (0-relative). If given < 0
1048 * it will be set to the first spectral axis identified
1049 * from the ctype[] keyvalues in the wcsprm struct.
1050 *
1051 * ctype char[9] Desired spectral CTYPEia. Wildcarding may be used as
1052 * for the ctypeS2 argument to spctrn() as described in
1053 * the prologue of spc.h, i.e. if the final three
1054 * characters are specified as "???", or if just the
1055 * eighth character is specified as ’?’, the correct
1056 * algorithm code will be substituted and returned.
1057 *
1058 * Function return value:
1059 * int Status return value:
1060 * 0: Success.
1061 * 1: Null wcsprm pointer passed.
1062 * 2: Memory allocation failed.
1063 * 3: Linear transformation matrix is singular.
1064 * 4: Inconsistent or unrecognized coordinate axis
1065 * types.
1066 * 5: Invalid parameter value.
1067 * 6: Invalid coordinate transformation parameters.
1068 * 7: Ill-conditioned coordinate transformation
1069 * parameters.
1070 * 12: Invalid subimage specification (no spectral
1071 * axis).
1072 *
1073 * For returns > 1, a detailed error message is set in
1074 * wcsprm::err if enabled, see wcserr_enable().
1075 *
1076 *
1077 * wcslib_version() - WCSLIB version number
1078 * --
1079 * wcslib_version() returns the WCSLIB version number.
1080 *
1081 * The major version number changes when the ABI changes or when the license
1082 * conditions change. ABI changes typically result from a change to the

Generated by Doxygen

19.24 wcs.h 299

1083 * contents of one of the structs. The major version number is used to
1084 * distinguish between incompatible versions of the sharable library.
1085 *
1086 * The minor version number changes with new functionality or bug fixes that do
1087 * not involve a change in the ABI.
1088 *
1089 * The auxiliary version number (which is often absent) signals changes to the
1090 * documentation, test suite, build procedures, or any other change that does
1091 * not affect the compiled library.
1092 *
1093 * Returned:
1094 * vers[3] int[3] The broken-down version number:
1095 * 0: Major version number.
1096 * 1: Minor version number.
1097 * 2: Auxiliary version number (zero if absent).
1098 * May be given as a null pointer if not required.
1099 *
1100 * Function return value:
1101 * char* A null-terminated, statically allocated string
1102 * containing the version number in the usual form, i.e.
1103 * "<major>.<minor>.<auxiliary>".
1104 *
1105 *
1106 * wcsprm struct - Coordinate transformation parameters
1107 * --
1108 * The wcsprm struct contains information required to transform world
1109 * coordinates. It consists of certain members that must be set by the user
1110 * ("given") and others that are set by the WCSLIB routines ("returned").
1111 * While the addresses of the arrays themselves may be set by wcsinit() if it
1112 * (optionally) allocates memory, their contents must be set by the user.
1113 *
1114 * Some parameters that are given are not actually required for transforming
1115 * coordinates. These are described as "auxiliary"; the struct simply provides
1116 * a place to store them, though they may be used by wcshdo() in constructing a
1117 * FITS header from a wcsprm struct. Some of the returned values are supplied
1118 * for informational purposes and others are for internal use only as
1119 * indicated.
1120 *
1121 * In practice, it is expected that a WCS parser would scan the FITS header to
1122 * determine the number of coordinate axes. It would then use wcsinit() to
1123 * allocate memory for arrays in the wcsprm struct and set default values.
1124 * Then as it reread the header and identified each WCS keyrecord it would load
1125 * the value into the relevant wcsprm array element. This is essentially what
1126 * wcspih() does - refer to the prologue of wcshdr.h. As the final step,
1127 * wcsset() is invoked, either directly or indirectly, to set the derived
1128 * members of the wcsprm struct. wcsset() strips off trailing blanks in all
1129 * string members and null-fills the character array.
1130 *
1131 * int flag
1132 * (Given and returned) This flag must be set to zero whenever any of the
1133 * following wcsprm struct members are set or changed:
1134 *
1135 * - wcsprm::naxis (q.v., not normally set by the user),
1136 * - wcsprm::crpix,
1137 * - wcsprm::pc,
1138 * - wcsprm::cdelt,
1139 * - wcsprm::crval,
1140 * - wcsprm::cunit,
1141 * - wcsprm::ctype,
1142 * - wcsprm::lonpole,
1143 * - wcsprm::latpole,
1144 * - wcsprm::restfrq,
1145 * - wcsprm::restwav,
1146 * - wcsprm::npv,
1147 * - wcsprm::pv,
1148 * - wcsprm::nps,
1149 * - wcsprm::ps,
1150 * - wcsprm::cd,
1151 * - wcsprm::crota,
1152 * - wcsprm::altlin,
1153 * - wcsprm::ntab,
1154 * - wcsprm::nwtb,
1155 * - wcsprm::tab,
1156 * - wcsprm::wtb.
1157 *
1158 * This signals the initialization routine, wcsset(), to recompute the
1159 * returned members of the linprm, celprm, spcprm, and tabprm structs.
1160 * wcsset() will reset flag to indicate that this has been done.
1161 *
1162 * PLEASE NOTE: flag should be set to -1 when wcsinit() is called for the
1163 * first time for a particular wcsprm struct in order to initialize memory
1164 * management. It must ONLY be used on the first initialization otherwise
1165 * memory leaks may result.
1166 *
1167 * int naxis
1168 * (Given or returned) Number of pixel and world coordinate elements.
1169 *

Generated by Doxygen

300

1170 * If wcsinit() is used to initialize the linprm struct (as would normally
1171 * be the case) then it will set naxis from the value passed to it as a
1172 * function argument. The user should not subsequently modify it.
1173 *
1174 * double *crpix
1175 * (Given) Address of the first element of an array of double containing
1176 * the coordinate reference pixel, CRPIXja.
1177 *
1178 * double *pc
1179 * (Given) Address of the first element of the PCi_ja (pixel coordinate)
1180 * transformation matrix. The expected order is
1181 *
1182 = struct wcsprm wcs;
1183 = wcs.pc = {PC1_1, PC1_2, PC2_1, PC2_2};
1184 *
1185 * This may be constructed conveniently from a 2-D array via
1186 *
1187 = double m[2][2] = {{PC1_1, PC1_2},
1188 = {PC2_1, PC2_2}};
1189 *
1190 * which is equivalent to
1191 *
1192 = double m[2][2];
1193 = m[0][0] = PC1_1;
1194 = m[0][1] = PC1_2;
1195 = m[1][0] = PC2_1;
1196 = m[1][1] = PC2_2;
1197 *
1198 * The storage order for this 2-D array is the same as for the 1-D array,
1199 * whence
1200 *
1201 = wcs.pc = *m;
1202 *
1203 * would be legitimate.
1204 *
1205 * double *cdelt
1206 * (Given) Address of the first element of an array of double containing
1207 * the coordinate increments, CDELTia.
1208 *
1209 * double *crval
1210 * (Given) Address of the first element of an array of double containing
1211 * the coordinate reference values, CRVALia.
1212 *
1213 * char (*cunit)[72]
1214 * (Given) Address of the first element of an array of char[72] containing
1215 * the CUNITia keyvalues which define the units of measurement of the
1216 * CRVALia, CDELTia, and CDi_ja keywords.
1217 *
1218 * As CUNITia is an optional header keyword, cunit[][72] may be left blank
1219 * but otherwise is expected to contain a standard units specification as
1220 * defined by WCS Paper I. Utility function wcsutrn(), described in
1221 * wcsunits.h, is available to translate commonly used non-standard units
1222 * specifications but this must be done as a separate step before invoking
1223 * wcsset().
1224 *
1225 * For celestial axes, if cunit[][72] is not blank, wcsset() uses
1226 * wcsunits() to parse it and scale cdelt[], crval[], and cd[][*] to
1227 * degrees. It then resets cunit[][72] to "deg".
1228 *
1229 * For spectral axes, if cunit[][72] is not blank, wcsset() uses wcsunits()
1230 * to parse it and scale cdelt[], crval[], and cd[][*] to SI units. It
1231 * then resets cunit[][72] accordingly.
1232 *
1233 * wcsset() ignores cunit[][72] for other coordinate types; cunit[][72] may
1234 * be used to label coordinate values.
1235 *
1236 * These variables accomodate the longest allowed string-valued FITS
1237 * keyword, being limited to 68 characters, plus the null-terminating
1238 * character.
1239 *
1240 * char (*ctype)[72]
1241 * (Given) Address of the first element of an array of char[72] containing
1242 * the coordinate axis types, CTYPEia.
1243 *
1244 * The ctype[][72] keyword values must be in upper case and there must be
1245 * zero or one pair of matched celestial axis types, and zero or one
1246 * spectral axis. The ctype[][72] strings should be padded with blanks on
1247 * the right and null-terminated so that they are at least eight characters
1248 * in length.
1249 *
1250 * These variables accomodate the longest allowed string-valued FITS
1251 * keyword, being limited to 68 characters, plus the null-terminating
1252 * character.
1253 *
1254 * double lonpole
1255 * (Given and returned) The native longitude of the celestial pole, phi_p,
1256 * given by LONPOLEa [deg] or by PVi_2a [deg] attached to the longitude

Generated by Doxygen

19.24 wcs.h 301

1257 * axis which takes precedence if defined, and ...
1258 * double latpole
1259 * (Given and returned) ... the native latitude of the celestial pole,
1260 * theta_p, given by LATPOLEa [deg] or by PVi_3a [deg] attached to the
1261 * longitude axis which takes precedence if defined.
1262 *
1263 * lonpole and latpole may be left to default to values set by wcsinit()
1264 * (see celprm::ref), but in any case they will be reset by wcsset() to
1265 * the values actually used. Note therefore that if the wcsprm struct is
1266 * reused without resetting them, whether directly or via wcsinit(), they
1267 * will no longer have their default values.
1268 *
1269 * double restfrq
1270 * (Given) The rest frequency [Hz], and/or ...
1271 * double restwav
1272 * (Given) ... the rest wavelength in vacuo [m], only one of which need be
1273 * given, the other should be set to zero.
1274 *
1275 * int npv
1276 * (Given) The number of entries in the wcsprm::pv[] array.
1277 *
1278 * int npvmax
1279 * (Given or returned) The length of the wcsprm::pv[] array.
1280 *
1281 * npvmax will be set by wcsinit() if it allocates memory for wcsprm::pv[],
1282 * otherwise it must be set by the user. See also wcsnpv().
1283 *
1284 * struct pvcard *pv
1285 * (Given) Address of the first element of an array of length npvmax of
1286 * pvcard structs.
1287 *
1288 * As a FITS header parser encounters each PVi_ma keyword it should load it
1289 * into a pvcard struct in the array and increment npv. wcsset()
1290 * interprets these as required.
1291 *
1292 * Note that, if they were not given, wcsset() resets the entries for
1293 * PVi_1a, PVi_2a, PVi_3a, and PVi_4a for longitude axis i to match
1294 * phi_0 and theta_0 (the native longitude and latitude of the reference
1295 * point), LONPOLEa and LATPOLEa respectively.
1296 *
1297 * int nps
1298 * (Given) The number of entries in the wcsprm::ps[] array.
1299 *
1300 * int npsmax
1301 * (Given or returned) The length of the wcsprm::ps[] array.
1302 *
1303 * npsmax will be set by wcsinit() if it allocates memory for wcsprm::ps[],
1304 * otherwise it must be set by the user. See also wcsnps().
1305 *
1306 * struct pscard *ps
1307 * (Given) Address of the first element of an array of length npsmax of
1308 * pscard structs.
1309 *
1310 * As a FITS header parser encounters each PSi_ma keyword it should load it
1311 * into a pscard struct in the array and increment nps. wcsset()
1312 * interprets these as required (currently no PSi_ma keyvalues are
1313 * recognized).
1314 *
1315 * double *cd
1316 * (Given) For historical compatibility, the wcsprm struct supports two
1317 * alternate specifications of the linear transformation matrix, those
1318 * associated with the CDi_ja keywords, and ...
1319 * double *crota
1320 * (Given) ... those associated with the CROTAi keywords. Although these
1321 * may not formally co-exist with PCi_ja, the approach taken here is simply
1322 * to ignore them if given in conjunction with PCi_ja.
1323 *
1324 * int altlin
1325 * (Given) altlin is a bit flag that denotes which of the PCi_ja, CDi_ja
1326 * and CROTAi keywords are present in the header:
1327 *
1328 * - Bit 0: PCi_ja is present.
1329 *
1330 * - Bit 1: CDi_ja is present.
1331 *
1332 * Matrix elements in the IRAF convention are equivalent to the product
1333 * CDi_ja = CDELTia * PCi_ja, but the defaults differ from that of the
1334 * PCi_ja matrix. If one or more CDi_ja keywords are present then all
1335 * unspecified CDi_ja default to zero. If no CDi_ja (or CROTAi) keywords
1336 * are present, then the header is assumed to be in PCi_ja form whether
1337 * or not any PCi_ja keywords are present since this results in an
1338 * interpretation of CDELTia consistent with the original FITS
1339 * specification.
1340 *
1341 * While CDi_ja may not formally co-exist with PCi_ja, it may co-exist
1342 * with CDELTia and CROTAi which are to be ignored.
1343 *

Generated by Doxygen

302

1344 * - Bit 2: CROTAi is present.
1345 *
1346 * In the AIPS convention, CROTAi may only be associated with the
1347 * latitude axis of a celestial axis pair. It specifies a rotation in
1348 * the image plane that is applied AFTER the CDELTia; any other CROTAi
1349 * keywords are ignored.
1350 *
1351 * CROTAi may not formally co-exist with PCi_ja.
1352 *
1353 * CROTAi and CDELTia may formally co-exist with CDi_ja but if so are to
1354 * be ignored.
1355 *
1356 * - Bit 3: PCi_ja + CDELTia was derived from CDi_ja by wcspcx().
1357 *
1358 * This bit is set by wcspcx() when it derives PCi_ja and CDELTia from
1359 * CDi_ja via an orthonormal decomposition. In particular, it signals
1360 * wcsset() not to replace PCi_ja by a copy of CDi_ja with CDELTia set
1361 * to unity.
1362 *
1363 * CDi_ja and CROTAi keywords, if found, are to be stored in the wcsprm::cd
1364 * and wcsprm::crota arrays which are dimensioned similarly to wcsprm::pc
1365 * and wcsprm::cdelt. FITS header parsers should use the following
1366 * procedure:
1367 *
1368 * - Whenever a PCi_ja keyword is encountered: altlin |= 1;
1369 *
1370 * - Whenever a CDi_ja keyword is encountered: altlin |= 2;
1371 *
1372 * - Whenever a CROTAi keyword is encountered: altlin |= 4;
1373 *
1374 * If none of these bits are set the PCi_ja representation results, i.e.
1375 * wcsprm::pc and wcsprm::cdelt will be used as given.
1376 *
1377 * These alternate specifications of the linear transformation matrix are
1378 * translated immediately to PCi_ja by wcsset() and are invisible to the
1379 * lower-level WCSLIB routines. In particular, unless bit 3 is also set,
1380 * wcsset() resets wcsprm::cdelt to unity if CDi_ja is present (and no
1381 * PCi_ja).
1382 *
1383 * If CROTAi are present but none is associated with the latitude axis
1384 * (and no PCi_ja or CDi_ja), then wcsset() reverts to a unity PCi_ja
1385 * matrix.
1386 *
1387 * int velref
1388 * (Given) AIPS velocity code VELREF, refer to spcaips().
1389 *
1390 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1391 * wcsprm::velref is changed.
1392 *
1393 * char alt[4]
1394 * (Given, auxiliary) Character code for alternate coordinate descriptions
1395 * (i.e. the ’a’ in keyword names such as CTYPEia). This is blank for the
1396 * primary coordinate description, or one of the 26 upper-case letters,
1397 * A-Z.
1398 *
1399 * An array of four characters is provided for alignment purposes, only the
1400 * first is used.
1401 *
1402 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1403 * wcsprm::alt is changed.
1404 *
1405 * int colnum
1406 * (Given, auxiliary) Where the coordinate representation is associated
1407 * with an image-array column in a FITS binary table, this variable may be
1408 * used to record the relevant column number.
1409 *
1410 * It should be set to zero for an image header or pixel list.
1411 *
1412 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1413 * wcsprm::colnum is changed.
1414 *
1415 * int *colax
1416 * (Given, auxiliary) Address of the first element of an array of int
1417 * recording the column numbers for each axis in a pixel list.
1418 *
1419 * The array elements should be set to zero for an image header or image
1420 * array in a binary table.
1421 *
1422 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1423 * wcsprm::colax is changed.
1424 *
1425 * char (*cname)[72]
1426 * (Given, auxiliary) The address of the first element of an array of
1427 * char[72] containing the coordinate axis names, CNAMEia.
1428 *
1429 * These variables accomodate the longest allowed string-valued FITS
1430 * keyword, being limited to 68 characters, plus the null-terminating

Generated by Doxygen

19.24 wcs.h 303

1431 * character.
1432 *
1433 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1434 * wcsprm::cname is changed.
1435 *
1436 * double *crder
1437 * (Given, auxiliary) Address of the first element of an array of double
1438 * recording the random error in the coordinate value, CRDERia.
1439 *
1440 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1441 * wcsprm::crder is changed.
1442 *
1443 * double *csyer
1444 * (Given, auxiliary) Address of the first element of an array of double
1445 * recording the systematic error in the coordinate value, CSYERia.
1446 *
1447 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1448 * wcsprm::csyer is changed.
1449 *
1450 * double *czphs
1451 * (Given, auxiliary) Address of the first element of an array of double
1452 * recording the time at the zero point of a phase axis, CZPHSia.
1453 *
1454 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1455 * wcsprm::czphs is changed.
1456 *
1457 * double *cperi
1458 * (Given, auxiliary) Address of the first element of an array of double
1459 * recording the period of a phase axis, CPERIia.
1460 *
1461 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1462 * wcsprm::cperi is changed.
1463 *
1464 * char wcsname[72]
1465 * (Given, auxiliary) The name given to the coordinate representation,
1466 * WCSNAMEa. This variable accomodates the longest allowed string-valued
1467 * FITS keyword, being limited to 68 characters, plus the null-terminating
1468 * character.
1469 *
1470 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1471 * wcsprm::wcsname is changed.
1472 *
1473 * char timesys[72]
1474 * (Given, auxiliary) TIMESYS keyvalue, being the time scale (UTC, TAI,
1475 * etc.) in which all other time-related auxiliary header values are
1476 * recorded. Also defines the time scale for an image axis with CTYPEia
1477 * set to ’TIME’.
1478 *
1479 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1480 * wcsprm::timesys is changed.
1481 *
1482 * char trefpos[72]
1483 * (Given, auxiliary) TREFPOS keyvalue, being the location in space where
1484 * the recorded time is valid.
1485 *
1486 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1487 * wcsprm::trefpos is changed.
1488 *
1489 * char trefdir[72]
1490 * (Given, auxiliary) TREFDIR keyvalue, being the reference direction used
1491 * in calculating a pathlength delay.
1492 *
1493 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1494 * wcsprm::trefdir is changed.
1495 *
1496 * char plephem[72]
1497 * (Given, auxiliary) PLEPHEM keyvalue, being the Solar System ephemeris
1498 * used for calculating a pathlength delay.
1499 *
1500 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1501 * wcsprm::plephem is changed.
1502 *
1503 * char timeunit[72]
1504 * (Given, auxiliary) TIMEUNIT keyvalue, being the time units in which
1505 * the following header values are expressed: TSTART, TSTOP, TIMEOFFS,
1506 * TIMSYER, TIMRDER, TIMEDEL. It also provides the default value for
1507 * CUNITia for time axes.
1508 *
1509 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1510 * wcsprm::timeunit is changed.
1511 *
1512 * char dateref[72]
1513 * (Given, auxiliary) DATEREF keyvalue, being the date of a reference epoch
1514 * relative to which other time measurements refer.
1515 *
1516 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1517 * wcsprm::dateref is changed.

Generated by Doxygen

304

1518 *
1519 * double mjdref[2]
1520 * (Given, auxiliary) MJDREF keyvalue, equivalent to DATEREF expressed as
1521 * a Modified Julian Date (MJD = JD - 2400000.5). The value is given as
1522 * the sum of the two-element vector, allowing increased precision.
1523 *
1524 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1525 * wcsprm::mjdref is changed.
1526 *
1527 * double timeoffs
1528 * (Given, auxiliary) TIMEOFFS keyvalue, being a time offset, which may be
1529 * used, for example, to provide a uniform clock correction for times
1530 * referenced to DATEREF.
1531 *
1532 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1533 * wcsprm::timeoffs is changed.
1534 *
1535 * char dateobs[72]
1536 * (Given, auxiliary) DATE-OBS keyvalue, being the date at the start of the
1537 * observation unless otherwise explained in the DATE-OBS keycomment, in
1538 * ISO format, yyyy-mm-ddThh:mm:ss.
1539 *
1540 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1541 * wcsprm::dateobs is changed.
1542 *
1543 * char datebeg[72]
1544 * (Given, auxiliary) DATE-BEG keyvalue, being the date at the start of the
1545 * observation in ISO format, yyyy-mm-ddThh:mm:ss.
1546 *
1547 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1548 * wcsprm::datebeg is changed.
1549 *
1550 * char dateavg[72]
1551 * (Given, auxiliary) DATE-AVG keyvalue, being the date at a representative
1552 * mid-point of the observation in ISO format, yyyy-mm-ddThh:mm:ss.
1553 *
1554 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1555 * wcsprm::dateavg is changed.
1556 *
1557 * char dateend[72]
1558 * (Given, auxiliary) DATE-END keyvalue, baing the date at the end of the
1559 * observation in ISO format, yyyy-mm-ddThh:mm:ss.
1560 *
1561 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1562 * wcsprm::dateend is changed.
1563 *
1564 * double mjdobs
1565 * (Given, auxiliary) MJD-OBS keyvalue, equivalent to DATE-OBS expressed
1566 * as a Modified Julian Date (MJD = JD - 2400000.5).
1567 *
1568 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1569 * wcsprm::mjdobs is changed.
1570 *
1571 * double mjdbeg
1572 * (Given, auxiliary) MJD-BEG keyvalue, equivalent to DATE-BEG expressed
1573 * as a Modified Julian Date (MJD = JD - 2400000.5).
1574 *
1575 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1576 * wcsprm::mjdbeg is changed.
1577 *
1578 * double mjdavg
1579 * (Given, auxiliary) MJD-AVG keyvalue, equivalent to DATE-AVG expressed
1580 * as a Modified Julian Date (MJD = JD - 2400000.5).
1581 *
1582 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1583 * wcsprm::mjdavg is changed.
1584 *
1585 * double mjdend
1586 * (Given, auxiliary) MJD-END keyvalue, equivalent to DATE-END expressed
1587 * as a Modified Julian Date (MJD = JD - 2400000.5).
1588 *
1589 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1590 * wcsprm::mjdend is changed.
1591 *
1592 * double jepoch
1593 * (Given, auxiliary) JEPOCH keyvalue, equivalent to DATE-OBS expressed
1594 * as a Julian epoch.
1595 *
1596 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1597 * wcsprm::jepoch is changed.
1598 *
1599 * double bepoch
1600 * (Given, auxiliary) BEPOCH keyvalue, equivalent to DATE-OBS expressed
1601 * as a Besselian epoch
1602 *
1603 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1604 * wcsprm::bepoch is changed.

Generated by Doxygen

19.24 wcs.h 305

1605 *
1606 * double tstart
1607 * (Given, auxiliary) TSTART keyvalue, equivalent to DATE-BEG expressed
1608 * as a time in units of TIMEUNIT relative to DATEREF+TIMEOFFS.
1609 *
1610 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1611 * wcsprm::tstart is changed.
1612 *
1613 * double tstop
1614 * (Given, auxiliary) TSTOP keyvalue, equivalent to DATE-END expressed
1615 * as a time in units of TIMEUNIT relative to DATEREF+TIMEOFFS.
1616 *
1617 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1618 * wcsprm::tstop is changed.
1619 *
1620 * double xposure
1621 * (Given, auxiliary) XPOSURE keyvalue, being the effective exposure time
1622 * in units of TIMEUNIT.
1623 *
1624 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1625 * wcsprm::xposure is changed.
1626 *
1627 * double telapse
1628 * (Given, auxiliary) TELAPSE keyvalue, equivalent to the elapsed time
1629 * between DATE-BEG and DATE-END, in units of TIMEUNIT.
1630 *
1631 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1632 * wcsprm::telapse is changed.
1633 *
1634 * double timsyer
1635 * (Given, auxiliary) TIMSYER keyvalue, being the absolute error of the
1636 * time values, in units of TIMEUNIT.
1637 *
1638 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1639 * wcsprm::timsyer is changed.
1640 *
1641 * double timrder
1642 * (Given, auxiliary) TIMRDER keyvalue, being the accuracy of time stamps
1643 * relative to each other, in units of TIMEUNIT.
1644 *
1645 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1646 * wcsprm::timrder is changed.
1647 *
1648 * double timedel
1649 * (Given, auxiliary) TIMEDEL keyvalue, being the resolution of the time
1650 * stamps.
1651 *
1652 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1653 * wcsprm::timedel is changed.
1654 *
1655 * double timepixr
1656 * (Given, auxiliary) TIMEPIXR keyvalue, being the relative position of the
1657 * time stamps in binned time intervals, a value between 0.0 and 1.0.
1658 *
1659 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1660 * wcsprm::timepixr is changed.
1661 *
1662 * double obsgeo[6]
1663 * (Given, auxiliary) Location of the observer in a standard terrestrial
1664 * reference frame. The first three give ITRS Cartesian coordinates
1665 * OBSGEO-X [m], OBSGEO-Y [m], OBSGEO-Z [m], and the second three give
1666 * OBSGEO-L [deg], OBSGEO-B [deg], OBSGEO-H [m], which are related through
1667 * a standard transformation.
1668 *
1669 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1670 * wcsprm::obsgeo is changed.
1671 *
1672 * char obsorbit[72]
1673 * (Given, auxiliary) OBSORBIT keyvalue, being the URI, URL, or name of an
1674 * orbit ephemeris file giving spacecraft coordinates relating to TREFPOS.
1675 *
1676 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1677 * wcsprm::obsorbit is changed.
1678 *
1679 * char radesys[72]
1680 * (Given, auxiliary) The equatorial or ecliptic coordinate system type,
1681 * RADESYSa.
1682 *
1683 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1684 * wcsprm::radesys is changed.
1685 *
1686 * double equinox
1687 * (Given, auxiliary) The equinox associated with dynamical equatorial or
1688 * ecliptic coordinate systems, EQUINOXa (or EPOCH in older headers). Not
1689 * applicable to ICRS equatorial or ecliptic coordinates.
1690 *
1691 * It is not necessary to reset the wcsprm struct (via wcsset()) when

Generated by Doxygen

306

1692 * wcsprm::equinox is changed.
1693 *
1694 * char specsys[72]
1695 * (Given, auxiliary) Spectral reference frame (standard of rest),
1696 * SPECSYSa.
1697 *
1698 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1699 * wcsprm::specsys is changed.
1700 *
1701 * char ssysobs[72]
1702 * (Given, auxiliary) The spectral reference frame in which there is no
1703 * differential variation in the spectral coordinate across the
1704 * field-of-view, SSYSOBSa.
1705 *
1706 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1707 * wcsprm::ssysobs is changed.
1708 *
1709 * double velosys
1710 * (Given, auxiliary) The relative radial velocity [m/s] between the
1711 * observer and the selected standard of rest in the direction of the
1712 * celestial reference coordinate, VELOSYSa.
1713 *
1714 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1715 * wcsprm::velosys is changed.
1716 *
1717 * double zsource
1718 * (Given, auxiliary) The redshift, ZSOURCEa, of the source.
1719 *
1720 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1721 * wcsprm::zsource is changed.
1722 *
1723 * char ssyssrc[72]
1724 * (Given, auxiliary) The spectral reference frame (standard of rest),
1725 * SSYSSRCa, in which wcsprm::zsource was measured.
1726 *
1727 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1728 * wcsprm::ssyssrc is changed.
1729 *
1730 * double velangl
1731 * (Given, auxiliary) The angle [deg] that should be used to decompose an
1732 * observed velocity into radial and transverse components.
1733 *
1734 * It is not necessary to reset the wcsprm struct (via wcsset()) when
1735 * wcsprm::velangl is changed.
1736 *
1737 * struct auxprm *aux
1738 * (Given, auxiliary) This struct holds auxiliary coordinate system
1739 * information of a specialist nature. While these parameters may be
1740 * widely recognized within particular fields of astronomy, they differ
1741 * from the above auxiliary parameters in not being defined by any of the
1742 * FITS WCS standards. Collecting them together in a separate struct that
1743 * is allocated only when required helps to control bloat in the size of
1744 * the wcsprm struct.
1745 *
1746 * int ntab
1747 * (Given) See wcsprm::tab.
1748 *
1749 * int nwtb
1750 * (Given) See wcsprm::wtb.
1751 *
1752 * struct tabprm *tab
1753 * (Given) Address of the first element of an array of ntab tabprm structs
1754 * for which memory has been allocated. These are used to store tabular
1755 * transformation parameters.
1756 *
1757 * Although technically wcsprm::ntab and tab are "given", they will
1758 * normally be set by invoking wcstab(), whether directly or indirectly.
1759 *
1760 * The tabprm structs contain some members that must be supplied and others
1761 * that are derived. The information to be supplied comes primarily from
1762 * arrays stored in one or more FITS binary table extensions. These
1763 * arrays, referred to here as "wcstab arrays", are themselves located by
1764 * parameters stored in the FITS image header.
1765 *
1766 * struct wtbarr *wtb
1767 * (Given) Address of the first element of an array of nwtb wtbarr structs
1768 * for which memory has been allocated. These are used in extracting
1769 * wcstab arrays from a FITS binary table.
1770 *
1771 * Although technically wcsprm::nwtb and wtb are "given", they will
1772 * normally be set by invoking wcstab(), whether directly or indirectly.
1773 *
1774 * char lngtyp[8]
1775 * (Returned) Four-character WCS celestial longitude and ...
1776 * char lattyp[8]
1777 * (Returned) ... latitude axis types. e.g. "RA", "DEC", "GLON", "GLAT",
1778 * etc. extracted from ’RA--’, ’DEC-’, ’GLON’, ’GLAT’, etc. in the first

Generated by Doxygen

19.24 wcs.h 307

1779 * four characters of CTYPEia but with trailing dashes removed. (Declared
1780 * as char[8] for alignment reasons.)
1781 *
1782 * int lng
1783 * (Returned) Index for the longitude coordinate, and ...
1784 * int lat
1785 * (Returned) ... index for the latitude coordinate, and ...
1786 * int spec
1787 * (Returned) ... index for the spectral coordinate in the imgcrd[][] and
1788 * world[][] arrays in the API of wcsp2s(), wcss2p() and wcsmix().
1789 *
1790 * These may also serve as indices into the pixcrd[][] array provided that
1791 * the PCi_ja matrix does not transpose axes.
1792 *
1793 * int cubeface
1794 * (Returned) Index into the pixcrd[][] array for the CUBEFACE axis. This
1795 * is used for quadcube projections where the cube faces are stored on a
1796 * separate axis (see wcs.h).
1797 *
1798 * int *types
1799 * (Returned) Address of the first element of an array of int containing a
1800 * four-digit type code for each axis.
1801 *
1802 * - First digit (i.e. 1000s):
1803 * - 0: Non-specific coordinate type.
1804 * - 1: Stokes coordinate.
1805 * - 2: Celestial coordinate (including CUBEFACE).
1806 * - 3: Spectral coordinate.
1807 * - 4: Time coordinate.
1808 *
1809 * - Second digit (i.e. 100s):
1810 * - 0: Linear axis.
1811 * - 1: Quantized axis (STOKES, CUBEFACE).
1812 * - 2: Non-linear celestial axis.
1813 * - 3: Non-linear spectral axis.
1814 * - 4: Logarithmic axis.
1815 * - 5: Tabular axis.
1816 *
1817 * - Third digit (i.e. 10s):
1818 * - 0: Group number, e.g. lookup table number, being an index into the
1819 * tabprm array (see above).
1820 *
1821 * - The fourth digit is used as a qualifier depending on the axis type.
1822 *
1823 * - For celestial axes:
1824 * - 0: Longitude coordinate.
1825 * - 1: Latitude coordinate.
1826 * - 2: CUBEFACE number.
1827 *
1828 * - For lookup tables: the axis number in a multidimensional table.
1829 *
1830 * CTYPEia in "4-3" form with unrecognized algorithm code will have its
1831 * type set to -1 and generate an error.
1832 *
1833 * struct linprm lin
1834 * (Returned) Linear transformation parameters (usage is described in the
1835 * prologue to lin.h).
1836 *
1837 * struct celprm cel
1838 * (Returned) Celestial transformation parameters (usage is described in
1839 * the prologue to cel.h).
1840 *
1841 * struct spcprm spc
1842 * (Returned) Spectral transformation parameters (usage is described in the
1843 * prologue to spc.h).
1844 *
1845 * struct wcserr *err
1846 * (Returned) If enabled, when an error status is returned, this struct
1847 * contains detailed information about the error, see wcserr_enable().
1848 *
1849 * int m_flag
1850 * (For internal use only.)
1851 * int m_naxis
1852 * (For internal use only.)
1853 * double *m_crpix
1854 * (For internal use only.)
1855 * double *m_pc
1856 * (For internal use only.)
1857 * double *m_cdelt
1858 * (For internal use only.)
1859 * double *m_crval
1860 * (For internal use only.)
1861 * char (*m_cunit)[72]
1862 * (For internal use only.)
1863 * char (*m_ctype)[72]
1864 * (For internal use only.)
1865 * struct pvcard *m_pv

Generated by Doxygen

308

1866 * (For internal use only.)
1867 * struct pscard *m_ps
1868 * (For internal use only.)
1869 * double *m_cd
1870 * (For internal use only.)
1871 * double *m_crota
1872 * (For internal use only.)
1873 * int *m_colax
1874 * (For internal use only.)
1875 * char (*m_cname)[72]
1876 * (For internal use only.)
1877 * double *m_crder
1878 * (For internal use only.)
1879 * double *m_csyer
1880 * (For internal use only.)
1881 * double *m_czphs
1882 * (For internal use only.)
1883 * double *m_cperi
1884 * (For internal use only.)
1885 * struct tabprm *m_tab
1886 * (For internal use only.)
1887 * struct wtbarr *m_wtb
1888 * (For internal use only.)
1889 *
1890 *
1891 * pvcard struct - Store for PVi_ma keyrecords
1892 * ---
1893 * The pvcard struct is used to pass the parsed contents of PVi_ma keyrecords
1894 * to wcsset() via the wcsprm struct.
1895 *
1896 * All members of this struct are to be set by the user.
1897 *
1898 * int i
1899 * (Given) Axis number (1-relative), as in the FITS PVi_ma keyword. If
1900 * i == 0, wcsset() will replace it with the latitude axis number.
1901 *
1902 * int m
1903 * (Given) Parameter number (non-negative), as in the FITS PVi_ma keyword.
1904 *
1905 * double value
1906 * (Given) Parameter value.
1907 *
1908 *
1909 * pscard struct - Store for PSi_ma keyrecords
1910 * ---
1911 * The pscard struct is used to pass the parsed contents of PSi_ma keyrecords
1912 * to wcsset() via the wcsprm struct.
1913 *
1914 * All members of this struct are to be set by the user.
1915 *
1916 * int i
1917 * (Given) Axis number (1-relative), as in the FITS PSi_ma keyword.
1918 *
1919 * int m
1920 * (Given) Parameter number (non-negative), as in the FITS PSi_ma keyword.
1921 *
1922 * char value[72]
1923 * (Given) Parameter value.
1924 *
1925 *
1926 * auxprm struct - Additional auxiliary parameters
1927 * ---
1928 * The auxprm struct holds auxiliary coordinate system information of a
1929 * specialist nature. It is anticipated that this struct will expand in future
1930 * to accomodate additional parameters.
1931 *
1932 * All members of this struct are to be set by the user.
1933 *
1934 * double rsun_ref
1935 * (Given, auxiliary) Reference radius of the Sun used in coordinate
1936 * calculations (m).
1937 *
1938 * double dsun_obs
1939 * (Given, auxiliary) Distance between the centre of the Sun and the
1940 * observer (m).
1941 *
1942 * double crln_obs
1943 * (Given, auxiliary) Carrington heliographic longitude of the observer
1944 * (deg).
1945 *
1946 * double hgln_obs
1947 * (Given, auxiliary) Stonyhurst heliographic longitude of the observer
1948 * (deg).
1949 *
1950 * double hglt_obs
1951 * (Given, auxiliary) Heliographic latitude (Carrington or Stonyhurst) of
1952 * the observer (deg).

Generated by Doxygen

19.24 wcs.h 309

1953 *
1954 *
1955 * Global variable: const char *wcs_errmsg[] - Status return messages
1956 * --
1957 * Error messages to match the status value returned from each function.
1958 *
1959 *===*/
1960
1961 #ifndef WCSLIB_WCS
1962 #define WCSLIB_WCS
1963
1964 #include "lin.h"
1965 #include "cel.h"
1966 #include "spc.h"
1967
1968 #ifdef __cplusplus
1969 extern "C" {
1970 #define wtbarr wtbarr_s // See prologue of wtbarr.h.
1971 #endif
1972
1973 #define WCSSUB_LONGITUDE 0x1001
1974 #define WCSSUB_LATITUDE 0x1002
1975 #define WCSSUB_CUBEFACE 0x1004
1976 #define WCSSUB_CELESTIAL 0x1007
1977 #define WCSSUB_SPECTRAL 0x1008
1978 #define WCSSUB_STOKES 0x1010
1979 #define WCSSUB_TIME 0x1020
1980
1981
1982 #define WCSCOMPARE_ANCILLARY 0x0001
1983 #define WCSCOMPARE_TILING 0x0002
1984 #define WCSCOMPARE_CRPIX 0x0004
1985
1986
1987 extern const char *wcs_errmsg[];
1988
1989 enum wcs_errmsg_enum {
1990 WCSERR_SUCCESS = 0, // Success.
1991 WCSERR_NULL_POINTER = 1, // Null wcsprm pointer passed.
1992 WCSERR_MEMORY = 2, // Memory allocation failed.
1993 WCSERR_SINGULAR_MTX = 3, // Linear transformation matrix is singular.
1994 WCSERR_BAD_CTYPE = 4, // Inconsistent or unrecognized coordinate
1995 // axis type.
1996 WCSERR_BAD_PARAM = 5, // Invalid parameter value.
1997 WCSERR_BAD_COORD_TRANS = 6, // Unrecognized coordinate transformation
1998 // parameter.
1999 WCSERR_ILL_COORD_TRANS = 7, // Ill-conditioned coordinate transformation
2000 // parameter.
2001 WCSERR_BAD_PIX = 8, // One or more of the pixel coordinates were
2002 // invalid.
2003 WCSERR_BAD_WORLD = 9, // One or more of the world coordinates were
2004 // invalid.
2005 WCSERR_BAD_WORLD_COORD = 10, // Invalid world coordinate.
2006 WCSERR_NO_SOLUTION = 11, // No solution found in the specified
2007 // interval.
2008 WCSERR_BAD_SUBIMAGE = 12, // Invalid subimage specification.
2009 WCSERR_NON_SEPARABLE = 13, // Non-separable subimage coordinate system.
2010 WCSERR_UNSET = 14 // wcsprm struct is unset.
2011 };
2012
2013
2014 // Struct used for storing PVi_ma keywords.
2015 struct pvcard {
2016 int i; // Axis number, as in PVi_ma (1-relative).
2017 int m; // Parameter number, ditto (0-relative).
2018 double value; // Parameter value.
2019 };
2020
2021 // Size of the pvcard struct in int units, used by the Fortran wrappers.
2022 #define PVLEN (sizeof(struct pvcard)/sizeof(int))
2023
2024 // Struct used for storing PSi_ma keywords.
2025 struct pscard {
2026 int i; // Axis number, as in PSi_ma (1-relative).
2027 int m; // Parameter number, ditto (0-relative).
2028 char value[72]; // Parameter value.
2029 };
2030
2031 // Size of the pscard struct in int units, used by the Fortran wrappers.
2032 #define PSLEN (sizeof(struct pscard)/sizeof(int))
2033
2034 // Struct used to hold additional auxiliary parameters.
2035 struct auxprm {
2036 double rsun_ref; // Solar radius.
2037 double dsun_obs; // Distance from Sun centre to observer.
2038 double crln_obs; // Carrington heliographic lng of observer.
2039 double hgln_obs; // Stonyhurst heliographic lng of observer.

Generated by Doxygen

310

2040 double hglt_obs; // Heliographic latitude of observer.
2041 };
2042
2043 // Size of the auxprm struct in int units, used by the Fortran wrappers.
2044 #define AUXLEN (sizeof(struct auxprm)/sizeof(int))
2045
2046
2047 struct wcsprm {
2048 // Initialization flag (see the prologue above).
2049 //--
2050 int flag; // Set to zero to force initialization.
2051
2052 // FITS header keyvalues to be provided (see the prologue above).
2053 //--
2054 int naxis; // Number of axes (pixel and coordinate).
2055 double *crpix; // CRPIXja keyvalues for each pixel axis.
2056 double *pc; // PCi_ja linear transformation matrix.
2057 double *cdelt; // CDELTia keyvalues for each coord axis.
2058 double *crval; // CRVALia keyvalues for each coord axis.
2059
2060 char (*cunit)[72]; // CUNITia keyvalues for each coord axis.
2061 char (*ctype)[72]; // CTYPEia keyvalues for each coord axis.
2062
2063 double lonpole; // LONPOLEa keyvalue.
2064 double latpole; // LATPOLEa keyvalue.
2065
2066 double restfrq; // RESTFRQa keyvalue.
2067 double restwav; // RESTWAVa keyvalue.
2068
2069 int npv; // Number of PVi_ma keywords, and the
2070 int npvmax; // number for which space was allocated.
2071 struct pvcard *pv; // PVi_ma keywords for each i and m.
2072
2073 int nps; // Number of PSi_ma keywords, and the
2074 int npsmax; // number for which space was allocated.
2075 struct pscard *ps; // PSi_ma keywords for each i and m.
2076
2077 // Alternative header keyvalues (see the prologue above).
2078 //--
2079 double *cd; // CDi_ja linear transformation matrix.
2080 double *crota; // CROTAi keyvalues for each coord axis.
2081 int altlin; // Alternative representations
2082 // Bit 0: PCi_ja is present,
2083 // Bit 1: CDi_ja is present,
2084 // Bit 2: CROTAi is present.
2085 int velref; // AIPS velocity code, VELREF.
2086
2087 // Auxiliary coordinate system information of a general nature. Not
2088 // used by WCSLIB. Refer to the prologue comments above for a brief
2089 // explanation of these values.
2090 char alt[4];
2091 int colnum;
2092 int *colax;
2093 // Auxiliary coordinate axis information.
2094 char (*cname)[72];
2095 double *crder;
2096 double *csyer;
2097 double *czphs;
2098 double *cperi;
2099
2100 char wcsname[72];
2101 // Time reference system and measurement.
2102 char timesys[72], trefpos[72], trefdir[72], plephem[72];
2103 char timeunit[72];
2104 char dateref[72];
2105 double mjdref[2];
2106 double timeoffs;
2107 // Data timestamps and durations.
2108 char dateobs[72], datebeg[72], dateavg[72], dateend[72];
2109 double mjdobs, mjdbeg, mjdavg, mjdend;
2110 double jepoch, bepoch;
2111 double tstart, tstop;
2112 double xposure, telapse;
2113 // Timing accuracy.
2114 double timsyer, timrder;
2115 double timedel, timepixr;
2116 // Spatial & celestial reference frame.
2117 double obsgeo[6];
2118 char obsorbit[72];
2119 char radesys[72];
2120 double equinox;
2121 char specsys[72];
2122 char ssysobs[72];
2123 double velosys;
2124 double zsource;
2125 char ssyssrc[72];
2126 double velangl;

Generated by Doxygen

19.24 wcs.h 311

2127
2128 // Additional auxiliary coordinate system information of a specialist
2129 // nature. Not used by WCSLIB. Refer to the prologue comments above.
2130 struct auxprm *aux;
2131
2132 // Coordinate lookup tables (see the prologue above).
2133 //--
2134 int ntab; // Number of separate tables.
2135 int nwtb; // Number of wtbarr structs.
2136 struct tabprm *tab; // Tabular transformation parameters.
2137 struct wtbarr *wtb; // Array of wtbarr structs.
2138
2139 //--
2140 // Information derived from the FITS header keyvalues by wcsset().
2141 //--
2142 char lngtyp[8], lattyp[8]; // Celestial axis types, e.g. RA, DEC.
2143 int lng, lat, spec; // Longitude, latitude and spectral axis
2144 // indices (0-relative).
2145 int cubeface; // True if there is a CUBEFACE axis.
2146 int *types; // Coordinate type codes for each axis.
2147
2148 struct linprm lin; // Linear transformation parameters.
2149 struct celprm cel; // Celestial transformation parameters.
2150 struct spcprm spc; // Spectral transformation parameters.
2151
2152 //--
2153 // THE REMAINDER OF THE WCSPRM STRUCT IS PRIVATE.
2154 //--
2155
2156 // Error handling, if enabled.
2157 //--
2158 struct wcserr *err;
2159
2160 // Memory management.
2161 //--
2162 int m_flag, m_naxis;
2163 double *m_crpix, *m_pc, *m_cdelt, *m_crval;
2164 char (*m_cunit)[72], (*m_ctype)[72];
2165 struct pvcard *m_pv;
2166 struct pscard *m_ps;
2167 double *m_cd, *m_crota;
2168 int *m_colax;
2169 char (*m_cname)[72];
2170 double *m_crder, *m_csyer, *m_czphs, *m_cperi;
2171 struct auxprm *m_aux;
2172 struct tabprm *m_tab;
2173 struct wtbarr *m_wtb;
2174 };
2175
2176 // Size of the wcsprm struct in int units, used by the Fortran wrappers.
2177 #define WCSLEN (sizeof(struct wcsprm)/sizeof(int))
2178
2179
2180 int wcsnpv(int n);
2181
2182 int wcsnps(int n);
2183
2184 int wcsini(int alloc, int naxis, struct wcsprm *wcs);
2185
2186 int wcsinit(int alloc, int naxis, struct wcsprm *wcs, int npvmax, int npsmax,
2187 int ndpmax);
2188
2189 int wcsauxi(int alloc, struct wcsprm *wcs);
2190
2191 int wcssub(int alloc, const struct wcsprm *wcssrc, int *nsub, int axes[],
2192 struct wcsprm *wcsdst);
2193
2194 int wcscompare(int cmp, double tol, const struct wcsprm *wcs1,
2195 const struct wcsprm *wcs2, int *equal);
2196
2197 int wcsfree(struct wcsprm *wcs);
2198
2199 int wcstrim(struct wcsprm *wcs);
2200
2201 int wcssize(const struct wcsprm *wcs, int sizes[2]);
2202
2203 int auxsize(const struct auxprm *aux, int sizes[2]);
2204
2205 int wcsprt(const struct wcsprm *wcs);
2206
2207 int wcsperr(const struct wcsprm *wcs, const char *prefix);
2208
2209 int wcsbchk(struct wcsprm *wcs, int bounds);
2210
2211 int wcsset(struct wcsprm *wcs);
2212
2213 int wcsp2s(struct wcsprm *wcs, int ncoord, int nelem, const double pixcrd[],

Generated by Doxygen

312

2214 double imgcrd[], double phi[], double theta[], double world[],
2215 int stat[]);
2216
2217 int wcss2p(struct wcsprm *wcs, int ncoord, int nelem, const double world[],
2218 double phi[], double theta[], double imgcrd[], double pixcrd[],
2219 int stat[]);
2220
2221 int wcsmix(struct wcsprm *wcs, int mixpix, int mixcel, const double vspan[2],
2222 double vstep, int viter, double world[], double phi[],
2223 double theta[], double imgcrd[], double pixcrd[]);
2224
2225 int wcsccs(struct wcsprm *wcs, double lng2p1, double lat2p1, double lng1p2,
2226 const char *clng, const char *clat, const char *radesys,
2227 double equinox, const char *alt);
2228
2229 int wcssptr(struct wcsprm *wcs, int *i, char ctype[9]);
2230
2231 const char* wcslib_version(int vers[3]);
2232
2233 // Defined mainly for backwards compatibility, use wcssub() instead.
2234 #define wcscopy(alloc, wcssrc, wcsdst) wcssub(alloc, wcssrc, 0x0, 0x0, wcsdst)
2235
2236
2237 // Deprecated.
2238 #define wcsini_errmsg wcs_errmsg
2239 #define wcssub_errmsg wcs_errmsg
2240 #define wcscopy_errmsg wcs_errmsg
2241 #define wcsfree_errmsg wcs_errmsg
2242 #define wcsprt_errmsg wcs_errmsg
2243 #define wcsset_errmsg wcs_errmsg
2244 #define wcsp2s_errmsg wcs_errmsg
2245 #define wcss2p_errmsg wcs_errmsg
2246 #define wcsmix_errmsg wcs_errmsg
2247
2248 #ifdef __cplusplus
2249 #undef wtbarr
2250 }
2251 #endif
2252
2253 #endif // WCSLIB_WCS

19.25 wcserr.h File Reference

Data Structures

• struct wcserr

Error message handling.

Macros

• #define ERRLEN (sizeof(struct wcserr)/sizeof(int))
• #define WCSERR_SET(status) err, status, function, __FILE__, __LINE__

Fill in the contents of an error object.

Functions

• int wcserr_enable (int enable)

Enable/disable error messaging.
• int wcserr_size (const struct wcserr ∗err, int sizes[2])

Compute the size of a wcserr struct.
• int wcserr_prt (const struct wcserr ∗err, const char ∗prefix)

Print a wcserr struct.
• int wcserr_clear (struct wcserr ∗∗err)

Clear a wcserr struct.
• int wcserr_set (struct wcserr ∗∗err, int status, const char ∗function, const char ∗file, int line_no, const char
∗format,...)

Fill in the contents of an error object.
• int wcserr_copy (const struct wcserr ∗src, struct wcserr ∗dst)

Copy an error object.

Generated by Doxygen

19.25 wcserr.h File Reference 313

19.25.1 Detailed Description

Most of the structs in WCSLIB contain a pointer to a wcserr struct as a member. Functions in WCSLIB that return an
error status code can also allocate and set a detailed error message in this struct, which also identifies the function,
source file, and line number where the error occurred.

For example:

struct prjprm prj;
wcserr_enable(1);
if (prjini(&prj)) {

// Print the error message to stderr.
wcsprintf_set(stderr);
wcserr_prt(prj.err, 0x0);

}

A number of utility functions used in managing the wcserr struct are for internal use only. They are documented
here solely as an aid to understanding the code. They are not intended for external use - the API may change
without notice!

19.25.2 Macro Definition Documentation

19.25.2.1 ERRLEN #define ERRLEN (sizeof(struct wcserr)/sizeof(int))

19.25.2.2 WCSERR_SET #define WCSERR_SET(

status) err, status, function, __FILE__, __LINE__

INTERNAL USE ONLY.

WCSERR_SET() is a preprocessor macro that helps to fill in the argument list of wcserr_set(). It takes status as
an argument of its own and provides the name of the source file and the line number at the point where invoked. It
assumes that the err and function arguments of wcserr_set() will be provided by variables of the same names.

19.25.3 Function Documentation

19.25.3.1 wcserr_enable() int wcserr_enable (

int enable)

wcserr_enable() enables or disables wcserr error messaging. By default it is disabled.

PLEASE NOTE: This function is not thread-safe.

Parameters

in enable If true (non-zero), enable error messaging, else disable it.

Generated by Doxygen

314

Returns

Status return value:

• 0: Error messaging is disabled.

• 1: Error messaging is enabled.

19.25.3.2 wcserr_size() int wcserr_size (

const struct wcserr ∗ err,

int sizes[2])

wcserr_size() computes the full size of a wcserr struct, including allocated memory.

Parameters

in err The error object.
If NULL, the base size of the struct and the allocated size are both set to zero.

out sizes The first element is the base size of the struct as returned by sizeof(struct wcserr). The
second element is the total allocated size of the message buffer, in bytes.

Returns

Status return value:

• 0: Success.

19.25.3.3 wcserr_prt() int wcserr_prt (

const struct wcserr ∗ err,

const char ∗ prefix)

wcserr_prt() prints the error message (if any) contained in a wcserr struct. It uses the wcsprintf() functions.

Parameters

in err The error object. If NULL, nothing is printed.

in prefix If non-NULL, each output line will be prefixed with this string.

Returns

Status return value:

• 0: Success.

• 2: Error messaging is not enabled.

Generated by Doxygen

19.25 wcserr.h File Reference 315

19.25.3.4 wcserr_clear() int wcserr_clear (

struct wcserr ∗∗ err)

wcserr_clear() clears (deletes) a wcserr struct.

Generated by Doxygen

316

Parameters

in,out err The error object. If NULL, nothing is done. Set to NULL on return.

Returns

Status return value:

• 0: Success.

19.25.3.5 wcserr_set() int wcserr_set (

struct wcserr ∗∗ err,

int status,

const char ∗ function,

const char ∗ file,

int line_no,

const char ∗ format,

...)

INTERNAL USE ONLY.

wcserr_set() fills a wcserr struct with information about an error.

A convenience macro, WCSERR_SET, provides the source file and line number information automatically.

Parameters

in,out err Error object.
If err is NULL, returns the status code given without setting an error message.
If ∗err is NULL, allocates memory for a wcserr struct (provided that status is non-zero).

in status Numeric status code to set. If 0, then ∗err will be deleted and ∗err will be returned as
NULL.

in function Name of the function generating the error. This must point to a constant string, i.e. in
the initialized read-only data section ("data") of the executable.

in file Name of the source file generating the error. This must point to a constant string, i.e.
in the initialized read-only data section ("data") of the executable such as given by the
__FILE__ preprocessor macro.

in line_no Line number in the source file generating the error such as given by the __LINE__
preprocessor macro.

in format Format string of the error message. May contain printf-style %-formatting codes.

in ... The remaining variable arguments are applied (like printf) to the format string to
generate the error message.

Returns

The status return code passed in.

Generated by Doxygen

19.26 wcserr.h 317

19.25.3.6 wcserr_copy() int wcserr_copy (

const struct wcserr ∗ src,

struct wcserr ∗ dst)

INTERNAL USE ONLY.

wcserr_copy() copies one error object to another. Use of this function should be avoided in general since the
function, source file, and line number information copied to the destination may lose its context.

Parameters

in src Source error object. If src is NULL, dst is cleared.

out dst Destination error object. If NULL, no copy is made.

Returns

Numeric status code of the source error object.

19.26 wcserr.h

Go to the documentation of this file.
1 /*==
2 WCSLIB 7.11 - an implementation of the FITS WCS standard.
3 Copyright (C) 1995-2022, Mark Calabretta
4
5 This file is part of WCSLIB.
6
7 WCSLIB is free software: you can redistribute it and/or modify it under the
8 terms of the GNU Lesser General Public License as published by the Free
9 Software Foundation, either version 3 of the License, or (at your option)
10 any later version.
11
12 WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
15 more details.
16
17 You should have received a copy of the GNU Lesser General Public License
18 along with WCSLIB. If not, see http://www.gnu.org/licenses.
19
20 Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
21 Module author: Michael Droettboom
22 http://www.atnf.csiro.au/people/Mark.Calabretta
23 $Id: wcserr.h,v 7.11 2022/04/26 06:13:52 mcalabre Exp $
24 *===
25 *
26 * WCSLIB 7.11 - C routines that implement the FITS World Coordinate System
27 * (WCS) standard. Refer to the README file provided with WCSLIB for an
28 * overview of the library.
29 *
30 * Summary of the wcserr routines
31 * ------------------------------
32 * Most of the structs in WCSLIB contain a pointer to a wcserr struct as a
33 * member. Functions in WCSLIB that return an error status code can also
34 * allocate and set a detailed error message in this struct, which also
35 * identifies the function, source file, and line number where the error
36 * occurred.
37 *
38 * For example:
39 *
40 = struct prjprm prj;
41 = wcserr_enable(1);
42 = if (prjini(&prj)) {
43 = // Print the error message to stderr.
44 = wcsprintf_set(stderr);
45 = wcserr_prt(prj.err, 0x0);
46 = }
47 *
48 * A number of utility functions used in managing the wcserr struct are for
49 * internal use only. They are documented here solely as an aid to
50 * understanding the code. They are not intended for external use - the API
51 * may change without notice!

Generated by Doxygen

318

52 *
53 *
54 * wcserr struct - Error message handling
55 * --------------------------------------
56 * The wcserr struct contains the numeric error code, a textual description of
57 * the error, and information about the function, source file, and line number
58 * where the error was generated.
59 *
60 * int status
61 * Numeric status code associated with the error, the meaning of which
62 * depends on the function that generated it. See the documentation for
63 * the particular function.
64 *
65 * int line_no
66 * Line number where the error occurred as given by the __LINE__
67 * preprocessor macro.
68 *
69 * const char *function
70 * Name of the function where the error occurred.
71 *
72 * const char *file
73 * Name of the source file where the error occurred as given by the
74 * __FILE__ preprocessor macro.
75 *
76 * char *msg
77 * Informative error message.
78 *
79 *
80 * wcserr_enable() - Enable/disable error messaging
81 * --
82 * wcserr_enable() enables or disables wcserr error messaging. By default it
83 * is disabled.
84 *
85 * PLEASE NOTE: This function is not thread-safe.
86 *
87 * Given:
88 * enable int If true (non-zero), enable error messaging, else
89 * disable it.
90 *
91 * Function return value:
92 * int Status return value:
93 * 0: Error messaging is disabled.
94 * 1: Error messaging is enabled.
95 *
96 *
97 * wcserr_size() - Compute the size of a wcserr struct
98 * ---
99 * wcserr_size() computes the full size of a wcserr struct, including allocated
100 * memory.
101 *
102 * Given:
103 * err const struct wcserr*
104 * The error object.
105 *
106 * If NULL, the base size of the struct and the allocated
107 * size are both set to zero.
108 *
109 * Returned:
110 * sizes int[2] The first element is the base size of the struct as
111 * returned by sizeof(struct wcserr). The second element
112 * is the total allocated size of the message buffer, in
113 * bytes.
114 *
115 * Function return value:
116 * int Status return value:
117 * 0: Success.
118 *
119 *
120 * wcserr_prt() - Print a wcserr struct
121 * ------------------------------------
122 * wcserr_prt() prints the error message (if any) contained in a wcserr struct.
123 * It uses the wcsprintf() functions.
124 *
125 * Given:
126 * err const struct wcserr*
127 * The error object. If NULL, nothing is printed.
128 *
129 * prefix const char *
130 * If non-NULL, each output line will be prefixed with
131 * this string.
132 *
133 * Function return value:
134 * int Status return value:
135 * 0: Success.
136 * 2: Error messaging is not enabled.
137 *
138 *

Generated by Doxygen

19.26 wcserr.h 319

139 * wcserr_clear() - Clear a wcserr struct
140 * --------------------------------------
141 * wcserr_clear() clears (deletes) a wcserr struct.
142 *
143 * Given and returned:
144 * err struct wcserr**
145 * The error object. If NULL, nothing is done. Set to
146 * NULL on return.
147 *
148 * Function return value:
149 * int Status return value:
150 * 0: Success.
151 *
152 *
153 * wcserr_set() - Fill in the contents of an error object
154 * --
155 * INTERNAL USE ONLY.
156 *
157 * wcserr_set() fills a wcserr struct with information about an error.
158 *
159 * A convenience macro, WCSERR_SET, provides the source file and line number
160 * information automatically.
161 *
162 * Given and returned:
163 * err struct wcserr**
164 * Error object.
165 *
166 * If err is NULL, returns the status code given without
167 * setting an error message.
168 *
169 * If *err is NULL, allocates memory for a wcserr struct
170 * (provided that status is non-zero).
171 *
172 * Given:
173 * status int Numeric status code to set. If 0, then *err will be
174 * deleted and *err will be returned as NULL.
175 *
176 * function const char *
177 * Name of the function generating the error. This
178 * must point to a constant string, i.e. in the
179 * initialized read-only data section ("data") of the
180 * executable.
181 *
182 * file const char *
183 * Name of the source file generating the error. This
184 * must point to a constant string, i.e. in the
185 * initialized read-only data section ("data") of the
186 * executable such as given by the __FILE__ preprocessor
187 * macro.
188 *
189 * line_no int Line number in the source file generating the error
190 * such as given by the __LINE__ preprocessor macro.
191 *
192 * format const char *
193 * Format string of the error message. May contain
194 * printf-style %-formatting codes.
195 *
196 * ... mixed The remaining variable arguments are applied (like
197 * printf) to the format string to generate the error
198 * message.
199 *
200 * Function return value:
201 * int The status return code passed in.
202 *
203 *
204 * wcserr_copy() - Copy an error object
205 * ------------------------------------
206 * INTERNAL USE ONLY.
207 *
208 * wcserr_copy() copies one error object to another. Use of this function
209 * should be avoided in general since the function, source file, and line
210 * number information copied to the destination may lose its context.
211 *
212 * Given:
213 * src const struct wcserr*
214 * Source error object. If src is NULL, dst is cleared.
215 *
216 * Returned:
217 * dst struct wcserr*
218 * Destination error object. If NULL, no copy is made.
219 *
220 * Function return value:
221 * int Numeric status code of the source error object.
222 *
223 *
224 * WCSERR_SET() macro - Fill in the contents of an error object
225 * --

Generated by Doxygen

320

226 * INTERNAL USE ONLY.
227 *
228 * WCSERR_SET() is a preprocessor macro that helps to fill in the argument list
229 * of wcserr_set(). It takes status as an argument of its own and provides the
230 * name of the source file and the line number at the point where invoked. It
231 * assumes that the err and function arguments of wcserr_set() will be provided
232 * by variables of the same names.
233 *
234 *===*/
235
236 #ifndef WCSLIB_WCSERR
237 #define WCSLIB_WCSERR
238
239 #ifdef __cplusplus
240 extern "C" {
241 #endif
242
243 struct wcserr {
244 int status; // Status code for the error.
245 int line_no; // Line number where the error occurred.
246 const char *function; // Function name.
247 const char *file; // Source file name.
248 char *msg; // Informative error message.
249 };
250
251 // Size of the wcserr struct in int units, used by the Fortran wrappers.
252 #define ERRLEN (sizeof(struct wcserr)/sizeof(int))
253
254 int wcserr_enable(int enable);
255
256 int wcserr_size(const struct wcserr *err, int sizes[2]);
257
258 int wcserr_prt(const struct wcserr *err, const char *prefix);
259
260 int wcserr_clear(struct wcserr **err);
261
262
263 // INTERNAL USE ONLY ---
264
265 int wcserr_set(struct wcserr **err, int status, const char *function,
266 const char *file, int line_no, const char *format, ...);
267
268 int wcserr_copy(const struct wcserr *src, struct wcserr *dst);
269
270 // Convenience macro for invoking wcserr_set().
271 #define WCSERR_SET(status) err, status, function, __FILE__, __LINE__
272
273 #ifdef __cplusplus
274 }
275 #endif
276
277 #endif // WSCLIB_WCSERR

19.27 wcsfix.h File Reference

#include "wcs.h"
#include "wcserr.h"

Macros

• #define CDFIX 0

Index of cdfix() status value in vector returned by wcsfix().

• #define DATFIX 1

Index of datfix() status value in vector returned by wcsfix().

• #define OBSFIX 2
• #define UNITFIX 3

Index of unitfix() status value in vector returned by wcsfix().

• #define SPCFIX 4

Index of spcfix() status value in vector returned by wcsfix().

• #define CELFIX 5

Generated by Doxygen

19.27 wcsfix.h File Reference 321

Index of celfix() status value in vector returned by wcsfix().

• #define CYLFIX 6

Index of cylfix() status value in vector returned by wcsfix().

• #define NWCSFIX 7

Number of elements in the status vector returned by wcsfix().

• #define cylfix_errmsg wcsfix_errmsg

Deprecated.

Enumerations

• enum wcsfix_errmsg_enum {
FIXERR_OBSGEO_FIX = -5 , FIXERR_DATE_FIX = -4 , FIXERR_SPC_UPDATE = -3 , FIXERR_UNITS_ALIAS
= -2 ,
FIXERR_NO_CHANGE = -1 , FIXERR_SUCCESS = 0 , FIXERR_NULL_POINTER = 1 , FIXERR_MEMORY
= 2 ,
FIXERR_SINGULAR_MTX = 3 , FIXERR_BAD_CTYPE = 4 , FIXERR_BAD_PARAM = 5 , FIXERR_BAD_COORD_TRANS
= 6 ,
FIXERR_ILL_COORD_TRANS = 7 , FIXERR_BAD_CORNER_PIX = 8 , FIXERR_NO_REF_PIX_COORD =
9 , FIXERR_NO_REF_PIX_VAL = 10 }

Functions

• int wcsfix (int ctrl, const int naxis[], struct wcsprm ∗wcs, int stat[])

Translate a non-standard WCS struct.

• int wcsfixi (int ctrl, const int naxis[], struct wcsprm ∗wcs, int stat[], struct wcserr info[])

Translate a non-standard WCS struct.

• int cdfix (struct wcsprm ∗wcs)

Fix erroneously omitted CDi_ja keywords.

• int datfix (struct wcsprm ∗wcs)

Translate DATE-OBS and derive MJD-OBS or vice versa.

• int obsfix (int ctrl, struct wcsprm ∗wcs)

complete the OBSGEO-[XYZLBH] vector of observatory coordinates.

• int unitfix (int ctrl, struct wcsprm ∗wcs)

Correct aberrant CUNITia keyvalues.

• int spcfix (struct wcsprm ∗wcs)

Translate AIPS-convention spectral types.

• int celfix (struct wcsprm ∗wcs)

Translate AIPS-convention celestial projection types.

• int cylfix (const int naxis[], struct wcsprm ∗wcs)

Fix malformed cylindrical projections.

• int wcspcx (struct wcsprm ∗wcs, int dopc, int permute, double rotn[2])

regularize PCi_j.

Variables

• const char ∗ wcsfix_errmsg []

Status return messages.

Generated by Doxygen

322

19.27.1 Detailed Description

Routines in this suite identify and translate various forms of construct known to occur in FITS headers that violate
the FITS World Coordinate System (WCS) standard described in
"Representations of world coordinates in FITS",
Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)
"Representations of celestial coordinates in FITS",
Calabretta, M.R., & Greisen, E.W. 2002, A&A, 395, 1077 (WCS Paper II)
"Representations of spectral coordinates in FITS",
Greisen, E.W., Calabretta, M.R., Valdes, F.G., & Allen, S.L.
2006, A&A, 446, 747 (WCS Paper III)
"Representations of time coordinates in FITS -
Time and relative dimension in space",
Rots, A.H., Bunclark, P.S., Calabretta, M.R., Allen, S.L.,
Manchester, R.N., & Thompson, W.T. 2015, A&A, 574, A36 (WCS Paper VII)

Repairs effected by these routines range from the translation of non-standard values for standard WCS keywords,
to the repair of malformed coordinate representations. Some routines are also provided to check the consistency of
pairs of keyvalues that define the same measure in two different ways, for example, as a date and an MJD.

A separate routine, wcspcx(), "regularizes" the linear transformation matrix component (PCi_j) of the coordinate
transformation to make it more human- readable. Where a coordinate description was constructed from CDi_j, it
decomposes it into PCi_j + CDELTi in a meaningful way. Optionally, it can also diagonalize the PCi_j matrix (as far
as possible), i.e. undo a transposition of axes in the intermediate pixel coordinate system.

Non-standard keyvalues:
AIPS-convention celestial projection types, NCP and GLS, and spectral types, 'FREQ-LSR', 'FELO-HEL', etc.,
set in CTYPEia are translated on-the-fly by wcsset() but without modifying the relevant ctype[], pv[] or specsys
members of the wcsprm struct. That is, only the information extracted from ctype[] is translated when wcsset() fills
in wcsprm::cel (celprm struct) or wcsprm::spc (spcprm struct).

On the other hand, these routines do change the values of wcsprm::ctype[], wcsprm::pv[], wcsprm::specsys and
other wcsprm struct members as appropriate to produce the same result as if the FITS header itself had been
translated.

Auxiliary WCS header information not used directly by WCSLIB may also be translated. For example, the older
DATE-OBS date format (wcsprm::dateobs) is recast to year-2000 standard form, and MJD-OBS (wcsprm::mjdobs)
will be deduced from it if not already set.

Certain combinations of keyvalues that result in malformed coordinate systems, as described in Sect. 7.3.4 of Paper
I, may also be repaired. These are handled by cylfix().

Non-standard keywords:
The AIPS-convention CROTAn keywords are recognized as quasi-standard and as such are accomodated by
wcsprm::crota[] and translated to wcsprm::pc[][] by wcsset(). These are not dealt with here, nor are any other
non-standard keywords since these routines work only on the contents of a wcsprm struct and do not deal with
FITS headers per se. In particular, they do not identify or translate CD00i00j, PC00i00j, PROJPn, EPOCH,
VELREF or VSOURCEa keywords; this may be done by the FITS WCS header parser supplied with WCSLIB, refer
to wcshdr.h.

wcsfix() and wcsfixi() apply all of the corrections handled by the following specific functions, which may also be
invoked separately:

• cdfix(): Sets the diagonal element of the CDi_ja matrix to 1.0 if all CDi_ja keywords associated with a
particular axis are omitted.

• datfix(): recast an older DATE-OBS date format in dateobs to year-2000 standard form. Derive dateref from
mjdref if not already set. Alternatively, if dateref is set and mjdref isn't, then derive mjdref from it. If both are
set, then check consistency. Likewise for dateobs and mjdobs; datebeg and mjdbeg; dateavg and mjdavg;
and dateend and mjdend.

Generated by Doxygen

19.27 wcsfix.h File Reference 323

• obsfix(): if only one half of obsgeo[] is set, then derive the other half from it. If both halves are set, then check
consistency.

• unitfix(): translate some commonly used but non-standard unit strings in the CUNITia keyvalues, e.g. 'DEG'
-> 'deg'.

• spcfix(): translate AIPS-convention spectral types, 'FREQ-LSR', 'FELO-HEL', etc., in ctype[] as set from
CTYPEia.

• celfix(): translate AIPS-convention celestial projection types, NCP and GLS, in ctype[] as set from CTYPEia.

• cylfix(): fixes WCS keyvalues for malformed cylindrical projections that suffer from the problem described in
Sect. 7.3.4 of Paper I.

19.27.2 Macro Definition Documentation

19.27.2.1 CDFIX #define CDFIX 0

Index of the status value returned by cdfix() in the status vector returned by wcsfix().

19.27.2.2 DATFIX #define DATFIX 1

Index of the status value returned by datfix() in the status vector returned by wcsfix().

19.27.2.3 OBSFIX #define OBSFIX 2

19.27.2.4 UNITFIX #define UNITFIX 3

Index of the status value returned by unitfix() in the status vector returned by wcsfix().

19.27.2.5 SPCFIX #define SPCFIX 4

Index of the status value returned by spcfix() in the status vector returned by wcsfix().

19.27.2.6 CELFIX #define CELFIX 5

Index of the status value returned by celfix() in the status vector returned by wcsfix().

19.27.2.7 CYLFIX #define CYLFIX 6

Index of the status value returned by cylfix() in the status vector returned by wcsfix().

19.27.2.8 NWCSFIX #define NWCSFIX 7

Number of elements in the status vector returned by wcsfix().

Generated by Doxygen

324

19.27.2.9 cylfix_errmsg #define cylfix_errmsg wcsfix_errmsg

Deprecated Added for backwards compatibility, use wcsfix_errmsg directly now instead.

19.27.3 Enumeration Type Documentation

19.27.3.1 wcsfix_errmsg_enum enum wcsfix_errmsg_enum

Generated by Doxygen

19.27 wcsfix.h File Reference 325

Enumerator

FIXERR_OBSGEO_FIX
FIXERR_DATE_FIX

FIXERR_SPC_UPDATE
FIXERR_UNITS_ALIAS
FIXERR_NO_CHANGE

FIXERR_SUCCESS
FIXERR_NULL_POINTER

FIXERR_MEMORY
FIXERR_SINGULAR_MTX

FIXERR_BAD_CTYPE
FIXERR_BAD_PARAM

FIXERR_BAD_COORD_TRANS
FIXERR_ILL_COORD_TRANS
FIXERR_BAD_CORNER_PIX

FIXERR_NO_REF_PIX_COORD
FIXERR_NO_REF_PIX_VAL

19.27.4 Function Documentation

19.27.4.1 wcsfix() int wcsfix (

int ctrl,

const int naxis[],

struct wcsprm ∗ wcs,

int stat[])

wcsfix() is identical to wcsfixi(), but lacks the info argument.

19.27.4.2 wcsfixi() int wcsfixi (

int ctrl,

const int naxis[],

struct wcsprm ∗ wcs,

int stat[],

struct wcserr info[])

wcsfixi() applies all of the corrections handled separately by cdfix(), datfix(), obsfix(), unitfix(), spcfix(), celfix(), and
cylfix().

Parameters

in ctrl Do potentially unsafe translations of non-standard unit strings as described in the usage
notes to wcsutrn().

in naxis Image axis lengths. If this array pointer is set to zero then cylfix() will not be invoked.

in,out wcs Coordinate transformation parameters.

out stat Status returns from each of the functions. Use the preprocessor macros NWCSFIX to
dimension this vector and CDFIX, DATFIX, OBSFIX, UNITFIX, SPCFIX, CELFIX, and
CYLFIX to access its elements. A status value of -2 is set for functions that were not
invoked.

Generated by Doxygen

326

Parameters

out info Status messages from each of the functions. Use the preprocessor macros NWCSFIX to
dimension this vector and CDFIX, DATFIX, OBSFIX, UNITFIX, SPCFIX, CELFIX, and
CYLFIX to access its elements.
Note that the memory allocated by wcsfixi() for the message in each wcserr struct
(wcserr::msg, if non-zero) must be freed by the user. See wcsdealloc().

Returns

Status return value:

• 0: Success.

• 1: One or more of the translation functions returned an error.

19.27.4.3 cdfix() int cdfix (

struct wcsprm ∗ wcs)

cdfix() sets the diagonal element of the CDi_ja matrix to unity if all CDi_ja keywords associated with a given
axis were omitted. According to WCS Paper I, if any CDi_ja keywords at all are given in a FITS header then those
not given default to zero. This results in a singular matrix with an intersecting row and column of zeros.

cdfix() is expected to be invoked before wcsset(), which will fail if these errors have not been corrected.

Parameters

in,out wcs Coordinate transformation parameters.

Returns

Status return value:

• -1: No change required (not an error).

• 0: Success.

• 1: Null wcsprm pointer passed.

19.27.4.4 datfix() int datfix (

struct wcsprm ∗ wcs)

datfix() translates the old DATE-OBS date format set in wcsprm::dateobs to year-2000 standard form (yyyy-mm-
ddThh:mm:ss). It derives wcsprm::dateref from wcsprm::mjdref if not already set. Alternatively, if dateref is set
and mjdref isn't, then it derives mjdref from it. If both are set but disagree by more than 0.001 day (86.4 sec-
onds) then an error status is returned. Likewise for wcsprm::dateobs and wcsprm::mjdobs; wcsprm::datebeg and
wcsprm::mjdbeg; wcsprm::dateavg and wcsprm::mjdavg; and wcsprm::dateend and wcsprm::mjdend.

If neither dateobs nor mjdobs are set, but wcsprm::jepoch (primarily) or wcsprm::bepoch is, then both are derived
from it. If jepoch and/or bepoch are set but disagree with dateobs or mjdobs by more than 0.000002 year (63.2
seconds), an informative message is produced.

The translations done by datfix() do not affect and are not affected by wcsset().

Generated by Doxygen

19.27 wcsfix.h File Reference 327

Parameters

in,out wcs Coordinate transformation parameters. wcsprm::dateref and/or wcsprm::mjdref may be
changed. wcsprm::dateobs and/or wcsprm::mjdobs may be changed. wcsprm::datebeg
and/or wcsprm::mjdbeg may be changed. wcsprm::dateavg and/or wcsprm::mjdavg may
be changed. wcsprm::dateend and/or wcsprm::mjdend may be changed.

Returns

Status return value:

• -1: No change required (not an error).

• 0: Success.

• 1: Null wcsprm pointer passed.

• 5: Invalid parameter value.

For returns >= 0, a detailed message, whether informative or an error message, may be set in wcsprm::err if
enabled, see wcserr_enable(), with wcsprm::err.status set to FIXERR_DATE_FIX.

Notes:

1. The MJD algorithms used by datfix() are from D.A. Hatcher, 1984, QJRAS, 25, 53-55, as modified by P.T.
Wallace for use in SLALIB subroutines CLDJ and DJCL.

19.27.4.5 obsfix() int obsfix (

int ctrl,

struct wcsprm ∗ wcs)

obsfix() completes the wcsprm::obsgeo vector of observatory coordinates. That is, if only the (x,y,z) Cartesian
coordinate triplet or the (l,b,h) geodetic coordinate triplet are set, then it derives the other triplet from it. If both
triplets are set, then it checks for consistency at the level of 1 metre.

The operations done by obsfix() do not affect and are not affected by wcsset().

Parameters

in ctrl Flag that controls behaviour if one triplet is defined and the other is only partially defined:

• 0: Reset only the undefined elements of an incomplete coordinate triplet.

• 1: Reset all elements of an incomplete triplet.

• 2: Don't make any changes, check for consistency only. Returns an error if either of
the two triplets is incomplete.

in,out wcs Coordinate transformation parameters. wcsprm::obsgeo may be changed.

Generated by Doxygen

328

Returns

Status return value:

• -1: No change required (not an error).

• 0: Success.

• 1: Null wcsprm pointer passed.

• 5: Invalid parameter value.

For returns >= 0, a detailed message, whether informative or an error message, may be set in wcsprm::err if
enabled, see wcserr_enable(), with wcsprm::err.status set to FIXERR_OBS_FIX.

Notes:

1. While the International Terrestrial Reference System (ITRS) is based solely on Cartesian coordinates, it
recommends the use of the GRS80 ellipsoid in converting to geodetic coordinates. However, while WCS
Paper III recommends ITRS Cartesian coordinates, Paper VII prescribes the use of the IAU(1976) ellipsoid
for geodetic coordinates, and consequently that is what is used here.

2. For reference, parameters of commonly used global reference ellipsoids:
a (m) 1/f Standard

--------- ------------- --------------------------------
6378140 298.2577 IAU(1976)
6378137 298.257222101 GRS80
6378137 298.257223563 WGS84
6378136 298.257 IERS(1989)
6378136.6 298.25642 IERS(2003,2010), IAU(2009/2012)

where f = (a - b) / a is the flattening, and a and b are the semi-major and semi-minor radii in metres.

3. The transformation from geodetic (lng,lat,hgt) to Cartesian (x,y,z) is
x = (n + hgt)*coslng*coslat,
y = (n + hgt)*sinlng*coslat,
z = (n*(1.0 - e^2) + hgt)*sinlat,

where the "prime vertical radius", n, is a function of latitude
n = a / sqrt(1 - (e*sinlat)^2),

and a, the equatorial radius, and e∧2 = (2 - f)∗f, the (first) eccentricity of the ellipsoid, are constants. obsfix()
inverts these iteratively by writing

x = rho*coslng*coslat,
y = rho*sinlng*coslat,

zeta = rho*sinlat,

where
rho = n + hgt,

= sqrt(x^2 + y^2 + zeta^2),
zeta = z / (1 - n*e^2/rho),

and iterating over the value of zeta. Since e is small, a good first approximation is given by zeta = z.

19.27.4.6 unitfix() int unitfix (

int ctrl,

struct wcsprm ∗ wcs)

unitfix() applies wcsutrn() to translate non-standard CUNITia keyvalues, e.g. 'DEG' -> 'deg', also stripping off
unnecessary whitespace.

unitfix() is expected to be invoked before wcsset(), which will fail if non-standard CUNITia keyvalues have not
been translated.

Generated by Doxygen

19.27 wcsfix.h File Reference 329

Parameters

in ctrl Do potentially unsafe translations described in the usage notes to wcsutrn().

in,out wcs Coordinate transformation parameters.

Returns

Status return value:

• -1: No change required (not an error).

• 0: Success (an alias was applied).

• 1: Null wcsprm pointer passed.

When units are translated (i.e. 0 is returned), an informative message is set in wcsprm::err if enabled, see
wcserr_enable(), with wcsprm::err.status set to FIXERR_UNITS_ALIAS.

19.27.4.7 spcfix() int spcfix (

struct wcsprm ∗ wcs)

spcfix() translates AIPS-convention spectral coordinate types, '{FREQ,FELO,VELO}-{LSR,HEL,OBS}' (e.g. 'FREQ-
OBS', 'FELO-HEL', 'VELO-LSR') set in wcsprm::ctype[], subject to VELREF set in wcsprm::velref.

Note that if wcs::specsys is already set then it will not be overridden.

AIPS-convention spectral types set in CTYPEia are translated on-the-fly by wcsset() but without modifying
wcsprm::ctype[] or wcsprm::specsys. That is, only the information extracted from wcsprm::ctype[] is translated when
wcsset() fills in wcsprm::spc (spcprm struct). spcfix() modifies wcsprm::ctype[] so that if the header is subsequently
written out, e.g. by wcshdo(), then it will contain translated CTYPEia keyvalues.

The operations done by spcfix() do not affect and are not affected by wcsset().

Parameters

in,out wcs Coordinate transformation parameters. wcsprm::ctype[] and/or wcsprm::specsys may be
changed.

Returns

Status return value:

• -1: No change required (not an error).

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

• 3: Linear transformation matrix is singular.

• 4: Inconsistent or unrecognized coordinate axis types.

• 5: Invalid parameter value.

• 6: Invalid coordinate transformation parameters.

• 7: Ill-conditioned coordinate transformation parameters.

Generated by Doxygen

330

For returns >= 0, a detailed message, whether informative or an error message, may be set in wcsprm::err if
enabled, see wcserr_enable(), with wcsprm::err.status set to FIXERR_SPC_UPDTE.

19.27.4.8 celfix() int celfix (

struct wcsprm ∗ wcs)

celfix() translates AIPS-convention celestial projection types, NCP and GLS, set in the ctype[] member of the wc-
sprm struct.

Two additional pv[] keyvalues are created when translating NCP, and three are created when translating GLS with
non-zero reference point. If the pv[] array was initially allocated by wcsini() then the array will be expanded if
necessary. Otherwise, error 2 will be returned if sufficient empty slots are not already available for use.

AIPS-convention celestial projection types set in CTYPEia are translated on-the-fly by wcsset() but without mod-
ifying wcsprm::ctype[], wcsprm::pv[], or wcsprm::npv. That is, only the information extracted from wcsprm::ctype[]
is translated when wcsset() fills in wcsprm::cel (celprm struct). celfix() modifies wcsprm::ctype[], wcsprm::pv[],
and wcsprm::npv so that if the header is subsequently written out, e.g. by wcshdo(), then it will contain translated
CTYPEia keyvalues and the relevant PVi_ma.

The operations done by celfix() do not affect and are not affected by wcsset(). However, it uses information in the
wcsprm struct provided by wcsset(), and will invoke it if necessary.

Parameters

in,out wcs Coordinate transformation parameters. wcsprm::ctype[] and/or wcsprm::pv[] may be changed.

Returns

Status return value:

• -1: No change required (not an error).

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

• 3: Linear transformation matrix is singular.

• 4: Inconsistent or unrecognized coordinate axis types.

• 5: Invalid parameter value.

• 6: Invalid coordinate transformation parameters.

• 7: Ill-conditioned coordinate transformation parameters.

For returns > 1, a detailed error message is set in wcsprm::err if enabled, see wcserr_enable().

19.27.4.9 cylfix() int cylfix (

const int naxis[],

struct wcsprm ∗ wcs)

cylfix() fixes WCS keyvalues for malformed cylindrical projections that suffer from the problem described in Sect.
7.3.4 of Paper I.

cylfix() requires the wcsprm struct to have been set up by wcsset(), and will invoke it if necessary. After modification,
the struct is reset on return with an explicit call to wcsset().

Generated by Doxygen

19.27 wcsfix.h File Reference 331

Parameters

in naxis Image axis lengths.

in,out wcs Coordinate transformation parameters.

Returns

Status return value:

• -1: No change required (not an error).

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

• 3: Linear transformation matrix is singular.

• 4: Inconsistent or unrecognized coordinate axis types.

• 5: Invalid parameter value.

• 6: Invalid coordinate transformation parameters.

• 7: Ill-conditioned coordinate transformation parameters.

• 8: All of the corner pixel coordinates are invalid.

• 9: Could not determine reference pixel coordinate.

• 10: Could not determine reference pixel value.

For returns > 1, a detailed error message is set in wcsprm::err if enabled, see wcserr_enable().

19.27.4.10 wcspcx() int wcspcx (

struct wcsprm ∗ wcs,

int dopc,

int permute,

double rotn[2])

wcspcx() "regularizes" the linear transformation matrix component of the coordinate transformation (PCi_ja) to
make it more human-readable.

Normally, upon encountering a FITS header containing a CDi_ja matrix, wcsset() simply treats it as PCi_ja and
sets CDELTia to unity. However, wcspcx() decomposes CDi_ja into PCi_ja and CDELTia in such a way
that CDELTia form meaningful scaling parameters. In practice, the residual PCi_ja matrix will often then be
orthogonal, i.e. unity, or describing a pure rotation, axis permutation, or reflection, or a combination thereof.

The decomposition is based on normalizing the length in the transformed system (i.e. intermediate pixel coordi-
nates) of the orthonormal basis vectors of the pixel coordinate system. This deviates slightly from the prescription
given by Eq. (4) of WCS Paper I, namely Sum(j=1,N)(PCi_ja)2 = 1, in replacing the sum over j with the sum
over i. Consequently, the columns of PCi_ja will consist of unit vectors. In practice, especially in cubes and
higher dimensional images, at least some pairs of these unit vectors, if not all, will often be orthogonal or close to
orthogonal.

The sign of CDELTia is chosen to make the PCi_ja matrix as close to the, possibly permuted, unit matrix as
possible, except that where the coordinate description contains a pair of celestial axes, the sign of CDELTia is set
negative for the longitude axis and positive for the latitude axis.

Optionally, rows of the PCi_ja matrix may also be permuted to diagonalize it as far as possible, thus undoing any
transposition of axes in the intermediate pixel coordinate system.

Generated by Doxygen

332

If the coordinate description contains a celestial plane, then the angle of rotation of each of the basis vectors
associated with the celestial axes is returned. For a pure rotation the two angles should be identical. Any difference
between them is a measure of axis skewness.

The decomposition is not performed for axes involving a sequent distortion function that is defined in terms of
CDi_ja, such as TPV, TNX, or ZPX, which always are. The independent variables of the polynomial are therefore
intermediate world coordinates rather than intermediate pixel coordinates. Because sequent distortions are always
applied before CDELTia, if CDi_ja was translated to PCi_ja plus CDELTia, then the distortion would be
altered unless the polynomial coefficients were also adjusted to account for the change of scale.

wcspcx() requires the wcsprm struct to have been set up by wcsset(), and will invoke it if necessary. The wcsprm
struct is reset on return with an explicit call to wcsset().

Parameters

in,out wcs Coordinate transformation parameters.

in dopc If 1, then PCi_ja and CDELTia, as given, will be recomposed according to the
above prescription. If 0, the operation is restricted to decomposing CDi_ja.

in permute If 1, then after decomposition (or recomposition), permute rows of PCi_ja to make
the axes of the intermediate pixel coordinate system match as closely as possible
those of the pixel coordinates. That is, make it as close to a diagonal matrix as
possible. However, celestial axes are special in always being paired, with the longitude
axis preceding the latitude axis.
All WCS entities indexed by i, such as CTYPEia, CRVALia, CDELTia, etc.,
including coordinate lookup tables, will also be permuted as necessary to account for
the change to PCi_ja. This does not apply to CRPIXja, nor prior distortion
functions. These operate on pixel coordinates, which are not affected by the
permutation.

out rotn with the celestial axes. For a pure rotation the two angles should be identical. Any
difference between them is a measure of axis skewness.
May be set to the NULL pointer if this information is not required.

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

• 5: CDi_j matrix not used.

• 6: Sequent distortion function present.

19.27.5 Variable Documentation

19.27.5.1 wcsfix_errmsg const char ∗ wcsfix_errmsg[] [extern]

Error messages to match the status value returned from each function.

Generated by Doxygen

19.28 wcsfix.h 333

19.28 wcsfix.h

Go to the documentation of this file.
1 /*==
2 WCSLIB 7.11 - an implementation of the FITS WCS standard.
3 Copyright (C) 1995-2022, Mark Calabretta
4
5 This file is part of WCSLIB.
6
7 WCSLIB is free software: you can redistribute it and/or modify it under the
8 terms of the GNU Lesser General Public License as published by the Free
9 Software Foundation, either version 3 of the License, or (at your option)
10 any later version.
11
12 WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
15 more details.
16
17 You should have received a copy of the GNU Lesser General Public License
18 along with WCSLIB. If not, see http://www.gnu.org/licenses.
19
20 Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
21 http://www.atnf.csiro.au/people/Mark.Calabretta
22 $Id: wcsfix.h,v 7.11 2022/04/26 06:13:52 mcalabre Exp $
23 *===
24 *
25 * WCSLIB 7.11 - C routines that implement the FITS World Coordinate System
26 * (WCS) standard. Refer to the README file provided with WCSLIB for an
27 * overview of the library.
28 *
29 *
30 * Summary of the wcsfix routines
31 * ------------------------------
32 * Routines in this suite identify and translate various forms of construct
33 * known to occur in FITS headers that violate the FITS World Coordinate System
34 * (WCS) standard described in
35 *
36 = "Representations of world coordinates in FITS",
37 = Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)
38 =
39 = "Representations of celestial coordinates in FITS",
40 = Calabretta, M.R., & Greisen, E.W. 2002, A&A, 395, 1077 (WCS Paper II)
41 =
42 = "Representations of spectral coordinates in FITS",
43 = Greisen, E.W., Calabretta, M.R., Valdes, F.G., & Allen, S.L.
44 = 2006, A&A, 446, 747 (WCS Paper III)
45 =
46 = "Representations of time coordinates in FITS -
47 = Time and relative dimension in space",
48 = Rots, A.H., Bunclark, P.S., Calabretta, M.R., Allen, S.L.,
49 = Manchester, R.N., & Thompson, W.T. 2015, A&A, 574, A36 (WCS Paper VII)
50 *
51 * Repairs effected by these routines range from the translation of
52 * non-standard values for standard WCS keywords, to the repair of malformed
53 * coordinate representations. Some routines are also provided to check the
54 * consistency of pairs of keyvalues that define the same measure in two
55 * different ways, for example, as a date and an MJD.
56 *
57 * A separate routine, wcspcx(), "regularizes" the linear transformation matrix
58 * component (PCi_j) of the coordinate transformation to make it more human-
59 * readable. Where a coordinate description was constructed from CDi_j, it
60 * decomposes it into PCi_j + CDELTi in a meaningful way. Optionally, it can
61 * also diagonalize the PCi_j matrix (as far as possible), i.e. undo a
62 * transposition of axes in the intermediate pixel coordinate system.
63 *
64 * Non-standard keyvalues:
65 * -----------------------
66 * AIPS-convention celestial projection types, NCP and GLS, and spectral
67 * types, ’FREQ-LSR’, ’FELO-HEL’, etc., set in CTYPEia are translated
68 * on-the-fly by wcsset() but without modifying the relevant ctype[], pv[] or
69 * specsys members of the wcsprm struct. That is, only the information
70 * extracted from ctype[] is translated when wcsset() fills in wcsprm::cel
71 * (celprm struct) or wcsprm::spc (spcprm struct).
72 *
73 * On the other hand, these routines do change the values of wcsprm::ctype[],
74 * wcsprm::pv[], wcsprm::specsys and other wcsprm struct members as
75 * appropriate to produce the same result as if the FITS header itself had
76 * been translated.
77 *
78 * Auxiliary WCS header information not used directly by WCSLIB may also be
79 * translated. For example, the older DATE-OBS date format (wcsprm::dateobs)
80 * is recast to year-2000 standard form, and MJD-OBS (wcsprm::mjdobs) will be
81 * deduced from it if not already set.
82 *
83 * Certain combinations of keyvalues that result in malformed coordinate

Generated by Doxygen

334

84 * systems, as described in Sect. 7.3.4 of Paper I, may also be repaired.
85 * These are handled by cylfix().
86 *
87 * Non-standard keywords:
88 * ----------------------
89 * The AIPS-convention CROTAn keywords are recognized as quasi-standard
90 * and as such are accomodated by wcsprm::crota[] and translated to
91 * wcsprm::pc[][] by wcsset(). These are not dealt with here, nor are any
92 * other non-standard keywords since these routines work only on the contents
93 * of a wcsprm struct and do not deal with FITS headers per se. In
94 * particular, they do not identify or translate CD00i00j, PC00i00j, PROJPn,
95 * EPOCH, VELREF or VSOURCEa keywords; this may be done by the FITS WCS
96 * header parser supplied with WCSLIB, refer to wcshdr.h.
97 *
98 * wcsfix() and wcsfixi() apply all of the corrections handled by the following
99 * specific functions, which may also be invoked separately:
100 *
101 * - cdfix(): Sets the diagonal element of the CDi_ja matrix to 1.0 if all
102 * CDi_ja keywords associated with a particular axis are omitted.
103 *
104 * - datfix(): recast an older DATE-OBS date format in dateobs to year-2000
105 * standard form. Derive dateref from mjdref if not already set.
106 * Alternatively, if dateref is set and mjdref isn’t, then derive mjdref
107 * from it. If both are set, then check consistency. Likewise for dateobs
108 * and mjdobs; datebeg and mjdbeg; dateavg and mjdavg; and dateend and
109 * mjdend.
110 *
111 * - obsfix(): if only one half of obsgeo[] is set, then derive the other
112 * half from it. If both halves are set, then check consistency.
113 *
114 * - unitfix(): translate some commonly used but non-standard unit strings in
115 * the CUNITia keyvalues, e.g. ’DEG’ -> ’deg’.
116 *
117 * - spcfix(): translate AIPS-convention spectral types, ’FREQ-LSR’,
118 * ’FELO-HEL’, etc., in ctype[] as set from CTYPEia.
119 *
120 * - celfix(): translate AIPS-convention celestial projection types, NCP and
121 * GLS, in ctype[] as set from CTYPEia.
122 *
123 * - cylfix(): fixes WCS keyvalues for malformed cylindrical projections that
124 * suffer from the problem described in Sect. 7.3.4 of Paper I.
125 *
126 *
127 * wcsfix() - Translate a non-standard WCS struct
128 * --
129 * wcsfix() is identical to wcsfixi(), but lacks the info argument.
130 *
131 *
132 * wcsfixi() - Translate a non-standard WCS struct
133 * ---
134 * wcsfixi() applies all of the corrections handled separately by cdfix(),
135 * datfix(), obsfix(), unitfix(), spcfix(), celfix(), and cylfix().
136 *
137 * Given:
138 * ctrl int Do potentially unsafe translations of non-standard
139 * unit strings as described in the usage notes to
140 * wcsutrn().
141 *
142 * naxis const int []
143 * Image axis lengths. If this array pointer is set to
144 * zero then cylfix() will not be invoked.
145 *
146 * Given and returned:
147 * wcs struct wcsprm*
148 * Coordinate transformation parameters.
149 *
150 * Returned:
151 * stat int [NWCSFIX]
152 * Status returns from each of the functions. Use the
153 * preprocessor macros NWCSFIX to dimension this vector
154 * and CDFIX, DATFIX, OBSFIX, UNITFIX, SPCFIX, CELFIX,
155 * and CYLFIX to access its elements. A status value
156 * of -2 is set for functions that were not invoked.
157 *
158 * info struct wcserr [NWCSFIX]
159 * Status messages from each of the functions. Use the
160 * preprocessor macros NWCSFIX to dimension this vector
161 * and CDFIX, DATFIX, OBSFIX, UNITFIX, SPCFIX, CELFIX,
162 * and CYLFIX to access its elements.
163 *
164 * Note that the memory allocated by wcsfixi() for the
165 * message in each wcserr struct (wcserr::msg, if
166 * non-zero) must be freed by the user. See
167 * wcsdealloc().
168 *
169 * Function return value:
170 * int Status return value:

Generated by Doxygen

19.28 wcsfix.h 335

171 * 0: Success.
172 * 1: One or more of the translation functions
173 * returned an error.
174 *
175 *
176 * cdfix() - Fix erroneously omitted CDi_ja keywords
177 * ---
178 * cdfix() sets the diagonal element of the CDi_ja matrix to unity if all
179 * CDi_ja keywords associated with a given axis were omitted. According to WCS
180 * Paper I, if any CDi_ja keywords at all are given in a FITS header then those
181 * not given default to zero. This results in a singular matrix with an
182 * intersecting row and column of zeros.
183 *
184 * cdfix() is expected to be invoked before wcsset(), which will fail if these
185 * errors have not been corrected.
186 *
187 * Given and returned:
188 * wcs struct wcsprm*
189 * Coordinate transformation parameters.
190 *
191 * Function return value:
192 * int Status return value:
193 * -1: No change required (not an error).
194 * 0: Success.
195 * 1: Null wcsprm pointer passed.
196 *
197 *
198 * datfix() - Translate DATE-OBS and derive MJD-OBS or vice versa
199 * --
200 * datfix() translates the old DATE-OBS date format set in wcsprm::dateobs to
201 * year-2000 standard form (yyyy-mm-ddThh:mm:ss). It derives wcsprm::dateref
202 * from wcsprm::mjdref if not already set. Alternatively, if dateref is set
203 * and mjdref isn’t, then it derives mjdref from it. If both are set but
204 * disagree by more than 0.001 day (86.4 seconds) then an error status is
205 * returned. Likewise for wcsprm::dateobs and wcsprm::mjdobs; wcsprm::datebeg
206 * and wcsprm::mjdbeg; wcsprm::dateavg and wcsprm::mjdavg; and wcsprm::dateend
207 * and wcsprm::mjdend.
208 *
209 * If neither dateobs nor mjdobs are set, but wcsprm::jepoch (primarily) or
210 * wcsprm::bepoch is, then both are derived from it. If jepoch and/or bepoch
211 * are set but disagree with dateobs or mjdobs by more than 0.000002 year
212 * (63.2 seconds), an informative message is produced.
213 *
214 * The translations done by datfix() do not affect and are not affected by
215 * wcsset().
216 *
217 * Given and returned:
218 * wcs struct wcsprm*
219 * Coordinate transformation parameters.
220 * wcsprm::dateref and/or wcsprm::mjdref may be changed.
221 * wcsprm::dateobs and/or wcsprm::mjdobs may be changed.
222 * wcsprm::datebeg and/or wcsprm::mjdbeg may be changed.
223 * wcsprm::dateavg and/or wcsprm::mjdavg may be changed.
224 * wcsprm::dateend and/or wcsprm::mjdend may be changed.
225 *
226 * Function return value:
227 * int Status return value:
228 * -1: No change required (not an error).
229 * 0: Success.
230 * 1: Null wcsprm pointer passed.
231 * 5: Invalid parameter value.
232 *
233 * For returns >= 0, a detailed message, whether
234 * informative or an error message, may be set in
235 * wcsprm::err if enabled, see wcserr_enable(), with
236 * wcsprm::err.status set to FIXERR_DATE_FIX.
237 *
238 * Notes:
239 * 1: The MJD algorithms used by datfix() are from D.A. Hatcher, 1984, QJRAS,
240 * 25, 53-55, as modified by P.T. Wallace for use in SLALIB subroutines
241 * CLDJ and DJCL.
242 *
243 *
244 * obsfix() - complete the OBSGEO-[XYZLBH] vector of observatory coordinates
245 * ---
246 * obsfix() completes the wcsprm::obsgeo vector of observatory coordinates.
247 * That is, if only the (x,y,z) Cartesian coordinate triplet or the (l,b,h)
248 * geodetic coordinate triplet are set, then it derives the other triplet from
249 * it. If both triplets are set, then it checks for consistency at the level
250 * of 1 metre.
251 *
252 * The operations done by obsfix() do not affect and are not affected by
253 * wcsset().
254 *
255 * Given:
256 * ctrl int Flag that controls behaviour if one triplet is
257 * defined and the other is only partially defined:

Generated by Doxygen

336

258 * 0: Reset only the undefined elements of an
259 * incomplete coordinate triplet.
260 * 1: Reset all elements of an incomplete triplet.
261 * 2: Don’t make any changes, check for consistency
262 * only. Returns an error if either of the two
263 * triplets is incomplete.
264 *
265 * Given and returned:
266 * wcs struct wcsprm*
267 * Coordinate transformation parameters.
268 * wcsprm::obsgeo may be changed.
269 *
270 * Function return value:
271 * int Status return value:
272 * -1: No change required (not an error).
273 * 0: Success.
274 * 1: Null wcsprm pointer passed.
275 * 5: Invalid parameter value.
276 *
277 * For returns >= 0, a detailed message, whether
278 * informative or an error message, may be set in
279 * wcsprm::err if enabled, see wcserr_enable(), with
280 * wcsprm::err.status set to FIXERR_OBS_FIX.
281 *
282 * Notes:
283 * 1: While the International Terrestrial Reference System (ITRS) is based
284 * solely on Cartesian coordinates, it recommends the use of the GRS80
285 * ellipsoid in converting to geodetic coordinates. However, while WCS
286 * Paper III recommends ITRS Cartesian coordinates, Paper VII prescribes
287 * the use of the IAU(1976) ellipsoid for geodetic coordinates, and
288 * consequently that is what is used here.
289 *
290 * 2: For reference, parameters of commonly used global reference ellipsoids:
291 *
292 = a (m) 1/f Standard
293 = --------- ------------- --------------------------------
294 = 6378140 298.2577 IAU(1976)
295 = 6378137 298.257222101 GRS80
296 = 6378137 298.257223563 WGS84
297 = 6378136 298.257 IERS(1989)
298 = 6378136.6 298.25642 IERS(2003,2010), IAU(2009/2012)
299 *
300 * where f = (a - b) / a is the flattening, and a and b are the semi-major
301 * and semi-minor radii in metres.
302 *
303 * 3: The transformation from geodetic (lng,lat,hgt) to Cartesian (x,y,z) is
304 *
305 = x = (n + hgt)*coslng*coslat,
306 = y = (n + hgt)*sinlng*coslat,
307 = z = (n*(1.0 - e^2) + hgt)*sinlat,
308 *
309 * where the "prime vertical radius", n, is a function of latitude
310 *
311 = n = a / sqrt(1 - (e*sinlat)^2),
312 *
313 * and a, the equatorial radius, and e^2 = (2 - f)*f, the (first)
314 * eccentricity of the ellipsoid, are constants. obsfix() inverts these
315 * iteratively by writing
316 *
317 = x = rho*coslng*coslat,
318 = y = rho*sinlng*coslat,
319 = zeta = rho*sinlat,
320 *
321 * where
322 *
323 = rho = n + hgt,
324 = = sqrt(x^2 + y^2 + zeta^2),
325 = zeta = z / (1 - n*e^2/rho),
326 *
327 * and iterating over the value of zeta. Since e is small, a good first
328 * approximation is given by zeta = z.
329 *
330 *
331 * unitfix() - Correct aberrant CUNITia keyvalues
332 * --
333 * unitfix() applies wcsutrn() to translate non-standard CUNITia keyvalues,
334 * e.g. ’DEG’ -> ’deg’, also stripping off unnecessary whitespace.
335 *
336 * unitfix() is expected to be invoked before wcsset(), which will fail if
337 * non-standard CUNITia keyvalues have not been translated.
338 *
339 * Given:
340 * ctrl int Do potentially unsafe translations described in the
341 * usage notes to wcsutrn().
342 *
343 * Given and returned:
344 * wcs struct wcsprm*

Generated by Doxygen

19.28 wcsfix.h 337

345 * Coordinate transformation parameters.
346 *
347 * Function return value:
348 * int Status return value:
349 * -1: No change required (not an error).
350 * 0: Success (an alias was applied).
351 * 1: Null wcsprm pointer passed.
352 *
353 * When units are translated (i.e. 0 is returned), an
354 * informative message is set in wcsprm::err if enabled,
355 * see wcserr_enable(), with wcsprm::err.status set to
356 * FIXERR_UNITS_ALIAS.
357 *
358 *
359 * spcfix() - Translate AIPS-convention spectral types
360 * ---
361 * spcfix() translates AIPS-convention spectral coordinate types,
362 * ’{FREQ,FELO,VELO}-{LSR,HEL,OBS}’ (e.g. ’FREQ-OBS’, ’FELO-HEL’, ’VELO-LSR’)
363 * set in wcsprm::ctype[], subject to VELREF set in wcsprm::velref.
364 *
365 * Note that if wcs::specsys is already set then it will not be overridden.
366 *
367 * AIPS-convention spectral types set in CTYPEia are translated on-the-fly by
368 * wcsset() but without modifying wcsprm::ctype[] or wcsprm::specsys. That is,
369 * only the information extracted from wcsprm::ctype[] is translated when
370 * wcsset() fills in wcsprm::spc (spcprm struct). spcfix() modifies
371 * wcsprm::ctype[] so that if the header is subsequently written out, e.g. by
372 * wcshdo(), then it will contain translated CTYPEia keyvalues.
373 *
374 * The operations done by spcfix() do not affect and are not affected by
375 * wcsset().
376 *
377 * Given and returned:
378 * wcs struct wcsprm*
379 * Coordinate transformation parameters. wcsprm::ctype[]
380 * and/or wcsprm::specsys may be changed.
381 *
382 * Function return value:
383 * int Status return value:
384 * -1: No change required (not an error).
385 * 0: Success.
386 * 1: Null wcsprm pointer passed.
387 * 2: Memory allocation failed.
388 * 3: Linear transformation matrix is singular.
389 * 4: Inconsistent or unrecognized coordinate axis
390 * types.
391 * 5: Invalid parameter value.
392 * 6: Invalid coordinate transformation parameters.
393 * 7: Ill-conditioned coordinate transformation
394 * parameters.
395 *
396 * For returns >= 0, a detailed message, whether
397 * informative or an error message, may be set in
398 * wcsprm::err if enabled, see wcserr_enable(), with
399 * wcsprm::err.status set to FIXERR_SPC_UPDTE.
400 *
401 *
402 * celfix() - Translate AIPS-convention celestial projection types
403 * ---
404 * celfix() translates AIPS-convention celestial projection types, NCP and
405 * GLS, set in the ctype[] member of the wcsprm struct.
406 *
407 * Two additional pv[] keyvalues are created when translating NCP, and three
408 * are created when translating GLS with non-zero reference point. If the pv[]
409 * array was initially allocated by wcsini() then the array will be expanded if
410 * necessary. Otherwise, error 2 will be returned if sufficient empty slots
411 * are not already available for use.
412 *
413 * AIPS-convention celestial projection types set in CTYPEia are translated
414 * on-the-fly by wcsset() but without modifying wcsprm::ctype[], wcsprm::pv[],
415 * or wcsprm::npv. That is, only the information extracted from
416 * wcsprm::ctype[] is translated when wcsset() fills in wcsprm::cel (celprm
417 * struct). celfix() modifies wcsprm::ctype[], wcsprm::pv[], and wcsprm::npv
418 * so that if the header is subsequently written out, e.g. by wcshdo(), then it
419 * will contain translated CTYPEia keyvalues and the relevant PVi_ma.
420 *
421 * The operations done by celfix() do not affect and are not affected by
422 * wcsset(). However, it uses information in the wcsprm struct provided by
423 * wcsset(), and will invoke it if necessary.
424 *
425 * Given and returned:
426 * wcs struct wcsprm*
427 * Coordinate transformation parameters. wcsprm::ctype[]
428 * and/or wcsprm::pv[] may be changed.
429 *
430 * Function return value:
431 * int Status return value:

Generated by Doxygen

338

432 * -1: No change required (not an error).
433 * 0: Success.
434 * 1: Null wcsprm pointer passed.
435 * 2: Memory allocation failed.
436 * 3: Linear transformation matrix is singular.
437 * 4: Inconsistent or unrecognized coordinate axis
438 * types.
439 * 5: Invalid parameter value.
440 * 6: Invalid coordinate transformation parameters.
441 * 7: Ill-conditioned coordinate transformation
442 * parameters.
443 *
444 * For returns > 1, a detailed error message is set in
445 * wcsprm::err if enabled, see wcserr_enable().
446 *
447 *
448 * cylfix() - Fix malformed cylindrical projections
449 * --
450 * cylfix() fixes WCS keyvalues for malformed cylindrical projections that
451 * suffer from the problem described in Sect. 7.3.4 of Paper I.
452 *
453 * cylfix() requires the wcsprm struct to have been set up by wcsset(), and
454 * will invoke it if necessary. After modification, the struct is reset on
455 * return with an explicit call to wcsset().
456 *
457 * Given:
458 * naxis const int []
459 * Image axis lengths.
460 *
461 * Given and returned:
462 * wcs struct wcsprm*
463 * Coordinate transformation parameters.
464 *
465 * Function return value:
466 * int Status return value:
467 * -1: No change required (not an error).
468 * 0: Success.
469 * 1: Null wcsprm pointer passed.
470 * 2: Memory allocation failed.
471 * 3: Linear transformation matrix is singular.
472 * 4: Inconsistent or unrecognized coordinate axis
473 * types.
474 * 5: Invalid parameter value.
475 * 6: Invalid coordinate transformation parameters.
476 * 7: Ill-conditioned coordinate transformation
477 * parameters.
478 * 8: All of the corner pixel coordinates are invalid.
479 * 9: Could not determine reference pixel coordinate.
480 * 10: Could not determine reference pixel value.
481 *
482 * For returns > 1, a detailed error message is set in
483 * wcsprm::err if enabled, see wcserr_enable().
484 *
485 *
486 * wcspcx() - regularize PCi_j
487 * ---------------------------
488 * wcspcx() "regularizes" the linear transformation matrix component of the
489 * coordinate transformation (PCi_ja) to make it more human-readable.
490 *
491 * Normally, upon encountering a FITS header containing a CDi_ja matrix,
492 * wcsset() simply treats it as PCi_ja and sets CDELTia to unity. However,
493 * wcspcx() decomposes CDi_ja into PCi_ja and CDELTia in such a way that
494 * CDELTia form meaningful scaling parameters. In practice, the residual
495 * PCi_ja matrix will often then be orthogonal, i.e. unity, or describing a
496 * pure rotation, axis permutation, or reflection, or a combination thereof.
497 *
498 * The decomposition is based on normalizing the length in the transformed
499 * system (i.e. intermediate pixel coordinates) of the orthonormal basis
500 * vectors of the pixel coordinate system. This deviates slightly from the
501 * prescription given by Eq. (4) of WCS Paper I, namely Sum(j=1,N)(PCi_ja)2 = 1,
502 * in replacing the sum over j with the sum over i. Consequently, the columns
503 * of PCi_ja will consist of unit vectors. In practice, especially in cubes
504 * and higher dimensional images, at least some pairs of these unit vectors, if
505 * not all, will often be orthogonal or close to orthogonal.
506 *
507 * The sign of CDELTia is chosen to make the PCi_ja matrix as close to the,
508 * possibly permuted, unit matrix as possible, except that where the coordinate
509 * description contains a pair of celestial axes, the sign of CDELTia is set
510 * negative for the longitude axis and positive for the latitude axis.
511 *
512 * Optionally, rows of the PCi_ja matrix may also be permuted to diagonalize
513 * it as far as possible, thus undoing any transposition of axes in the
514 * intermediate pixel coordinate system.
515 *
516 * If the coordinate description contains a celestial plane, then the angle of
517 * rotation of each of the basis vectors associated with the celestial axes is
518 * returned. For a pure rotation the two angles should be identical. Any

Generated by Doxygen

19.28 wcsfix.h 339

519 * difference between them is a measure of axis skewness.
520 *
521 * The decomposition is not performed for axes involving a sequent distortion
522 * function that is defined in terms of CDi_ja, such as TPV, TNX, or ZPX, which
523 * always are. The independent variables of the polynomial are therefore
524 * intermediate world coordinates rather than intermediate pixel coordinates.
525 * Because sequent distortions are always applied before CDELTia, if CDi_ja was
526 * translated to PCi_ja plus CDELTia, then the distortion would be altered
527 * unless the polynomial coefficients were also adjusted to account for the
528 * change of scale.
529 *
530 * wcspcx() requires the wcsprm struct to have been set up by wcsset(), and
531 * will invoke it if necessary. The wcsprm struct is reset on return with an
532 * explicit call to wcsset().
533 *
534 * Given and returned:
535 * wcs struct wcsprm*
536 * Coordinate transformation parameters.
537 *
538 * Given:
539 * dopc int If 1, then PCi_ja and CDELTia, as given, will be
540 * recomposed according to the above prescription. If 0,
541 * the operation is restricted to decomposing CDi_ja.
542 *
543 * permute int If 1, then after decomposition (or recomposition),
544 * permute rows of PCi_ja to make the axes of the
545 * intermediate pixel coordinate system match as closely
546 * as possible those of the pixel coordinates. That is,
547 * make it as close to a diagonal matrix as possible.
548 * However, celestial axes are special in always being
549 * paired, with the longitude axis preceding the latitude
550 * axis.
551 *
552 * All WCS entities indexed by i, such as CTYPEia,
553 * CRVALia, CDELTia, etc., including coordinate lookup
554 * tables, will also be permuted as necessary to account
555 * for the change to PCi_ja. This does not apply to
556 * CRPIXja, nor prior distortion functions. These
557 * operate on pixel coordinates, which are not affected
558 * by the permutation.
559 *
560 * Returned:
561 * rotn double[2] Rotation angle [deg] of each basis vector associated
562 * with the celestial axes. For a pure rotation the two
563 * angles should be identical. Any difference between
564 * them is a measure of axis skewness.
565 *
566 * May be set to the NULL pointer if this information is
567 * not required.
568 *
569 * Function return value:
570 * int Status return value:
571 * 0: Success.
572 * 1: Null wcsprm pointer passed.
573 * 2: Memory allocation failed.
574 * 5: CDi_j matrix not used.
575 * 6: Sequent distortion function present.
576 *
577 *
578 * Global variable: const char *wcsfix_errmsg[] - Status return messages
579 * ---
580 * Error messages to match the status value returned from each function.
581 *
582 *===*/
583
584 #ifndef WCSLIB_WCSFIX
585 #define WCSLIB_WCSFIX
586
587 #include "wcs.h"
588 #include "wcserr.h"
589
590 #ifdef __cplusplus
591 extern "C" {
592 #endif
593
594 #define CDFIX 0
595 #define DATFIX 1
596 #define OBSFIX 2
597 #define UNITFIX 3
598 #define SPCFIX 4
599 #define CELFIX 5
600 #define CYLFIX 6
601 #define NWCSFIX 7
602
603 extern const char *wcsfix_errmsg[];
604 #define cylfix_errmsg wcsfix_errmsg
605

Generated by Doxygen

340

606 enum wcsfix_errmsg_enum {
607 FIXERR_OBSGEO_FIX = -5, // Observatory coordinates amended.
608 FIXERR_DATE_FIX = -4, // Date string reformatted.
609 FIXERR_SPC_UPDATE = -3, // Spectral axis type modified.
610 FIXERR_UNITS_ALIAS = -2, // Units alias translation.
611 FIXERR_NO_CHANGE = -1, // No change.
612 FIXERR_SUCCESS = 0, // Success.
613 FIXERR_NULL_POINTER = 1, // Null wcsprm pointer passed.
614 FIXERR_MEMORY = 2, // Memory allocation failed.
615 FIXERR_SINGULAR_MTX = 3, // Linear transformation matrix is singular.
616 FIXERR_BAD_CTYPE = 4, // Inconsistent or unrecognized coordinate
617 // axis types.
618 FIXERR_BAD_PARAM = 5, // Invalid parameter value.
619 FIXERR_BAD_COORD_TRANS = 6, // Invalid coordinate transformation
620 // parameters.
621 FIXERR_ILL_COORD_TRANS = 7, // Ill-conditioned coordinate transformation
622 // parameters.
623 FIXERR_BAD_CORNER_PIX = 8, // All of the corner pixel coordinates are
624 // invalid.
625 FIXERR_NO_REF_PIX_COORD = 9, // Could not determine reference pixel
626 // coordinate.
627 FIXERR_NO_REF_PIX_VAL = 10 // Could not determine reference pixel value.
628 };
629
630 int wcsfix(int ctrl, const int naxis[], struct wcsprm *wcs, int stat[]);
631
632 int wcsfixi(int ctrl, const int naxis[], struct wcsprm *wcs, int stat[],
633 struct wcserr info[]);
634
635 int cdfix(struct wcsprm *wcs);
636
637 int datfix(struct wcsprm *wcs);
638
639 int obsfix(int ctrl, struct wcsprm *wcs);
640
641 int unitfix(int ctrl, struct wcsprm *wcs);
642
643 int spcfix(struct wcsprm *wcs);
644
645 int celfix(struct wcsprm *wcs);
646
647 int cylfix(const int naxis[], struct wcsprm *wcs);
648
649 int wcspcx(struct wcsprm *wcs, int dopc, int permute, double rotn[2]);
650
651
652 #ifdef __cplusplus
653 }
654 #endif
655
656 #endif // WCSLIB_WCSFIX

19.29 wcshdr.h File Reference

#include "wcs.h"

Macros

• #define WCSHDR_none 0x00000000

Bit mask for wcspih() and wcsbth() - reject all extensions.

• #define WCSHDR_all 0x000FFFFF

Bit mask for wcspih() and wcsbth() - accept all extensions.

• #define WCSHDR_reject 0x10000000

Bit mask for wcspih() and wcsbth() - reject non-standard keywords.

• #define WCSHDR_strict 0x20000000
• #define WCSHDR_CROTAia 0x00000001

Bit mask for wcspih() and wcsbth() - accept CROTAia, iCROTna, TCROTna.

• #define WCSHDR_VELREFa 0x00000002

Bit mask for wcspih() and wcsbth() - accept VELREFa.

Generated by Doxygen

19.29 wcshdr.h File Reference 341

• #define WCSHDR_CD00i00j 0x00000004

Bit mask for wcspih() and wcsbth() - accept CD00i00j.

• #define WCSHDR_PC00i00j 0x00000008

Bit mask for wcspih() and wcsbth() - accept PC00i00j.

• #define WCSHDR_PROJPn 0x00000010

Bit mask for wcspih() and wcsbth() - accept PROJPn.

• #define WCSHDR_CD0i_0ja 0x00000020
• #define WCSHDR_PC0i_0ja 0x00000040
• #define WCSHDR_PV0i_0ma 0x00000080
• #define WCSHDR_PS0i_0ma 0x00000100
• #define WCSHDR_DOBSn 0x00000200

Bit mask for wcspih() and wcsbth() - accept DOBSn.

• #define WCSHDR_OBSGLBHn 0x00000400
• #define WCSHDR_RADECSYS 0x00000800

Bit mask for wcspih() and wcsbth() - accept RADECSYS.

• #define WCSHDR_EPOCHa 0x00001000

Bit mask for wcspih() and wcsbth() - accept EPOCHa.

• #define WCSHDR_VSOURCE 0x00002000

Bit mask for wcspih() and wcsbth() - accept VSOURCEa.

• #define WCSHDR_DATEREF 0x00004000
• #define WCSHDR_LONGKEY 0x00008000

Bit mask for wcspih() and wcsbth() - accept long forms of the alternate binary table and pixel list WCS keywords.

• #define WCSHDR_CNAMn 0x00010000

Bit mask for wcspih() and wcsbth() - accept iCNAMn, TCNAMn, iCRDEn, TCRDEn, iCSYEn, TCSYEn.

• #define WCSHDR_AUXIMG 0x00020000

Bit mask for wcspih() and wcsbth() - allow the image-header form of an auxiliary WCS keyword to provide a default
value for all images.

• #define WCSHDR_ALLIMG 0x00040000

Bit mask for wcspih() and wcsbth() - allow the image-header form of all image header WCS keywords to provide a
default value for all images.

• #define WCSHDR_IMGHEAD 0x00100000

Bit mask for wcsbth() - restrict to image header keywords only.

• #define WCSHDR_BIMGARR 0x00200000

Bit mask for wcsbth() - restrict to binary table image array keywords only.

• #define WCSHDR_PIXLIST 0x00400000

Bit mask for wcsbth() - restrict to pixel list keywords only.

• #define WCSHDO_none 0x00000

Bit mask for wcshdo() - don't write any extensions.

• #define WCSHDO_all 0x000FF

Bit mask for wcshdo() - write all extensions.

• #define WCSHDO_safe 0x0000F

Bit mask for wcshdo() - write safe extensions only.

• #define WCSHDO_DOBSn 0x00001

Bit mask for wcshdo() - write DOBSn.

• #define WCSHDO_TPCn_ka 0x00002

Bit mask for wcshdo() - write TPCn_ka.

• #define WCSHDO_PVn_ma 0x00004

Bit mask for wcshdo() - write iPVn_ma, TPVn_ma, iPSn_ma, TPSn_ma.

• #define WCSHDO_CRPXna 0x00008

Bit mask for wcshdo() - write jCRPXna, TCRPXna, iCDLTna, TCDLTna, iCUNIna, TCUNIna, iCTYPna,
TCTYPna, iCRVLna, TCRVLna.

• #define WCSHDO_CNAMna 0x00010

Generated by Doxygen

342

Bit mask for wcshdo() - write iCNAMna, TCNAMna, iCRDEna, TCRDEna, iCSYEna, TCSYEna.

• #define WCSHDO_WCSNna 0x00020

Bit mask for wcshdo() - write WCSNna instead of TWCSna

• #define WCSHDO_P12 0x01000
• #define WCSHDO_P13 0x02000
• #define WCSHDO_P14 0x04000
• #define WCSHDO_P15 0x08000
• #define WCSHDO_P16 0x10000
• #define WCSHDO_P17 0x20000
• #define WCSHDO_EFMT 0x40000

Enumerations

• enum wcshdr_errmsg_enum {
WCSHDRERR_SUCCESS = 0 , WCSHDRERR_NULL_POINTER = 1 , WCSHDRERR_MEMORY = 2 ,
WCSHDRERR_BAD_COLUMN = 3 ,
WCSHDRERR_PARSER = 4 , WCSHDRERR_BAD_TABULAR_PARAMS = 5 }

Functions

• int wcspih (char ∗header, int nkeyrec, int relax, int ctrl, int ∗nreject, int ∗nwcs, struct wcsprm ∗∗wcs)

FITS WCS parser routine for image headers.

• int wcsbth (char ∗header, int nkeyrec, int relax, int ctrl, int keysel, int ∗colsel, int ∗nreject, int ∗nwcs, struct
wcsprm ∗∗wcs)

FITS WCS parser routine for binary table and image headers.

• int wcstab (struct wcsprm ∗wcs)

Tabular construction routine.

• int wcsidx (int nwcs, struct wcsprm ∗∗wcs, int alts[27])

Index alternate coordinate representations.

• int wcsbdx (int nwcs, struct wcsprm ∗∗wcs, int type, short alts[1000][28])

Index alternate coordinate representions.

• int wcsvfree (int ∗nwcs, struct wcsprm ∗∗wcs)

Free the array of wcsprm structs.

• int wcshdo (int ctrl, struct wcsprm ∗wcs, int ∗nkeyrec, char ∗∗header)

Write out a wcsprm struct as a FITS header.

Variables

• const char ∗ wcshdr_errmsg []

Status return messages.

Generated by Doxygen

19.29 wcshdr.h File Reference 343

19.29.1 Detailed Description

Routines in this suite are aimed at extracting WCS information from a FITS file. The information is encoded via
keywords defined in
"Representations of world coordinates in FITS",
Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)
"Representations of celestial coordinates in FITS",
Calabretta, M.R., & Greisen, E.W. 2002, A&A, 395, 1077 (WCS Paper II)
"Representations of spectral coordinates in FITS",
Greisen, E.W., Calabretta, M.R., Valdes, F.G., & Allen, S.L.
2006, A&A, 446, 747 (WCS Paper III)
"Representations of distortions in FITS world coordinate systems",
Calabretta, M.R. et al. (WCS Paper IV, draft dated 2004/04/22),
available from http://www.atnf.csiro.au/people/Mark.Calabretta
"Representations of time coordinates in FITS -
Time and relative dimension in space",
Rots, A.H., Bunclark, P.S., Calabretta, M.R., Allen, S.L.,
Manchester, R.N., & Thompson, W.T. 2015, A&A, 574, A36 (WCS Paper VII)

These routines provide the high-level interface between the FITS file and the WCS coordinate transformation rou-
tines.

Additionally, function wcshdo() is provided to write out the contents of a wcsprm struct as a FITS header.

Briefly, the anticipated sequence of operations is as follows:

• 1: Open the FITS file and read the image or binary table header, e.g. using CFITSIO routine fits_hdr2str().

• 2: Parse the header using wcspih() or wcsbth(); they will automatically interpret 'TAB' header keywords
using wcstab().

• 3: Allocate memory for, and read 'TAB' arrays from the binary table extension, e.g. using CFITSIO routine
fits_read_wcstab() - refer to the prologue of getwcstab.h. wcsset() will automatically take control of this
allocated memory, in particular causing it to be freed by wcsfree().

• 4: Translate non-standard WCS usage using wcsfix(), see wcsfix.h.

• 5: Initialize wcsprm struct(s) using wcsset() and calculate coordinates using wcsp2s() and/or wcss2p(). Re-
fer to the prologue of wcs.h for a description of these and other high-level WCS coordinate transformation
routines.

• 6: Clean up by freeing memory with wcsvfree().

In detail:

• wcspih() is a high-level FITS WCS routine that parses an image header. It returns an array of up to 27 wcsprm
structs on each of which it invokes wcstab().

• wcsbth() is the analogue of wcspih() for use with binary tables; it handles image array and pixel list keywords.
As an extension of the FITS WCS standard, it also recognizes image header keywords which may be used to
provide default values via an inheritance mechanism.

• wcstab() assists in filling in members of the wcsprm struct associated with coordinate lookup tables ('TAB').
These are based on arrays stored in a FITS binary table extension (BINTABLE) that are located by PVi_ma
keywords in the image header.

• wcsidx() and wcsbdx() are utility routines that return the index for a specified alternate coordinate descriptor
in the array of wcsprm structs returned by wcspih() or wcsbth().

• wcsvfree() deallocates memory for an array of wcsprm structs, such as returned by wcspih() or wcsbth().

• wcshdo() writes out a wcsprm struct as a FITS header.

Generated by Doxygen

344

19.29.2 Macro Definition Documentation

19.29.2.1 WCSHDR_none #define WCSHDR_none 0x00000000

Bit mask for the relax argument of wcspih() and wcsbth() - reject all extensions.

Refer to wcsbth() note 5.

19.29.2.2 WCSHDR_all #define WCSHDR_all 0x000FFFFF

Bit mask for the relax argument of wcspih() and wcsbth() - accept all extensions.

Refer to wcsbth() note 5.

19.29.2.3 WCSHDR_reject #define WCSHDR_reject 0x10000000

Bit mask for the relax argument of wcspih() and wcsbth() - reject non-standard keywords.

Refer to wcsbth() note 5.

19.29.2.4 WCSHDR_strict #define WCSHDR_strict 0x20000000

19.29.2.5 WCSHDR_CROTAia #define WCSHDR_CROTAia 0x00000001

Bit mask for the relax argument of wcspih() and wcsbth() - accept CROTAia, iCROTna, TCROTna.

Refer to wcsbth() note 5.

19.29.2.6 WCSHDR_VELREFa #define WCSHDR_VELREFa 0x00000002

Bit mask for the relax argument of wcspih() and wcsbth() - accept VELREFa.

Refer to wcsbth() note 5.

19.29.2.7 WCSHDR_CD00i00j #define WCSHDR_CD00i00j 0x00000004

Bit mask for the relax argument of wcspih() and wcsbth() - accept CD00i00j.

Refer to wcsbth() note 5.

19.29.2.8 WCSHDR_PC00i00j #define WCSHDR_PC00i00j 0x00000008

Bit mask for the relax argument of wcspih() and wcsbth() - accept PC00i00j.

Refer to wcsbth() note 5.

Generated by Doxygen

19.29 wcshdr.h File Reference 345

19.29.2.9 WCSHDR_PROJPn #define WCSHDR_PROJPn 0x00000010

Bit mask for the relax argument of wcspih() and wcsbth() - accept PROJPn.

Refer to wcsbth() note 5.

19.29.2.10 WCSHDR_CD0i_0ja #define WCSHDR_CD0i_0ja 0x00000020

19.29.2.11 WCSHDR_PC0i_0ja #define WCSHDR_PC0i_0ja 0x00000040

19.29.2.12 WCSHDR_PV0i_0ma #define WCSHDR_PV0i_0ma 0x00000080

19.29.2.13 WCSHDR_PS0i_0ma #define WCSHDR_PS0i_0ma 0x00000100

19.29.2.14 WCSHDR_DOBSn #define WCSHDR_DOBSn 0x00000200

Bit mask for the relax argument of wcspih() and wcsbth() - accept DOBSn.

Refer to wcsbth() note 5.

19.29.2.15 WCSHDR_OBSGLBHn #define WCSHDR_OBSGLBHn 0x00000400

19.29.2.16 WCSHDR_RADECSYS #define WCSHDR_RADECSYS 0x00000800

Bit mask for the relax argument of wcspih() and wcsbth() - accept RADECSYS.

Refer to wcsbth() note 5.

19.29.2.17 WCSHDR_EPOCHa #define WCSHDR_EPOCHa 0x00001000

Bit mask for the relax argument of wcspih() and wcsbth() - accept EPOCHa.

Refer to wcsbth() note 5.

19.29.2.18 WCSHDR_VSOURCE #define WCSHDR_VSOURCE 0x00002000

Bit mask for the relax argument of wcspih() and wcsbth() - accept VSOURCEa.

Refer to wcsbth() note 5.

Generated by Doxygen

346

19.29.2.19 WCSHDR_DATEREF #define WCSHDR_DATEREF 0x00004000

19.29.2.20 WCSHDR_LONGKEY #define WCSHDR_LONGKEY 0x00008000

Bit mask for the relax argument of wcspih() and wcsbth() - accept long forms of the alternate binary table and pixel
list WCS keywords.

Refer to wcsbth() note 5.

19.29.2.21 WCSHDR_CNAMn #define WCSHDR_CNAMn 0x00010000

Bit mask for the relax argument of wcspih() and wcsbth() - accept iCNAMn, TCNAMn, iCRDEn, TCRDEn,
iCSYEn, TCSYEn.

Refer to wcsbth() note 5.

19.29.2.22 WCSHDR_AUXIMG #define WCSHDR_AUXIMG 0x00020000

Bit mask for the relax argument of wcspih() and wcsbth() - allow the image-header form of an auxiliary WCS keyword
with representation-wide scope to provide a default value for all images.

Refer to wcsbth() note 5.

19.29.2.23 WCSHDR_ALLIMG #define WCSHDR_ALLIMG 0x00040000

Bit mask for the relax argument of wcspih() and wcsbth() - allow the image-header form of all image header WCS
keywords to provide a default value for all image arrays in a binary table (n.b. not pixel list).

Refer to wcsbth() note 5.

19.29.2.24 WCSHDR_IMGHEAD #define WCSHDR_IMGHEAD 0x00100000

Bit mask for the keysel argument of wcsbth() - restrict keyword types considered to image header keywords only.

19.29.2.25 WCSHDR_BIMGARR #define WCSHDR_BIMGARR 0x00200000

Bit mask for the keysel argument of wcsbth() - restrict keyword types considered to binary table image array key-
words only.

19.29.2.26 WCSHDR_PIXLIST #define WCSHDR_PIXLIST 0x00400000

Bit mask for the keysel argument of wcsbth() - restrict keyword types considered to pixel list keywords only.

19.29.2.27 WCSHDO_none #define WCSHDO_none 0x00000

Bit mask for the relax argument of wcshdo() - don't write any extensions.

Refer to the notes for wcshdo().

Generated by Doxygen

19.29 wcshdr.h File Reference 347

19.29.2.28 WCSHDO_all #define WCSHDO_all 0x000FF

Bit mask for the relax argument of wcshdo() - write all extensions.

Refer to the notes for wcshdo().

19.29.2.29 WCSHDO_safe #define WCSHDO_safe 0x0000F

Bit mask for the relax argument of wcshdo() - write only extensions that are considered safe.

Refer to the notes for wcshdo().

19.29.2.30 WCSHDO_DOBSn #define WCSHDO_DOBSn 0x00001

Bit mask for the relax argument of wcshdo() - write DOBSn, the column-specific analogue of DATE-OBS for use in
binary tables and pixel lists.

Refer to the notes for wcshdo().

19.29.2.31 WCSHDO_TPCn_ka #define WCSHDO_TPCn_ka 0x00002

Bit mask for the relax argument of wcshdo() - write TPCn_ka if less than eight characters instead of TPn_ka.

Refer to the notes for wcshdo().

19.29.2.32 WCSHDO_PVn_ma #define WCSHDO_PVn_ma 0x00004

Bit mask for the relax argument of wcshdo() - write iPVn_ma, TPVn_ma, iPSn_ma, TPSn_ma, if less than eight
characters instead of iVn_ma, TVn_ma, iSn_ma, TSn_ma.

Refer to the notes for wcshdo().

19.29.2.33 WCSHDO_CRPXna #define WCSHDO_CRPXna 0x00008

Bit mask for the relax argument of wcshdo() - write jCRPXna, TCRPXna, iCDLTna, TCDLTna, iCUNIna,
TCUNIna, iCTYPna, TCTYPna, iCRVLna, TCRVLna, if less than eight characters instead of jCRPna,
TCRPna, iCDEna, TCDEna, iCUNna, TCUNna, iCTYna, TCTYna, iCRVna, TCRVna.

Refer to the notes for wcshdo().

19.29.2.34 WCSHDO_CNAMna #define WCSHDO_CNAMna 0x00010

Bit mask for the relax argument of wcshdo() - write iCNAMna, TCNAMna, iCRDEna, TCRDEna, iCSYEna,
TCSYEna, if less than eight characters instead of iCNAna, TCNAna, iCRDna, TCRDna, iCSYna, TCSYna.

Refer to the notes for wcshdo().

19.29.2.35 WCSHDO_WCSNna #define WCSHDO_WCSNna 0x00020

Bit mask for the relax argument of wcshdo() - write WCSNna instead of TWCSna.

Refer to the notes for wcshdo().

Generated by Doxygen

348

19.29.2.36 WCSHDO_P12 #define WCSHDO_P12 0x01000

19.29.2.37 WCSHDO_P13 #define WCSHDO_P13 0x02000

19.29.2.38 WCSHDO_P14 #define WCSHDO_P14 0x04000

19.29.2.39 WCSHDO_P15 #define WCSHDO_P15 0x08000

19.29.2.40 WCSHDO_P16 #define WCSHDO_P16 0x10000

19.29.2.41 WCSHDO_P17 #define WCSHDO_P17 0x20000

19.29.2.42 WCSHDO_EFMT #define WCSHDO_EFMT 0x40000

19.29.3 Enumeration Type Documentation

19.29.3.1 wcshdr_errmsg_enum enum wcshdr_errmsg_enum

Enumerator

WCSHDRERR_SUCCESS
WCSHDRERR_NULL_POINTER

WCSHDRERR_MEMORY
WCSHDRERR_BAD_COLUMN

WCSHDRERR_PARSER
WCSHDRERR_BAD_TABULAR_PARAMS

19.29.4 Function Documentation

Generated by Doxygen

19.29 wcshdr.h File Reference 349

19.29.4.1 wcspih() int wcspih (

char ∗ header,

int nkeyrec,

int relax,

int ctrl,

int ∗ nreject,

int ∗ nwcs,

struct wcsprm ∗∗ wcs)

wcspih() is a high-level FITS WCS routine that parses an image header, either that of a primary HDU or of an image
extension. All WCS keywords defined in Papers I, II, III, IV, and VII are recognized, and also those used by the AIPS
convention and certain other keywords that existed in early drafts of the WCS papers as explained in wcsbth() note
5. wcspih() also handles keywords associated with non-standard distortion functions described in the prologue of
dis.h.

Given a character array containing a FITS image header, wcspih() identifies and reads all WCS keywords for the
primary coordinate representation and up to 26 alternate representations. It returns this information as an array of
wcsprm structs.

wcspih() invokes wcstab() on each of the wcsprm structs that it returns.

Use wcsbth() in preference to wcspih() for FITS headers of unknown type; wcsbth() can parse image headers as
well as binary table and pixel list headers, although it cannot handle keywords relating to distortion functions, which
may only exist in an image header (primary or extension).

Parameters

in,out header Character array containing the (entire) FITS image header from which to identify and
construct the coordinate representations, for example, as might be obtained
conveniently via the CFITSIO routine fits_hdr2str().
Each header "keyrecord" (formerly "card image") consists of exactly 80 7-bit ASCII
printing characters in the range 0x20 to 0x7e (which excludes NUL, BS, TAB, LF, FF
and CR) especially noting that the keyrecords are NOT null-terminated.
For negative values of ctrl (see below), header[] is modified so that WCS keyrecords
processed by wcspih() are removed from it.

in nkeyrec Number of keyrecords in header[].

in relax Degree of permissiveness:

• 0: Recognize only FITS keywords defined by the published WCS standard.

• WCSHDR_all: Admit all recognized informal extensions of the WCS standard.

Fine-grained control of the degree of permissiveness is also possible as explained in
wcsbth() note 5.

Generated by Doxygen

350

Parameters

in ctrl Error reporting and other control options for invalid WCS and other header keyrecords:

• 0: Do not report any rejected header keyrecords.

• 1: Produce a one-line message stating the number of WCS keyrecords rejected
(nreject).

• 2: Report each rejected keyrecord and the reason why it was rejected.

• 3: As above, but also report all non-WCS keyrecords that were discarded, and
the number of coordinate representations (nwcs) found.

• 4: As above, but also report the accepted WCS keyrecords, with a summary of
the number accepted as well as rejected.

The report is written to stderr by default, or the stream set by wcsprintf_set().
For ctrl < 0, WCS keyrecords processed by wcspih() are removed from header[]:

• -1: Remove only valid WCS keyrecords whose values were successfully
extracted, nothing is reported.

• -2: As above, but also remove WCS keyrecords that were rejected, reporting
each one and the reason that it was rejected.

• -3: As above, and also report the number of coordinate representations (nwcs)
found.

• -11: Same as -1 but preserving global WCS-related keywords such as
'{DATE,MJD}-{OBS,BEG,AVG,END}' and the other basic time-related
keywords, and 'OBSGEO-{X,Y,Z,L,B,H}'.

If any keyrecords are removed from header[] it will be null-terminated (NUL not being a
legal FITS header character), otherwise it will contain its original complement of
nkeyrec keyrecords and possibly not be null-terminated.

out nreject Number of WCS keywords rejected for syntax errors, illegal values, etc. Keywords not
recognized as WCS keywords are simply ignored. Refer also to wcsbth() note 5.

out nwcs Number of coordinate representations found.

out wcs Pointer to an array of wcsprm structs containing up to 27 coordinate representations.
Memory for the array is allocated by wcspih() which also invokes wcsini() for each
struct to allocate memory for internal arrays and initialize their members to default
values. Refer also to wcsbth() note 8. Note that wcsset() is not invoked on these
structs.
This allocated memory must be freed by the user, first by invoking wcsfree() for each
struct, and then by freeing the array itself. A routine, wcsvfree(), is provided to do this
(see below).

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

• 4: Fatal error returned by Flex parser.

Notes:

Generated by Doxygen

19.29 wcshdr.h File Reference 351

1. Refer to wcsbth() notes 1, 2, 3, 5, 7, and 8.

19.29.4.2 wcsbth() int wcsbth (

char ∗ header,

int nkeyrec,

int relax,

int ctrl,

int keysel,

int ∗ colsel,

int ∗ nreject,

int ∗ nwcs,

struct wcsprm ∗∗ wcs)

wcsbth() is a high-level FITS WCS routine that parses a binary table header. It handles image array and pixel list
WCS keywords which may be present together in one header.

As an extension of the FITS WCS standard, wcsbth() also recognizes image header keywords in a binary table
header. These may be used to provide default values via an inheritance mechanism discussed in note 5 (c.←↩

f. WCSHDR_AUXIMG and WCSHDR_ALLIMG), or may instead result in wcsprm structs that are not associated
with any particular column. Thus wcsbth() can handle primary image and image extension headers in addition to
binary table headers (it ignores NAXIS and does not rely on the presence of the TFIELDS keyword).

All WCS keywords defined in Papers I, II, III, and VII are recognized, and also those used by the AIPS convention
and certain other keywords that existed in early drafts of the WCS papers as explained in note 5 below.

wcsbth() sets the colnum or colax[] members of the wcsprm structs that it returns with the column number of an
image array or the column numbers associated with each pixel coordinate element in a pixel list. wcsprm structs
that are not associated with any particular column, as may be derived from image header keywords, have colnum
== 0.

Note 6 below discusses the number of wcsprm structs returned by wcsbth(), and the circumstances in which image
header keywords cause a struct to be created. See also note 9 concerning the number of separate images that may
be stored in a pixel list.

The API to wcsbth() is similar to that of wcspih() except for the addition of extra arguments that may be used to
restrict its operation. Like wcspih(), wcsbth() invokes wcstab() on each of the wcsprm structs that it returns.

Parameters

in,out header Character array containing the (entire) FITS binary table, primary image, or image
extension header from which to identify and construct the coordinate representations,
for example, as might be obtained conveniently via the CFITSIO routine fits_hdr2str().
Each header "keyrecord" (formerly "card image") consists of exactly 80 7-bit ASCII
printing characters in the range 0x20 to 0x7e (which excludes NUL, BS, TAB, LF, FF
and CR) especially noting that the keyrecords are NOT null-terminated.
For negative values of ctrl (see below), header[] is modified so that WCS keyrecords
processed by wcsbth() are removed from it.

in nkeyrec Number of keyrecords in header[].

in relax Degree of permissiveness:

• 0: Recognize only FITS keywords defined by the published WCS standard.

• WCSHDR_all: Admit all recognized informal extensions of the WCS standard.

Fine-grained control of the degree of permissiveness is also possible, as explained in
note 5 below.

Generated by Doxygen

352

Parameters

in ctrl Error reporting and other control options for invalid WCS and other header keyrecords:

• 0: Do not report any rejected header keyrecords.

• 1: Produce a one-line message stating the number of WCS keyrecords rejected
(nreject).

• 2: Report each rejected keyrecord and the reason why it was rejected.

• 3: As above, but also report all non-WCS keyrecords that were discarded, and
the number of coordinate representations (nwcs) found.

• 4: As above, but also report the accepted WCS keyrecords, with a summary of
the number accepted as well as rejected.

The report is written to stderr by default, or the stream set by wcsprintf_set().
For ctrl < 0, WCS keyrecords processed by wcsbth() are removed from header[]:

• -1: Remove only valid WCS keyrecords whose values were successfully
extracted, nothing is reported.

• -2: Also remove WCS keyrecords that were rejected, reporting each one and the
reason that it was rejected.

• -3: As above, and also report the number of coordinate representations (nwcs)
found.

• -11: Same as -1 but preserving global WCS-related keywords such as
'{DATE,MJD}-{OBS,BEG,AVG,END}' and the other basic time-related
keywords, and 'OBSGEO-{X,Y,Z,L,B,H}'.

If any keyrecords are removed from header[] it will be null-terminated (NUL not being a
legal FITS header character), otherwise it will contain its original complement of
nkeyrec keyrecords and possibly not be null-terminated.

in keysel Vector of flag bits that may be used to restrict the keyword types considered:

• WCSHDR_IMGHEAD: Image header keywords.

• WCSHDR_BIMGARR: Binary table image array.

• WCSHDR_PIXLIST: Pixel list keywords.

If zero, there is no restriction.
Keywords such as EQUIna or RFRQna that are common to binary table image arrays
and pixel lists (including WCSNna and TWCSna, as explained in note 4 below) are
selected by both WCSHDR_BIMGARR and WCSHDR_PIXLIST. Thus if inheritance
via WCSHDR_ALLIMG is enabled as discussed in note 5 and one of these shared
keywords is present, then WCSHDR_IMGHEAD and WCSHDR_PIXLIST alone may
be sufficient to cause the construction of coordinate descriptions for binary table image
arrays.

Generated by Doxygen

19.29 wcshdr.h File Reference 353

Parameters

in colsel Pointer to an array of table column numbers used to restrict the keywords considered
by wcsbth().
A null pointer may be specified to indicate that there is no restriction. Otherwise, the
magnitude of cols[0] specifies the length of the array:

• cols[0] > 0: the columns are included,

• cols[0] < 0: the columns are excluded.

For the pixel list keywords TPn_ka and TCn_ka (and TPCn_ka and TCDn_ka if
WCSHDR_LONGKEY is enabled), it is an error for one column to be selected but not
the other. This is unlike the situation with invalid keyrecords, which are simply rejected,
because the error is not intrinsic to the header itself but arises in the way that it is
processed.

out nreject Number of WCS keywords rejected for syntax errors, illegal values, etc. Keywords not
recognized as WCS keywords are simply ignored, refer also to note 5 below.

out nwcs Number of coordinate representations found.

out wcs Pointer to an array of wcsprm structs containing up to 27027 coordinate
representations, refer to note 6 below.
Memory for the array is allocated by wcsbth() which also invokes wcsini() for each
struct to allocate memory for internal arrays and initialize their members to default
values. Refer also to note 8 below. Note that wcsset() is not invoked on these structs.
This allocated memory must be freed by the user, first by invoking wcsfree() for each
struct, and then by freeing the array itself. A routine, wcsvfree(), is provided to do this
(see below).

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

• 3: Invalid column selection.

• 4: Fatal error returned by Flex parser.

Notes:

1. wcspih() determines the number of coordinate axes independently for each alternate coordinate representa-
tion (denoted by the "a" value in keywords like CTYPEia) from the higher of

a NAXIS,

b WCSAXESa,

c The highest axis number in any parameterized WCS keyword. The keyvalue, as well as the keyword,
must be syntactically valid otherwise it will not be considered.

If none of these keyword types is present, i.e. if the header only contains auxiliary WCS keywords for a
particular coordinate representation, then no coordinate description is constructed for it.

wcsbth() is similar except that it ignores the NAXIS keyword if given an image header to process.

The number of axes, which is returned as a member of the wcsprm struct, may differ for different coordinate
representations of the same image.

Generated by Doxygen

354

2. wcspih() and wcsbth() enforce correct FITS "keyword = value" syntax with regard to "= " occurring in columns
9 and 10.

However, they do recognize free-format character (NOST 100-2.0, Sect. 5.2.1), integer (Sect. 5.2.3), and
floating-point values (Sect. 5.2.4) for all keywords.

3. Where CROTAn, CDi_ja, and PCi_ja occur together in one header wcspih() and wcsbth() treat them as
described in the prologue to wcs.h.

4. WCS Paper I mistakenly defined the pixel list form of WCSNAMEa as TWCSna instead of WCSNna; the 'T'
is meant to substitute for the axis number in the binary table form of the keyword - note that keywords defined
in WCS Papers II, III, and VII that are not parameterized by axis number have identical forms for binary tables
and pixel lists. Consequently wcsbth() always treats WCSNna and TWCSna as equivalent.

5. wcspih() and wcsbth() interpret the relax argument as a vector of flag bits to provide fine-grained control over
what non-standard WCS keywords to accept. The flag bits are subject to change in future and should be set
by using the preprocessor macros (see below) for the purpose.

• WCSHDR_none: Don't accept any extensions (not even those in the errata). Treat non-conformant
keywords in the same way as non-WCS keywords in the header, i.e. simply ignore them.

• WCSHDR_all: Accept all extensions recognized by the parser.

• WCSHDR_reject: Reject non-standard keyrecords (that are not otherwise explicitly accepted by one
of the flags below). A message will optionally be printed on stderr by default, or the stream set by
wcsprintf_set(), as determined by the ctrl argument, and nreject will be incremented.
This flag may be used to signal the presence of non-standard keywords, otherwise they are simply
passed over as though they did not exist in the header. It is mainly intended for testing conformance of
a FITS header to the WCS standard.
Keyrecords may be non-standard in several ways:

– The keyword may be syntactically valid but with keyvalue of incorrect type or invalid syntax, or the
keycomment may be malformed.

– The keyword may strongly resemble a WCS keyword but not, in fact, be one because it does not
conform to the standard. For example, "CRPIX01" looks like a CRPIXja keyword, but in fact the
leading zero on the axis number violates the basic FITS standard. Likewise, "LONPOLE2" is not
a valid LONPOLEa keyword in the WCS standard, and indeed there is nothing the parser can
sensibly do with it.

– Use of the keyword may be deprecated by the standard. Such will be rejected if not explicitly
accepted via one of the flags below.

• WCSHDR_strict: As for WCSHDR_reject, but also reject AIPS-convention keywords and all other dep-
recated usage that is not explicitly accepted.

• WCSHDR_CROTAia: Accept CROTAia (wcspih()), iCROTna (wcsbth()), TCROTna (wcsbth()).

• WCSHDR_VELREFa: Accept VELREFa. wcspih() always recognizes the AIPS-convention keywords,
CROTAn, EPOCH, and VELREF for the primary representation (a = ' ') but alternates are non-standard.
wcsbth() accepts EPOCHa and VELREFa only if WCSHDR_AUXIMG is also enabled.

• WCSHDR_CD00i00j: Accept CD00i00j (wcspih()).

• WCSHDR_PC00i00j: Accept PC00i00j (wcspih()).

• WCSHDR_PROJPn: Accept PROJPn (wcspih()). These appeared in early drafts of WCS Paper I+II
(before they were split) and are equivalent to CDi_ja, PCi_ja, and PVi_ma for the primary repre-
sentation (a = ' '). PROJPn is equivalent to PVi_ma with m = n ≤ 9, and is associated exclusively
with the latitude axis.

• WCSHDR_CD0i_0ja: Accept CD0i_0ja (wcspih()).

• WCSHDR_PC0i_0ja: Accept PC0i_0ja (wcspih()).

• WCSHDR_PV0i_0ma: Accept PV0i_0ja (wcspih()).

• WCSHDR_PS0i_0ma: Accept PS0i_0ja (wcspih()). Allow the numerical index to have a leading zero in
doubly- parameterized keywords, for example, PC01_01. WCS Paper I (Sects 2.1.2 & 2.1.4) explicitly
disallows leading zeroes. The FITS 3.0 standard document (Sect. 4.1.2.1) states that the index in
singly-parameterized keywords (e.g. CTYPEia) "shall not have leading zeroes", and later in Sect. 8.1
that "leading zeroes must not be used" on PVi_ma and PSi_ma. However, by an oversight, it is silent
on PCi_ja and CDi_ja.

Generated by Doxygen

19.29 wcshdr.h File Reference 355

• WCSHDR_DOBSn (wcsbth() only): Allow DOBSn, the column-specific analogue of DATE-OBS. By an
oversight this was never formally defined in the standard.

• WCSHDR_OBSGLBHn (wcsbth() only): Allow OBSGLn, OBSGBn, and OBSGHn, the column-specific
analogues of OBSGEO-L, OBSGEO-B, and OBSGEO-H. By an oversight these were never formally
defined in the standard.

• WCSHDR_RADECSYS: Accept RADECSYS. This appeared in early drafts of WCS Paper I+II and was
subsequently replaced by RADESYSa.

wcsbth() accepts RADECSYS only if WCSHDR_AUXIMG is also enabled.

• WCSHDR_EPOCHa: Accept EPOCHa.

• WCSHDR_VSOURCE: Accept VSOURCEa or VSOUna (wcsbth()). This appeared in early drafts of
WCS Paper III and was subsequently dropped in favour of ZSOURCEa and ZSOUna.

wcsbth() accepts VSOURCEa only if WCSHDR_AUXIMG is also enabled.

• #WCSHDR_<TT>DATEREF: Accept DATE-REF, MJD-REF, MJD-REFI, MJD-REFF, JDREF, JD-←↩

REFI, and JD-REFF as synonyms for the standard keywords, DATEREF, MJDREF, MJDREFI,
MJDREFF, JDREF, JDREFI, and JDREFF. The latter buck the pattern set by the other date key-
words ({DATE,MJD}-{OBS,BEG,AVG,END}), thereby increasing the potential
for confusion and error.

• WCSHDR_LONGKEY (wcsbth() only): Accept long forms of the alternate
binary table and pixel list WCS keywords, i.e. with "a" non- blank.
Specifically

jCRPXna TCRPXna ←↩

:
jCRPXn jCRPna TCRPXn TCRPna CRPIXja

TPCn_ka ←↩

:
ijPCna TPn_ka PCi_ja

TCDn_ka ←↩

:
ijCDna TCn_ka CDi_ja

iCDLTna TCDLTna ←↩

:
iCDLTn iCDEna TCDLTn TCDEna CDELTia

iCUNIna TCUNIna ←↩

:
iCUNIn iCUNna TCUNIn TCUNna CUNITia

iCTYPna TCTYPna ←↩

:
iCTYPn iCTYna TCTYPn TCTYna CTYPEia

iCRVLna TCRVLna ←↩

:
iCRVLn iCRVna TCRVLn TCRVna CRVALia

iPVn_ma TPVn_ma ←↩

:
iVn_ma TVn_ma PVi_ma

iPSn_ma TPSn_ma ←↩

:
iSn_ma TSn_ma PSi_ma

where the primary and standard alternate forms together with the
image-header equivalent are shown rightwards of the colon.

The long form of these keywords could be described as quasi- standard.
TPCn_ka, iPVn_ma, and TPVn_ma appeared by mistake in the examples
in WCS Paper II and subsequently these and also TCDn_ka, iPSn_ma and
TPSn_ma were legitimized by the errata to the WCS papers.

Strictly speaking, the other long forms are non-standard and in fact
have never appeared in any draft of the WCS papers nor in the errata.
However, as natural extensions of the primary form they are unlikely
to be written with any other intention. Thus it should be safe to
accept them provided, of course, that the resulting keyword does not
exceed the 8-character limit.

If WCSHDR_CNAMn is enabled then also accept

iCNAMna TCNAMna ←↩

:
-- iCNAna -- TCNAna CNAMEia

Generated by Doxygen

356

iCRDEna TCRDEna ←↩

:
-- iCRDna -- TCRDna CRDERia

iCSYEna TCSYEna ←↩

:
-- iCSYna -- TCSYna CSYERia

TCZPHna TCZPHna ←↩

:
-- TCZPna -- TCZPna CZPHSia

iCPERna TCPERna ←↩

:
-- iCPRna -- TCPRna CPERIia

Note that CNAMEia, CRDERia, CSYERia, CZPHSia, CPERIia, and their
variants are not used by WCSLIB but are stored in the wcsprm struct
as auxiliary information.

• WCSHDR_CNAMn (wcsbth() only): Accept iCNAMn, iCRDEn, iCSYEn, TCZPHn,
iCPERn, TCNAMn, TCRDEn, TCSYEn, TCZPHn, and TCPERn, i.e. with "a"
blank. While non-standard, these are the obvious analogues of iCTYPn,
TCTYPn, etc.

• WCSHDR_AUXIMG (wcsbth() only): Allow the image-header form of an
auxiliary WCS keyword with representation-wide scope to provide a
default value for all images. This default may be overridden by the
column-specific form of the keyword.

For example, a keyword like EQUINOXa would apply to all image arrays
in a binary table, or all pixel list columns with alternate representation
"a" unless overridden by EQUIna.

Specifically the keywords are:

LONPOLEa for LONPna
LATPOLEa for LATPna
VELREF ... (No column-specific form.)

VELREFa ... Only if WCSHDR_VELREFa is set.

whose keyvalues are actually used by WCSLIB, and also keywords providing
auxiliary information that is simply stored in the wcsprm struct:

WCSNAMEa for WCSNna ... Or TWCSna (see below).

DATE-OBS for DOBSn
MJD-OBS for MJDOBn

RADESYSa for RADEna
RADECSYS for RADEna ... Only if WCSHDR_RADECSYS is set.

EPOCH ... (No column-specific form.)

EPOCHa ... Only if WCSHDR_EPOCHa is set.

EQUINOXa for EQUIna

where the image-header keywords on the left provide default values
for the column specific keywords on the right.

Note that, according to Sect. 8.1 of WCS Paper III, and Sect. 5.2
of WCS Paper VII, the following are always inherited:

RESTFREQ for RFRQna
RESTFRQa for RFRQna
RESTWAVa for RWAVna

being those actually used by WCSLIB, together with the following
auxiliary keywords, many of which do not have binary table equivalents

Generated by Doxygen

19.29 wcshdr.h File Reference 357

and therefore can only be inherited:

TIMESYS
TREFPOS for MJDAn
TREFDIR for MJDAn
PLEPHEM
TIMEUNIT
DATEREF
MJDREF
MJDREFI
MJDREFF
JDREF
JDREFI
JDREFF
TIMEOFFS

DATE-BEG
DATE-AVG for DAVGn
DATE-END
MJD-BEG
MJD-AVG for MJDAn
MJD-END
JEPOCH
BEPOCH
TSTART
TSTOP
XPOSURE
TELAPSE

TIMSYER
TIMRDER
TIMEDEL
TIMEPIXR

OBSGEO-X for OBSGXn
OBSGEO-Y for OBSGYn
OBSGEO-Z for OBSGZn
OBSGEO-L for OBSGLn
OBSGEO-B for OBSGBn
OBSGEO-H for OBSGHn
OBSORBIT

SPECSYSa for SPECna
SSYSOBSa for SOBSna
VELOSYSa for VSYSna
VSOURCEa for VSOUna ... Only if WCSHDR_VSOURCE is set.

ZSOURCEa for ZSOUna
SSYSSRCa for SSRCna
VELANGLa for VANGna

Global image-header keywords, such as MJD-OBS, apply to all alternate
representations, and would therefore provide a default value for all
images in the header.

This auxiliary inheritance mechanism applies to binary table image
arrays and pixel lists alike. Most of these keywords have no default
value, the exceptions being LONPOLEa and LATPOLEa, and also RADESYSa
and EQUINOXa which provide defaults for each other. Thus one potential

Generated by Doxygen

358

difficulty in using WCSHDR_AUXIMG is that of erroneously inheriting
one of these four keywords.

Also, beware of potential inconsistencies that may arise where, for
example, DATE-OBS is inherited, but MJD-OBS is overridden by MJDOBn
and specifies a different time. Pairs in this category are:

DATE-OBS/DOBSn versus MJD-OBS/MJDOBn
DATE-AVG/DAVGn versus MJD-AVG/MJDAn
RESTFRQa/RFRQna versus RESTWAVa/RWAVna

OBSGEO-[XYZ]/OBSG[XYZ]n versus OBSGEO-[LBH]/OBSG[LBH]n

The wcsfixi() routines datfix() and obsfix() are provided to check
the consistency of these and other such pairs of keywords.

Unlike WCSHDR_ALLIMG, the existence of one (or all) of these auxiliary
WCS image header keywords will not by itself cause a wcsprm struct
to be created for alternate representation "a". This is because
they do not provide sufficient information to create a non-trivial
coordinate representation when used in conjunction with the default
values of those keywords that are parameterized by axis number, such
as CTYPEia.

• WCSHDR_ALLIMG (wcsbth() only): Allow the image-header form of ∗all∗
image header WCS keywords to provide a default value for all image
arrays in a binary table (n.b. not pixel list). This default may
be overridden by the column-specific form of the keyword.

For example, a keyword like CRPIXja would apply to all image arrays
in a binary table with alternate representation "a" unless overridden
by jCRPna.

Specifically the keywords are those listed above for WCSHDR_AUXIMG
plus

WCSAXESa for WCAXna

which defines the coordinate dimensionality, and the following keywords
that are parameterized by axis number:

CRPIXja for jCRPna
PCi_ja for ijPCna
CDi_ja for ijCDna
CDELTia for iCDEna
CROTAi for iCROTn
CROTAia ... Only if WCSHDR_CROTAia is set.

CUNITia for iCUNna
CTYPEia for iCTYna
CRVALia for iCRVna
PVi_ma for iVn_ma
PSi_ma for iSn_ma

CNAMEia for iCNAna
CRDERia for iCRDna
CSYERia for iCSYna
CZPHSia for TCZPna
CPERIia for iCPRna

where the image-header keywords on the left provide default values
for the column specific keywords on the right.

This full inheritance mechanism only applies to binary table image
arrays, not pixel lists, because in the latter case there is no well-defined
association between coordinate axis number and column number (see
note 9 below).

Generated by Doxygen

19.29 wcshdr.h File Reference 359

Note that CNAMEia, CRDERia, CSYERia, and their variants are not used
by WCSLIB but are stored in the wcsprm struct as auxiliary information.

Note especially that at least one wcsprm struct will be returned for
each "a" found in one of the image header keywords listed above:

– If the image header keywords for "a" are not inherited by a binary
table, then the struct will not be associated with any particular
table column number and it is up to the user to provide an association.

– If the image header keywords for "a" are inherited by a binary
table image array, then those keywords are considered to be "exhausted"
and do not result in a separate wcsprm struct.

For example, to accept CD00i00j and PC00i00j and reject all other extensions,
use
relax = WCSHDR_reject | WCSHDR_CD00i00j | WCSHDR_PC00i00j;

The parser always treats EPOCH as subordinate to EQUINOXa if both are
present, and VSOURCEa is always subordinate to ZSOURCEa.

Likewise, VELREF is subordinate to the formalism of WCS Paper III, see
spcaips().

Neither wcspih() nor wcsbth() currently recognize the AIPS-convention
keywords ALTRPIX or ALTRVAL which effectively define an alternative
representation for a spectral axis.

6. Depending on what flags have been set in its relax argument, wcsbth()
could return as many as 27027 wcsprm structs:

• Up to 27 unattached representations derived from image header keywords.

• Up to 27 structs for each of up to 999 columns containing an image
arrays.

• Up to 27 structs for a pixel list.

Note that it is considered legitimate for a column to contain an image
array and also form part of a pixel list, and in particular that wcsbth()
does not check the TFORM keyword for a pixel list column to check that
it is scalar.

In practice, of course, a realistic binary table header is unlikely to
contain more than a handful of images.

In order for wcsbth() to create a wcsprm struct for a particular coordinate
representation, at least one WCS keyword that defines an axis number
must be present, either directly or by inheritance if WCSHDR_ALLIMG is
set.

When the image header keywords for an alternate representation are inherited
by a binary table image array via WCSHDR_ALLIMG, those keywords are
considered to be "exhausted" and do not result in a separate wcsprm
struct. Otherwise they do.

7. Neither wcspih() nor wcsbth() check for duplicated keywords, in most
cases they accept the last encountered.

8. wcspih() and wcsbth() use wcsnpv() and wcsnps() (refer to the prologue
of wcs.h) to match the size of the pv[] and ps[] arrays in the wcsprm
structs to the number in the header. Consequently there are no unused
elements in the pv[] and ps[] arrays, indeed they will often be of zero
length.

9. The FITS WCS standard for pixel lists assumes that a pixel list defines
one and only one image, i.e. that each row of the binary table refers
to just one event, e.g. the detection of a single photon or neutrino,

Generated by Doxygen

360

for which the device "pixel" coordinates are stored in separate scalar
columns of the table.

In the absence of a standard for pixel lists - or even an informal description!
- let alone a formal mechanism for identifying the columns containing
pixel coordinates (as opposed to pixel values or metadata recorded at
the time the photon or neutrino was detected), WCS Paper I discusses
how the WCS keywords themselves may be used to identify them.

In practice, however, pixel lists have been used to store multiple images.
Besides not specifying how to identify columns, the pixel list convention
is also silent on the method to be used to associate table columns with
image axes.

An additional shortcoming is the absence of a formal method for associating
global binary-table WCS keywords, such as WCSNna or MJDOBn, with a pixel
list image, whether one or several.

In light of these uncertainties, wcsbth() simply collects all WCS keywords
for a particular pixel list coordinate representation (i.e. the "a"
value in TCTYna) into one wcsprm struct. However, these alternates
need not be associated with the same table columns and this allows a
pixel list to contain up to 27 separate images. As usual, if one of
these representations happened to contain more than two celestial axes,
for example, then an error would result when wcsset() is invoked on
it. In this case the "colsel" argument could be used to restrict the
columns used to construct the representation so that it only contained
one pair of celestial axes.

Global, binary-table WCS keywords are considered to apply to the pixel
list image with matching alternate (e.g. the "a" value in LONPna or
EQUIna), regardless of the table columns the image occupies. In other
words, the column number is ignored (the "n" value in LONPna or EQUIna).
This also applies for global, binary-table WCS keywords that have no
alternates, such as MJDOBn and OBSGXn, which match all images in a pixel
list. Take heed that this may lead to counterintuitive behaviour, especially
where such a keyword references a column that does not store pixel coordinates,
and moreso where the pixel list stores only a single image. In fact,
as the column number, n, is ignored for such keywords, it would make
no difference even if they referenced non-existent columns. Moreover,
there is no requirement for consistency in the column numbers used for
such keywords, even for OBSGXn, OBSGYn, and OBSGZn which are meant to
define the elements of a coordinate vector. Although it would surely
be perverse to construct a pixel list like this, such a situation may
still arise in practice where columns are deleted from a binary table.

The situation with global, binary-table WCS keywords becomes potentially
even more confusing when image arrays and pixel list images coexist in
one binary table. In that case, a keyword such as MJDOBn may legitimately
appear multiple times with n referencing different image arrays. Which
then is the one that applies to the pixel list images? In this implementation,
it is the last instance that appears in the header, whether or not it
is also associated with an image array.

19.29.4.3 wcstab() int wcstab (

struct wcsprm ∗ wcs)

wcstab() assists in filling in the information in the wcsprm struct relating to coordinate lookup tables.

Generated by Doxygen

19.29 wcshdr.h File Reference 361

Tabular coordinates ('TAB') present certain difficulties in that the main components of the lookup table - the
multidimensional coordinate array plus an index vector for each dimension - are stored in a FITS binary table
extension (BINTABLE). Information required to locate these arrays is stored in PVi_ma and PSi_ma keywords in
the image header.

wcstab() parses the PVi_ma and PSi_ma keywords associated with each 'TAB' axis and allocates memory in
the wcsprm struct for the required number of tabprm structs. It sets as much of the tabprm struct as can be gleaned
from the image header, and also sets up an array of wtbarr structs (described in the prologue of wtbarr.h) to assist
in extracting the required arrays from the BINTABLE extension(s).

It is then up to the user to allocate memory for, and copy arrays from the BINTABLE extension(s) into the tabprm
structs. A CFITSIO routine, fits_read_wcstab(), has been provided for this purpose, see getwcstab.h. wcsset() will
automatically take control of this allocated memory, in particular causing it to be freed by wcsfree(); the user must
not attempt to free it after wcsset() has been called.

Note that wcspih() and wcsbth() automatically invoke wcstab() on each of the wcsprm structs that they return.

Parameters

in,out wcs Coordinate transformation parameters (see below).
wcstab() sets ntab, tab, nwtb and wtb, allocating memory for the tab and wtb arrays. This
allocated memory will be freed automatically by wcsfree().

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

• 3: Invalid tabular parameters.

For returns > 1, a detailed error message is set in wcsprm::err if enabled, see wcserr_enable().

19.29.4.4 wcsidx() int wcsidx (

int nwcs,

struct wcsprm ∗∗ wcs,

int alts[27])

wcsidx() returns an array of 27 indices for the alternate coordinate representations in the array of wcsprm structs
returned by wcspih(). For the array returned by wcsbth() it returns indices for the unattached (colnum == 0) repre-
sentations derived from image header keywords - use wcsbdx() for those derived from binary table image arrays or
pixel lists keywords.

Parameters

in nwcs Number of coordinate representations in the array.

in wcs Pointer to an array of wcsprm structs returned by wcspih() or wcsbth().

out alts Index of each alternate coordinate representation in the array: alts[0] for the primary, alts[1] for
'A', etc., set to -1 if not present.
For example, if there was no 'P' representation then
alts[’P’-’A’+1] == -1;

Otherwise, the address of its wcsprm struct would be
wcs + alts[’P’-’A’+1];

Generated by Doxygen

362

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

19.29.4.5 wcsbdx() int wcsbdx (

int nwcs,

struct wcsprm ∗∗ wcs,

int type,

short alts[1000][28])

wcsbdx() returns an array of 999 x 27 indices for the alternate coordinate representions for binary table image arrays
xor pixel lists in the array of wcsprm structs returned by wcsbth(). Use wcsidx() for the unattached representations
derived from image header keywords.

Parameters

in nwcs Number of coordinate representations in the array.

in wcs Pointer to an array of wcsprm structs returned by wcsbth().

in type Select the type of coordinate representation:

• 0: binary table image arrays,

• 1: pixel lists.

out alts Index of each alternate coordinate represention in the array: alts[col][0] for the primary,
alts[col][1] for 'A', to alts[col][26] for 'Z', where col is the 1-relative column number, and col ==
0 is used for unattached image headers. Set to -1 if not present.
alts[col][27] counts the number of coordinate representations of the chosen type for each
column.
For example, if there was no 'P' represention for column 13 then
alts[13][’P’-’A’+1] == -1;

Otherwise, the address of its wcsprm struct would be
wcs + alts[13][’P’-’A’+1];

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

19.29.4.6 wcsvfree() int wcsvfree (

int ∗ nwcs,

struct wcsprm ∗∗ wcs)

wcsvfree() frees the memory allocated by wcspih() or wcsbth() for the array of wcsprm structs, first invoking
wcsfree() on each of the array members.

Generated by Doxygen

19.29 wcshdr.h File Reference 363

Parameters

in,out nwcs Number of coordinate representations found; set to 0 on return.

in,out wcs Pointer to the array of wcsprm structs; set to 0x0 on return.

Returns

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

19.29.4.7 wcshdo() int wcshdo (

int ctrl,

struct wcsprm ∗ wcs,

int ∗ nkeyrec,

char ∗∗ header)

wcshdo() translates a wcsprm struct into a FITS header. If the colnum member of the struct is non-zero then a
binary table image array header will be produced. Otherwise, if the colax[] member of the struct is set non-zero then
a pixel list header will be produced. Otherwise, a primary image or image extension header will be produced.

If the struct was originally constructed from a header, e.g. by wcspih(), the output header will almost certainly differ
in a number of respects:

• The output header only contains WCS-related keywords. In particular, it does not contain syntactically-
required keywords such as SIMPLE, NAXIS, BITPIX, or END.

• Elements of the PCi_ja matrix will be written if and only if they differ from the unit matrix. Thus, if the matrix
is unity then no elements will be written.

• The redundant keywords MJDREF, JDREF, JDREFI, JDREFF, all of which duplicate MJDREFI +
MJDREFF, are never written. OBSGEO-[LBH] are not written if OBSGEO-[XYZ] are defined.

• Deprecated (e.g. CROTAn, RESTFREQ, VELREF, RADECSYS, EPOCH, VSOURCEa) or non-standard us-
age will be translated to standard (this is partially dependent on whether wcsfix() was applied).

• Additional keywords such as WCSAXESa, CUNITia, LONPOLEa and LATPOLEa may appear.

• Quantities will be converted to the units used internally, basically SI with the addition of degrees.

• Floating-point quantities may be given to a different decimal precision.

• The original keycomments will be lost, although wcshdo() tries hard to write meaningful comments.

• Keyword order will almost certainly be changed.

Keywords can be translated between the image array, binary table, and pixel lists forms by manipulating the colnum
or colax[] members of the wcsprm struct.

Generated by Doxygen

364

Parameters

in ctrl Vector of flag bits that controls the degree of permissiveness in departing from the
published WCS standard, and also controls the formatting of floating-point keyvalues.
Set it to zero to get the default behaviour.
Flag bits for the degree of permissiveness:

• WCSHDO_none: Recognize only FITS keywords defined by the published WCS
standard.

• WCSHDO_all: Admit all recognized informal extensions of the WCS standard.

Fine-grained control of the degree of permissiveness is also possible as explained in
the notes below.
As for controlling floating-point formatting, by default wcshdo() uses "%20.12G" for
non-parameterized keywords such as LONPOLEa, and attempts to make the header
more human-readable by using the same "f" format for all values of each of the
following parameterized keywords: CRPIXja, PCi_ja, and CDELTia (n.b.
excluding CRVALia). Each has the same field width and precision so that the decimal
points line up. The precision, allowing for up to 15 significant digits, is chosen so that
there are no excess trailing zeroes. A similar formatting scheme applies by default for
distortion function parameters.
However, where the values of, for example, CDELTia differ by many orders of
magnitude, the default formatting scheme may cause unacceptable loss of precision
for the lower-valued keyvalues. Thus the default behaviour may be overridden:

• WCSHDO_P12: Use "%20.12G" format for all floating- point keyvalues (12
significant digits).

• WCSHDO_P13: Use "%21.13G" format for all floating- point keyvalues (13
significant digits).

• WCSHDO_P14: Use "%22.14G" format for all floating- point keyvalues (14
significant digits).

• WCSHDO_P15: Use "%23.15G" format for all floating- point keyvalues (15
significant digits).

• WCSHDO_P16: Use "%24.16G" format for all floating- point keyvalues (16
significant digits).

• WCSHDO_P17: Use "%25.17G" format for all floating- point keyvalues (17
significant digits).

If more than one of the above flags are set, the highest number of significant digits
prevails. In addition, there is an anciliary flag:

• WCSHDO_EFMT: Use "E" format instead of the default "G" format above.

Note that excess trailing zeroes are stripped off the fractional part with "G" (which
never occurs with "E"). Note also that the higher-precision options eat into the
keycomment area. In this regard, WCSHDO_P14 causes minimal disruption with "G"
format, while WCSHDO_P13 is appropriate with "E".

in,out wcs Pointer to a wcsprm struct containing coordinate transformation parameters. Will be
initialized if necessary.

out nkeyrec Number of FITS header keyrecords returned in the "header" array.

out header Pointer to an array of char holding the header. Storage for the array is allocated by
wcshdo() in blocks of 2880 bytes (32 x 80-character keyrecords) and must be freed by
the user to avoid memory leaks. See wcsdealloc().
Each keyrecord is 80 characters long and is ∗NOT∗ null-terminated, so the first
keyrecord starts at (∗header)[0], the second at (∗header)[80], etc.

Generated by Doxygen

19.29 wcshdr.h File Reference 365

Returns

Status return value (associated with wcs_errmsg[]):

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

• 3: Linear transformation matrix is singular.

• 4: Inconsistent or unrecognized coordinate axis types.

• 5: Invalid parameter value.

• 6: Invalid coordinate transformation parameters.

• 7: Ill-conditioned coordinate transformation parameters.

For returns > 1, a detailed error message is set in wcsprm::err if enabled, see wcserr_enable().

Notes:

1. wcshdo() interprets the relax argument as a vector of flag bits to provide fine-grained control over what non-
standard WCS keywords to write. The flag bits are subject to change in future and should be set by using the
preprocessor macros (see below) for the purpose.

• WCSHDO_none: Don't use any extensions.

• WCSHDO_all: Write all recognized extensions, equivalent to setting each flag bit.

• WCSHDO_safe: Write all extensions that are considered to be safe and recommended.

• WCSHDO_DOBSn: Write DOBSn, the column-specific analogue of DATE-OBS for use in binary tables
and pixel lists. WCS Paper III introduced DATE-AVG and DAVGn but by an oversight DOBSn (the
obvious analogy) was never formally defined by the standard. The alternative to using DOBSn is to write
DATE-OBS which applies to the whole table. This usage is considered to be safe and is recommended.

• WCSHDO_TPCn_ka: WCS Paper I defined

– TPn_ka and TCn_ka for pixel lists

but WCS Paper II uses TPCn_ka in one example and subsequently the errata for the WCS papers
legitimized the use of

– TPCn_ka and TCDn_ka for pixel lists

provided that the keyword does not exceed eight characters. This usage is considered to be safe and is
recommended because of the non-mnemonic terseness of the shorter forms.

• WCSHDO_PVn_ma: WCS Paper I defined

– iVn_ma and iSn_ma for bintables and

– TVn_ma and TSn_ma for pixel lists

but WCS Paper II uses iPVn_ma and TPVn_ma in the examples and subsequently the errata for the
WCS papers legitimized the use of

– iPVn_ma and iPSn_ma for bintables and

– TPVn_ma and TPSn_ma for pixel lists

provided that the keyword does not exceed eight characters. This usage is considered to be safe and is
recommended because of the non-mnemonic terseness of the shorter forms.

• WCSHDO_CRPXna: For historical reasons WCS Paper I defined

– jCRPXn, iCDLTn, iCUNIn, iCTYPn, and iCRVLn for bintables and

– TCRPXn, TCDLTn, TCUNIn, TCTYPn, and TCRVLn for pixel lists

for use without an alternate version specifier. However, because of the eight-character keyword con-
straint, in order to accommodate column numbers greater than 99 WCS Paper I also defined

Generated by Doxygen

366

– jCRPna, iCDEna, iCUNna, iCTYna and iCRVna for bintables and
– TCRPna, TCDEna, TCUNna, TCTYna and TCRVna for pixel lists

for use with an alternate version specifier (the "a"). Like the PC, CD, PV, and PS keywords there is an
obvious tendency to confuse these two forms for column numbers up to 99. It is very unlikely that any
parser would reject keywords in the first set with a non-blank alternate version specifier so this usage is
considered to be safe and is recommended.

• WCSHDO_CNAMna: WCS Papers I and III defined

– iCNAna, iCRDna, and iCSYna for bintables and
– TCNAna, TCRDna, and TCSYna for pixel lists

By analogy with the above, the long forms would be

– iCNAMna, iCRDEna, and iCSYEna for bintables and
– TCNAMna, TCRDEna, and TCSYEna for pixel lists

Note that these keywords provide auxiliary information only, none of them are needed to compute world
coordinates. This usage is potentially unsafe and is not recommended at this time.

• WCSHDO_WCSNna: In light of wcsbth() note 4, write WCSNna instead of TWCSna for pixel lists. While
wcsbth() treats WCSNna and TWCSna as equivalent, other parsers may not. Consequently, this usage
is potentially unsafe and is not recommended at this time.

19.29.5 Variable Documentation

19.29.5.1 wcshdr_errmsg const char ∗ wcshdr_errmsg[] [extern]

Error messages to match the status value returned from each function. Use wcs_errmsg[] for status returns from
wcshdo().

19.30 wcshdr.h

Go to the documentation of this file.
1 /*==
2 WCSLIB 7.11 - an implementation of the FITS WCS standard.
3 Copyright (C) 1995-2022, Mark Calabretta
4
5 This file is part of WCSLIB.
6
7 WCSLIB is free software: you can redistribute it and/or modify it under the
8 terms of the GNU Lesser General Public License as published by the Free
9 Software Foundation, either version 3 of the License, or (at your option)
10 any later version.
11
12 WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
15 more details.
16
17 You should have received a copy of the GNU Lesser General Public License
18 along with WCSLIB. If not, see http://www.gnu.org/licenses.
19
20 Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
21 http://www.atnf.csiro.au/people/Mark.Calabretta
22 $Id: wcshdr.h,v 7.11 2022/04/26 06:13:52 mcalabre Exp $
23 *===
24 *
25 * WCSLIB 7.11 - C routines that implement the FITS World Coordinate System
26 * (WCS) standard. Refer to the README file provided with WCSLIB for an
27 * overview of the library.
28 *
29 *
30 * Summary of the wcshdr routines
31 * ------------------------------

Generated by Doxygen

19.30 wcshdr.h 367

32 * Routines in this suite are aimed at extracting WCS information from a FITS
33 * file. The information is encoded via keywords defined in
34 *
35 = "Representations of world coordinates in FITS",
36 = Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)
37 =
38 = "Representations of celestial coordinates in FITS",
39 = Calabretta, M.R., & Greisen, E.W. 2002, A&A, 395, 1077 (WCS Paper II)
40 =
41 = "Representations of spectral coordinates in FITS",
42 = Greisen, E.W., Calabretta, M.R., Valdes, F.G., & Allen, S.L.
43 = 2006, A&A, 446, 747 (WCS Paper III)
44 =
45 = "Representations of distortions in FITS world coordinate systems",
46 = Calabretta, M.R. et al. (WCS Paper IV, draft dated 2004/04/22),
47 = available from http://www.atnf.csiro.au/people/Mark.Calabretta
48 =
49 = "Representations of time coordinates in FITS -
50 = Time and relative dimension in space",
51 = Rots, A.H., Bunclark, P.S., Calabretta, M.R., Allen, S.L.,
52 = Manchester, R.N., & Thompson, W.T. 2015, A&A, 574, A36 (WCS Paper VII)
53 *
54 * These routines provide the high-level interface between the FITS file and
55 * the WCS coordinate transformation routines.
56 *
57 * Additionally, function wcshdo() is provided to write out the contents of a
58 * wcsprm struct as a FITS header.
59 *
60 * Briefly, the anticipated sequence of operations is as follows:
61 *
62 * - 1: Open the FITS file and read the image or binary table header, e.g.
63 * using CFITSIO routine fits_hdr2str().
64 *
65 * - 2: Parse the header using wcspih() or wcsbth(); they will automatically
66 * interpret ’TAB’ header keywords using wcstab().
67 *
68 * - 3: Allocate memory for, and read ’TAB’ arrays from the binary table
69 * extension, e.g. using CFITSIO routine fits_read_wcstab() - refer to
70 * the prologue of getwcstab.h. wcsset() will automatically take
71 * control of this allocated memory, in particular causing it to be
72 * freed by wcsfree().
73 *
74 * - 4: Translate non-standard WCS usage using wcsfix(), see wcsfix.h.
75 *
76 * - 5: Initialize wcsprm struct(s) using wcsset() and calculate coordinates
77 * using wcsp2s() and/or wcss2p(). Refer to the prologue of wcs.h for a
78 * description of these and other high-level WCS coordinate
79 * transformation routines.
80 *
81 * - 6: Clean up by freeing memory with wcsvfree().
82 *
83 * In detail:
84 *
85 * - wcspih() is a high-level FITS WCS routine that parses an image header. It
86 * returns an array of up to 27 wcsprm structs on each of which it invokes
87 * wcstab().
88 *
89 * - wcsbth() is the analogue of wcspih() for use with binary tables; it
90 * handles image array and pixel list keywords. As an extension of the FITS
91 * WCS standard, it also recognizes image header keywords which may be used
92 * to provide default values via an inheritance mechanism.
93 *
94 * - wcstab() assists in filling in members of the wcsprm struct associated
95 * with coordinate lookup tables (’TAB’). These are based on arrays stored
96 * in a FITS binary table extension (BINTABLE) that are located by PVi_ma
97 * keywords in the image header.
98 *
99 * - wcsidx() and wcsbdx() are utility routines that return the index for a
100 * specified alternate coordinate descriptor in the array of wcsprm structs
101 * returned by wcspih() or wcsbth().
102 *
103 * - wcsvfree() deallocates memory for an array of wcsprm structs, such as
104 * returned by wcspih() or wcsbth().
105 *
106 * - wcshdo() writes out a wcsprm struct as a FITS header.
107 *
108 *
109 * wcspih() - FITS WCS parser routine for image headers
110 * --
111 * wcspih() is a high-level FITS WCS routine that parses an image header,
112 * either that of a primary HDU or of an image extension. All WCS keywords
113 * defined in Papers I, II, III, IV, and VII are recognized, and also those
114 * used by the AIPS convention and certain other keywords that existed in early
115 * drafts of the WCS papers as explained in wcsbth() note 5. wcspih() also
116 * handles keywords associated with non-standard distortion functions described
117 * in the prologue of dis.h.
118 *

Generated by Doxygen

368

119 * Given a character array containing a FITS image header, wcspih() identifies
120 * and reads all WCS keywords for the primary coordinate representation and up
121 * to 26 alternate representations. It returns this information as an array of
122 * wcsprm structs.
123 *
124 * wcspih() invokes wcstab() on each of the wcsprm structs that it returns.
125 *
126 * Use wcsbth() in preference to wcspih() for FITS headers of unknown type;
127 * wcsbth() can parse image headers as well as binary table and pixel list
128 * headers, although it cannot handle keywords relating to distortion
129 * functions, which may only exist in an image header (primary or extension).
130 *
131 * Given and returned:
132 * header char[] Character array containing the (entire) FITS image
133 * header from which to identify and construct the
134 * coordinate representations, for example, as might be
135 * obtained conveniently via the CFITSIO routine
136 * fits_hdr2str().
137 *
138 * Each header "keyrecord" (formerly "card image")
139 * consists of exactly 80 7-bit ASCII printing characters
140 * in the range 0x20 to 0x7e (which excludes NUL, BS,
141 * TAB, LF, FF and CR) especially noting that the
142 * keyrecords are NOT null-terminated.
143 *
144 * For negative values of ctrl (see below), header[] is
145 * modified so that WCS keyrecords processed by wcspih()
146 * are removed from it.
147 *
148 * Given:
149 * nkeyrec int Number of keyrecords in header[].
150 *
151 * relax int Degree of permissiveness:
152 * 0: Recognize only FITS keywords defined by the
153 * published WCS standard.
154 * WCSHDR_all: Admit all recognized informal
155 * extensions of the WCS standard.
156 * Fine-grained control of the degree of permissiveness
157 * is also possible as explained in wcsbth() note 5.
158 *
159 * ctrl int Error reporting and other control options for invalid
160 * WCS and other header keyrecords:
161 * 0: Do not report any rejected header keyrecords.
162 * 1: Produce a one-line message stating the number
163 * of WCS keyrecords rejected (nreject).
164 * 2: Report each rejected keyrecord and the reason
165 * why it was rejected.
166 * 3: As above, but also report all non-WCS
167 * keyrecords that were discarded, and the number
168 * of coordinate representations (nwcs) found.
169 * 4: As above, but also report the accepted WCS
170 * keyrecords, with a summary of the number
171 * accepted as well as rejected.
172 * The report is written to stderr by default, or the
173 * stream set by wcsprintf_set().
174 *
175 * For ctrl < 0, WCS keyrecords processed by wcspih()
176 * are removed from header[]:
177 * -1: Remove only valid WCS keyrecords whose values
178 * were successfully extracted, nothing is
179 * reported.
180 * -2: As above, but also remove WCS keyrecords that
181 * were rejected, reporting each one and the
182 * reason that it was rejected.
183 * -3: As above, and also report the number of
184 * coordinate representations (nwcs) found.
185 * -11: Same as -1 but preserving global WCS-related
186 * keywords such as ’{DATE,MJD}-{OBS,BEG,AVG,END}’
187 * and the other basic time-related keywords, and
188 * ’OBSGEO-{X,Y,Z,L,B,H}’.
189 * If any keyrecords are removed from header[] it will
190 * be null-terminated (NUL not being a legal FITS header
191 * character), otherwise it will contain its original
192 * complement of nkeyrec keyrecords and possibly not be
193 * null-terminated.
194 *
195 * Returned:
196 * nreject int* Number of WCS keywords rejected for syntax errors,
197 * illegal values, etc. Keywords not recognized as WCS
198 * keywords are simply ignored. Refer also to wcsbth()
199 * note 5.
200 *
201 * nwcs int* Number of coordinate representations found.
202 *
203 * wcs struct wcsprm**
204 * Pointer to an array of wcsprm structs containing up to
205 * 27 coordinate representations.

Generated by Doxygen

19.30 wcshdr.h 369

206 *
207 * Memory for the array is allocated by wcspih() which
208 * also invokes wcsini() for each struct to allocate
209 * memory for internal arrays and initialize their
210 * members to default values. Refer also to wcsbth()
211 * note 8. Note that wcsset() is not invoked on these
212 * structs.
213 *
214 * This allocated memory must be freed by the user, first
215 * by invoking wcsfree() for each struct, and then by
216 * freeing the array itself. A routine, wcsvfree(), is
217 * provided to do this (see below).
218 *
219 * Function return value:
220 * int Status return value:
221 * 0: Success.
222 * 1: Null wcsprm pointer passed.
223 * 2: Memory allocation failed.
224 * 4: Fatal error returned by Flex parser.
225 *
226 * Notes:
227 * 1: Refer to wcsbth() notes 1, 2, 3, 5, 7, and 8.
228 *
229 *
230 * wcsbth() - FITS WCS parser routine for binary table and image headers
231 * ---
232 * wcsbth() is a high-level FITS WCS routine that parses a binary table header.
233 * It handles image array and pixel list WCS keywords which may be present
234 * together in one header.
235 *
236 * As an extension of the FITS WCS standard, wcsbth() also recognizes image
237 * header keywords in a binary table header. These may be used to provide
238 * default values via an inheritance mechanism discussed in note 5 (c.f.
239 * WCSHDR_AUXIMG and WCSHDR_ALLIMG), or may instead result in wcsprm structs
240 * that are not associated with any particular column. Thus wcsbth() can
241 * handle primary image and image extension headers in addition to binary table
242 * headers (it ignores NAXIS and does not rely on the presence of the TFIELDS
243 * keyword).
244 *
245 * All WCS keywords defined in Papers I, II, III, and VII are recognized, and
246 * also those used by the AIPS convention and certain other keywords that
247 * existed in early drafts of the WCS papers as explained in note 5 below.
248 *
249 * wcsbth() sets the colnum or colax[] members of the wcsprm structs that it
250 * returns with the column number of an image array or the column numbers
251 * associated with each pixel coordinate element in a pixel list. wcsprm
252 * structs that are not associated with any particular column, as may be
253 * derived from image header keywords, have colnum == 0.
254 *
255 * Note 6 below discusses the number of wcsprm structs returned by wcsbth(),
256 * and the circumstances in which image header keywords cause a struct to be
257 * created. See also note 9 concerning the number of separate images that may
258 * be stored in a pixel list.
259 *
260 * The API to wcsbth() is similar to that of wcspih() except for the addition
261 * of extra arguments that may be used to restrict its operation. Like
262 * wcspih(), wcsbth() invokes wcstab() on each of the wcsprm structs that it
263 * returns.
264 *
265 * Given and returned:
266 * header char[] Character array containing the (entire) FITS binary
267 * table, primary image, or image extension header from
268 * which to identify and construct the coordinate
269 * representations, for example, as might be obtained
270 * conveniently via the CFITSIO routine fits_hdr2str().
271 *
272 * Each header "keyrecord" (formerly "card image")
273 * consists of exactly 80 7-bit ASCII printing
274 * characters in the range 0x20 to 0x7e (which excludes
275 * NUL, BS, TAB, LF, FF and CR) especially noting that
276 * the keyrecords are NOT null-terminated.
277 *
278 * For negative values of ctrl (see below), header[] is
279 * modified so that WCS keyrecords processed by wcsbth()
280 * are removed from it.
281 *
282 * Given:
283 * nkeyrec int Number of keyrecords in header[].
284 *
285 * relax int Degree of permissiveness:
286 * 0: Recognize only FITS keywords defined by the
287 * published WCS standard.
288 * WCSHDR_all: Admit all recognized informal
289 * extensions of the WCS standard.
290 * Fine-grained control of the degree of permissiveness
291 * is also possible, as explained in note 5 below.
292 *

Generated by Doxygen

370

293 * ctrl int Error reporting and other control options for invalid
294 * WCS and other header keyrecords:
295 * 0: Do not report any rejected header keyrecords.
296 * 1: Produce a one-line message stating the number
297 * of WCS keyrecords rejected (nreject).
298 * 2: Report each rejected keyrecord and the reason
299 * why it was rejected.
300 * 3: As above, but also report all non-WCS
301 * keyrecords that were discarded, and the number
302 * of coordinate representations (nwcs) found.
303 * 4: As above, but also report the accepted WCS
304 * keyrecords, with a summary of the number
305 * accepted as well as rejected.
306 * The report is written to stderr by default, or the
307 * stream set by wcsprintf_set().
308 *
309 * For ctrl < 0, WCS keyrecords processed by wcsbth()
310 * are removed from header[]:
311 * -1: Remove only valid WCS keyrecords whose values
312 * were successfully extracted, nothing is
313 * reported.
314 * -2: Also remove WCS keyrecords that were rejected,
315 * reporting each one and the reason that it was
316 * rejected.
317 * -3: As above, and also report the number of
318 * coordinate representations (nwcs) found.
319 * -11: Same as -1 but preserving global WCS-related
320 * keywords such as ’{DATE,MJD}-{OBS,BEG,AVG,END}’
321 * and the other basic time-related keywords, and
322 * ’OBSGEO-{X,Y,Z,L,B,H}’.
323 * If any keyrecords are removed from header[] it will
324 * be null-terminated (NUL not being a legal FITS header
325 * character), otherwise it will contain its original
326 * complement of nkeyrec keyrecords and possibly not be
327 * null-terminated.
328 *
329 * keysel int Vector of flag bits that may be used to restrict the
330 * keyword types considered:
331 * WCSHDR_IMGHEAD: Image header keywords.
332 * WCSHDR_BIMGARR: Binary table image array.
333 * WCSHDR_PIXLIST: Pixel list keywords.
334 * If zero, there is no restriction.
335 *
336 * Keywords such as EQUIna or RFRQna that are common to
337 * binary table image arrays and pixel lists (including
338 * WCSNna and TWCSna, as explained in note 4 below) are
339 * selected by both WCSHDR_BIMGARR and WCSHDR_PIXLIST.
340 * Thus if inheritance via WCSHDR_ALLIMG is enabled as
341 * discussed in note 5 and one of these shared keywords
342 * is present, then WCSHDR_IMGHEAD and WCSHDR_PIXLIST
343 * alone may be sufficient to cause the construction of
344 * coordinate descriptions for binary table image arrays.
345 *
346 * colsel int* Pointer to an array of table column numbers used to
347 * restrict the keywords considered by wcsbth().
348 *
349 * A null pointer may be specified to indicate that there
350 * is no restriction. Otherwise, the magnitude of
351 * cols[0] specifies the length of the array:
352 * cols[0] > 0: the columns are included,
353 * cols[0] < 0: the columns are excluded.
354 *
355 * For the pixel list keywords TPn_ka and TCn_ka (and
356 * TPCn_ka and TCDn_ka if WCSHDR_LONGKEY is enabled), it
357 * is an error for one column to be selected but not the
358 * other. This is unlike the situation with invalid
359 * keyrecords, which are simply rejected, because the
360 * error is not intrinsic to the header itself but
361 * arises in the way that it is processed.
362 *
363 * Returned:
364 * nreject int* Number of WCS keywords rejected for syntax errors,
365 * illegal values, etc. Keywords not recognized as WCS
366 * keywords are simply ignored, refer also to note 5
367 * below.
368 *
369 * nwcs int* Number of coordinate representations found.
370 *
371 * wcs struct wcsprm**
372 * Pointer to an array of wcsprm structs containing up
373 * to 27027 coordinate representations, refer to note 6
374 * below.
375 *
376 * Memory for the array is allocated by wcsbth() which
377 * also invokes wcsini() for each struct to allocate
378 * memory for internal arrays and initialize their
379 * members to default values. Refer also to note 8

Generated by Doxygen

19.30 wcshdr.h 371

380 * below. Note that wcsset() is not invoked on these
381 * structs.
382 *
383 * This allocated memory must be freed by the user, first
384 * by invoking wcsfree() for each struct, and then by
385 * freeing the array itself. A routine, wcsvfree(), is
386 * provided to do this (see below).
387 *
388 * Function return value:
389 * int Status return value:
390 * 0: Success.
391 * 1: Null wcsprm pointer passed.
392 * 2: Memory allocation failed.
393 * 3: Invalid column selection.
394 * 4: Fatal error returned by Flex parser.
395 *
396 * Notes:
397 * 1: wcspih() determines the number of coordinate axes independently for
398 * each alternate coordinate representation (denoted by the "a" value in
399 * keywords like CTYPEia) from the higher of
400 *
401 * a: NAXIS,
402 * b: WCSAXESa,
403 * c: The highest axis number in any parameterized WCS keyword. The
404 * keyvalue, as well as the keyword, must be syntactically valid
405 * otherwise it will not be considered.
406 *
407 * If none of these keyword types is present, i.e. if the header only
408 * contains auxiliary WCS keywords for a particular coordinate
409 * representation, then no coordinate description is constructed for it.
410 *
411 * wcsbth() is similar except that it ignores the NAXIS keyword if given
412 * an image header to process.
413 *
414 * The number of axes, which is returned as a member of the wcsprm
415 * struct, may differ for different coordinate representations of the
416 * same image.
417 *
418 * 2: wcspih() and wcsbth() enforce correct FITS "keyword = value" syntax
419 * with regard to "= " occurring in columns 9 and 10.
420 *
421 * However, they do recognize free-format character (NOST 100-2.0,
422 * Sect. 5.2.1), integer (Sect. 5.2.3), and floating-point values
423 * (Sect. 5.2.4) for all keywords.
424 *
425 * 3: Where CROTAn, CDi_ja, and PCi_ja occur together in one header wcspih()
426 * and wcsbth() treat them as described in the prologue to wcs.h.
427 *
428 * 4: WCS Paper I mistakenly defined the pixel list form of WCSNAMEa as
429 * TWCSna instead of WCSNna; the ’T’ is meant to substitute for the axis
430 * number in the binary table form of the keyword - note that keywords
431 * defined in WCS Papers II, III, and VII that are not parameterized by
432 * axis number have identical forms for binary tables and pixel lists.
433 * Consequently wcsbth() always treats WCSNna and TWCSna as equivalent.
434 *
435 * 5: wcspih() and wcsbth() interpret the "relax" argument as a vector of
436 * flag bits to provide fine-grained control over what non-standard WCS
437 * keywords to accept. The flag bits are subject to change in future and
438 * should be set by using the preprocessor macros (see below) for the
439 * purpose.
440 *
441 * - WCSHDR_none: Don’t accept any extensions (not even those in the
442 * errata). Treat non-conformant keywords in the same way as
443 * non-WCS keywords in the header, i.e. simply ignore them.
444 *
445 * - WCSHDR_all: Accept all extensions recognized by the parser.
446 *
447 * - WCSHDR_reject: Reject non-standard keyrecords (that are not otherwise
448 * explicitly accepted by one of the flags below). A message will
449 * optionally be printed on stderr by default, or the stream set
450 * by wcsprintf_set(), as determined by the ctrl argument, and
451 * nreject will be incremented.
452 *
453 * This flag may be used to signal the presence of non-standard
454 * keywords, otherwise they are simply passed over as though they
455 * did not exist in the header. It is mainly intended for testing
456 * conformance of a FITS header to the WCS standard.
457 *
458 * Keyrecords may be non-standard in several ways:
459 *
460 * - The keyword may be syntactically valid but with keyvalue of
461 * incorrect type or invalid syntax, or the keycomment may be
462 * malformed.
463 *
464 * - The keyword may strongly resemble a WCS keyword but not, in
465 * fact, be one because it does not conform to the standard.
466 * For example, "CRPIX01" looks like a CRPIXja keyword, but in

Generated by Doxygen

372

467 * fact the leading zero on the axis number violates the basic
468 * FITS standard. Likewise, "LONPOLE2" is not a valid
469 * LONPOLEa keyword in the WCS standard, and indeed there is
470 * nothing the parser can sensibly do with it.
471 *
472 * - Use of the keyword may be deprecated by the standard. Such
473 * will be rejected if not explicitly accepted via one of the
474 * flags below.
475 *
476 * - WCSHDR_strict: As for WCSHDR_reject, but also reject AIPS-convention
477 * keywords and all other deprecated usage that is not explicitly
478 * accepted.
479 *
480 * - WCSHDR_CROTAia: Accept CROTAia (wcspih()),
481 * iCROTna (wcsbth()),
482 * TCROTna (wcsbth()).
483 * - WCSHDR_VELREFa: Accept VELREFa.
484 * wcspih() always recognizes the AIPS-convention keywords,
485 * CROTAn, EPOCH, and VELREF for the primary representation
486 * (a = ’ ’) but alternates are non-standard.
487 *
488 * wcsbth() accepts EPOCHa and VELREFa only if WCSHDR_AUXIMG is
489 * also enabled.
490 *
491 * - WCSHDR_CD00i00j: Accept CD00i00j (wcspih()).
492 * - WCSHDR_PC00i00j: Accept PC00i00j (wcspih()).
493 * - WCSHDR_PROJPn: Accept PROJPn (wcspih()).
494 * These appeared in early drafts of WCS Paper I+II (before they
495 * were split) and are equivalent to CDi_ja, PCi_ja, and PVi_ma
496 * for the primary representation (a = ’ ’). PROJPn is
497 * equivalent to PVi_ma with m = n <= 9, and is associated
498 * exclusively with the latitude axis.
499 *
500 * - WCSHDR_CD0i_0ja: Accept CD0i_0ja (wcspih()).
501 * - WCSHDR_PC0i_0ja: Accept PC0i_0ja (wcspih()).
502 * - WCSHDR_PV0i_0ma: Accept PV0i_0ja (wcspih()).
503 * - WCSHDR_PS0i_0ma: Accept PS0i_0ja (wcspih()).
504 * Allow the numerical index to have a leading zero in doubly-
505 * parameterized keywords, for example, PC01_01. WCS Paper I
506 * (Sects 2.1.2 & 2.1.4) explicitly disallows leading zeroes.
507 * The FITS 3.0 standard document (Sect. 4.1.2.1) states that the
508 * index in singly-parameterized keywords (e.g. CTYPEia) "shall
509 * not have leading zeroes", and later in Sect. 8.1 that "leading
510 * zeroes must not be used" on PVi_ma and PSi_ma. However, by an
511 * oversight, it is silent on PCi_ja and CDi_ja.
512 *
513 * - WCSHDR_DOBSn (wcsbth() only): Allow DOBSn, the column-specific
514 * analogue of DATE-OBS. By an oversight this was never formally
515 * defined in the standard.
516 *
517 * - WCSHDR_OBSGLBHn (wcsbth() only): Allow OBSGLn, OBSGBn, and OBSGHn,
518 * the column-specific analogues of OBSGEO-L, OBSGEO-B, and
519 * OBSGEO-H. By an oversight these were never formally defined in
520 * the standard.
521 *
522 * - WCSHDR_RADECSYS: Accept RADECSYS. This appeared in early drafts of
523 * WCS Paper I+II and was subsequently replaced by RADESYSa.
524 *
525 * wcsbth() accepts RADECSYS only if WCSHDR_AUXIMG is also
526 * enabled.
527 *
528 * - WCSHDR_EPOCHa: Accept EPOCHa.
529 *
530 * - WCSHDR_VSOURCE: Accept VSOURCEa or VSOUna (wcsbth()). This appeared
531 * in early drafts of WCS Paper III and was subsequently dropped
532 * in favour of ZSOURCEa and ZSOUna.
533 *
534 * wcsbth() accepts VSOURCEa only if WCSHDR_AUXIMG is also
535 * enabled.
536 *
537 * - WCSHDR_DATEREF: Accept DATE-REF, MJD-REF, MJD-REFI, MJD-REFF, JDREF,
538 * JD-REFI, and JD-REFF as synonyms for the standard keywords,
539 * DATEREF, MJDREF, MJDREFI, MJDREFF, JDREF, JDREFI, and JDREFF.
540 * The latter buck the pattern set by the other date keywords
541 * ({DATE,MJD}-{OBS,BEG,AVG,END}), thereby increasing the
542 * potential for confusion and error.
543 *
544 * - WCSHDR_LONGKEY (wcsbth() only): Accept long forms of the alternate
545 * binary table and pixel list WCS keywords, i.e. with "a" non-
546 * blank. Specifically
547 *
548 # jCRPXna TCRPXna : jCRPXn jCRPna TCRPXn TCRPna CRPIXja
549 # - TPCn_ka : - ijPCna - TPn_ka PCi_ja
550 # - TCDn_ka : - ijCDna - TCn_ka CDi_ja
551 # iCDLTna TCDLTna : iCDLTn iCDEna TCDLTn TCDEna CDELTia
552 # iCUNIna TCUNIna : iCUNIn iCUNna TCUNIn TCUNna CUNITia
553 # iCTYPna TCTYPna : iCTYPn iCTYna TCTYPn TCTYna CTYPEia

Generated by Doxygen

19.30 wcshdr.h 373

554 # iCRVLna TCRVLna : iCRVLn iCRVna TCRVLn TCRVna CRVALia
555 # iPVn_ma TPVn_ma : - iVn_ma - TVn_ma PVi_ma
556 # iPSn_ma TPSn_ma : - iSn_ma - TSn_ma PSi_ma
557 *
558 * where the primary and standard alternate forms together with
559 * the image-header equivalent are shown rightwards of the colon.
560 *
561 * The long form of these keywords could be described as quasi-
562 * standard. TPCn_ka, iPVn_ma, and TPVn_ma appeared by mistake
563 * in the examples in WCS Paper II and subsequently these and
564 * also TCDn_ka, iPSn_ma and TPSn_ma were legitimized by the
565 * errata to the WCS papers.
566 *
567 * Strictly speaking, the other long forms are non-standard and
568 * in fact have never appeared in any draft of the WCS papers nor
569 * in the errata. However, as natural extensions of the primary
570 * form they are unlikely to be written with any other intention.
571 * Thus it should be safe to accept them provided, of course,
572 * that the resulting keyword does not exceed the 8-character
573 * limit.
574 *
575 * If WCSHDR_CNAMn is enabled then also accept
576 *
577 # iCNAMna TCNAMna : --- iCNAna --- TCNAna CNAMEia
578 # iCRDEna TCRDEna : --- iCRDna --- TCRDna CRDERia
579 # iCSYEna TCSYEna : --- iCSYna --- TCSYna CSYERia
580 # iCZPHna TCZPHna : --- iCZPna --- TCZPna CZPHSia
581 # iCPERna TCPERna : --- iCPRna --- TCPRna CPERIia
582 *
583 * Note that CNAMEia, CRDERia, CSYERia, CZPHSia, CPERIia, and
584 * their variants are not used by WCSLIB but are stored in the
585 * wcsprm struct as auxiliary information.
586 *
587 * - WCSHDR_CNAMn (wcsbth() only): Accept iCNAMn, iCRDEn, iCSYEn, iCZPHn,
588 * iCPERn, TCNAMn, TCRDEn, TCSYEn, TCZPHn, and TCPERn, i.e. with
589 * "a" blank. While non-standard, these are the obvious analogues
590 * of iCTYPn, TCTYPn, etc.
591 *
592 * - WCSHDR_AUXIMG (wcsbth() only): Allow the image-header form of an
593 * auxiliary WCS keyword with representation-wide scope to
594 * provide a default value for all images. This default may be
595 * overridden by the column-specific form of the keyword.
596 *
597 * For example, a keyword like EQUINOXa would apply to all image
598 * arrays in a binary table, or all pixel list columns with
599 * alternate representation "a" unless overridden by EQUIna.
600 *
601 * Specifically the keywords are:
602 *
603 # LONPOLEa for LONPna
604 # LATPOLEa for LATPna
605 # VELREF - ... (No column-specific form.)
606 # VELREFa - ... Only if WCSHDR_VELREFa is set.
607 *
608 * whose keyvalues are actually used by WCSLIB, and also keywords
609 * providing auxiliary information that is simply stored in the
610 * wcsprm struct:
611 *
612 # WCSNAMEa for WCSNna ... Or TWCSna (see below).
613 #
614 # DATE-OBS for DOBSn
615 # MJD-OBS for MJDOBn
616 #
617 # RADESYSa for RADEna
618 # RADECSYS for RADEna ... Only if WCSHDR_RADECSYS is set.
619 # EPOCH - ... (No column-specific form.)
620 # EPOCHa - ... Only if WCSHDR_EPOCHa is set.
621 # EQUINOXa for EQUIna
622 *
623 * where the image-header keywords on the left provide default
624 * values for the column specific keywords on the right.
625 *
626 * Note that, according to Sect. 8.1 of WCS Paper III, and
627 * Sect. 5.2 of WCS Paper VII, the following are always inherited:
628 *
629 # RESTFREQ for RFRQna
630 # RESTFRQa for RFRQna
631 # RESTWAVa for RWAVna
632 *
633 * being those actually used by WCSLIB, together with the
634 * following auxiliary keywords, many of which do not have binary
635 * table equivalents and therefore can only be inherited:
636 *
637 # TIMESYS -
638 # TREFPOS for TRPOSn
639 # TREFDIR for TRDIRn
640 # PLEPHEM -

Generated by Doxygen

374

641 # TIMEUNIT -
642 # DATEREF -
643 # MJDREF -
644 # MJDREFI -
645 # MJDREFF -
646 # JDREF -
647 # JDREFI -
648 # JDREFF -
649 # TIMEOFFS -
650 #
651 # DATE-BEG -
652 # DATE-AVG for DAVGn
653 # DATE-END -
654 # MJD-BEG -
655 # MJD-AVG for MJDAn
656 # MJD-END -
657 # JEPOCH -
658 # BEPOCH -
659 # TSTART -
660 # TSTOP -
661 # XPOSURE -
662 # TELAPSE -
663 #
664 # TIMSYER -
665 # TIMRDER -
666 # TIMEDEL -
667 # TIMEPIXR -
668 #
669 # OBSGEO-X for OBSGXn
670 # OBSGEO-Y for OBSGYn
671 # OBSGEO-Z for OBSGZn
672 # OBSGEO-L for OBSGLn
673 # OBSGEO-B for OBSGBn
674 # OBSGEO-H for OBSGHn
675 # OBSORBIT -
676 #
677 # SPECSYSa for SPECna
678 # SSYSOBSa for SOBSna
679 # VELOSYSa for VSYSna
680 # VSOURCEa for VSOUna ... Only if WCSHDR_VSOURCE is set.
681 # ZSOURCEa for ZSOUna
682 # SSYSSRCa for SSRCna
683 # VELANGLa for VANGna
684 *
685 * Global image-header keywords, such as MJD-OBS, apply to all
686 * alternate representations, and would therefore provide a
687 * default value for all images in the header.
688 *
689 * This auxiliary inheritance mechanism applies to binary table
690 * image arrays and pixel lists alike. Most of these keywords
691 * have no default value, the exceptions being LONPOLEa and
692 * LATPOLEa, and also RADESYSa and EQUINOXa which provide
693 * defaults for each other. Thus one potential difficulty in
694 * using WCSHDR_AUXIMG is that of erroneously inheriting one of
695 * these four keywords.
696 *
697 * Also, beware of potential inconsistencies that may arise where,
698 * for example, DATE-OBS is inherited, but MJD-OBS is overridden
699 * by MJDOBn and specifies a different time. Pairs in this
700 * category are:
701 *
702 = DATE-OBS/DOBSn versus MJD-OBS/MJDOBn
703 = DATE-AVG/DAVGn versus MJD-AVG/MJDAn
704 = RESTFRQa/RFRQna versus RESTWAVa/RWAVna
705 = OBSGEO-[XYZ]/OBSG[XYZ]n versus OBSGEO-[LBH]/OBSG[LBH]n
706 *
707 * The wcsfixi() routines datfix() and obsfix() are provided to
708 * check the consistency of these and other such pairs of
709 * keywords.
710 *
711 * Unlike WCSHDR_ALLIMG, the existence of one (or all) of these
712 * auxiliary WCS image header keywords will not by itself cause a
713 * wcsprm struct to be created for alternate representation "a".
714 * This is because they do not provide sufficient information to
715 * create a non-trivial coordinate representation when used in
716 * conjunction with the default values of those keywords that are
717 * parameterized by axis number, such as CTYPEia.
718 *
719 * - WCSHDR_ALLIMG (wcsbth() only): Allow the image-header form of *all*
720 * image header WCS keywords to provide a default value for all
721 * image arrays in a binary table (n.b. not pixel list). This
722 * default may be overridden by the column-specific form of the
723 * keyword.
724 *
725 * For example, a keyword like CRPIXja would apply to all image
726 * arrays in a binary table with alternate representation "a"
727 * unless overridden by jCRPna.

Generated by Doxygen

19.30 wcshdr.h 375

728 *
729 * Specifically the keywords are those listed above for
730 * WCSHDR_AUXIMG plus
731 *
732 # WCSAXESa for WCAXna
733 *
734 * which defines the coordinate dimensionality, and the following
735 * keywords that are parameterized by axis number:
736 *
737 # CRPIXja for jCRPna
738 # PCi_ja for ijPCna
739 # CDi_ja for ijCDna
740 # CDELTia for iCDEna
741 # CROTAi for iCROTn
742 # CROTAia - ... Only if WCSHDR_CROTAia is set.
743 # CUNITia for iCUNna
744 # CTYPEia for iCTYna
745 # CRVALia for iCRVna
746 # PVi_ma for iVn_ma
747 # PSi_ma for iSn_ma
748 #
749 # CNAMEia for iCNAna
750 # CRDERia for iCRDna
751 # CSYERia for iCSYna
752 # CZPHSia for iCZPna
753 # CPERIia for iCPRna
754 *
755 * where the image-header keywords on the left provide default
756 * values for the column specific keywords on the right.
757 *
758 * This full inheritance mechanism only applies to binary table
759 * image arrays, not pixel lists, because in the latter case
760 * there is no well-defined association between coordinate axis
761 * number and column number (see note 9 below).
762 *
763 * Note that CNAMEia, CRDERia, CSYERia, and their variants are
764 * not used by WCSLIB but are stored in the wcsprm struct as
765 * auxiliary information.
766 *
767 * Note especially that at least one wcsprm struct will be
768 * returned for each "a" found in one of the image header
769 * keywords listed above:
770 *
771 * - If the image header keywords for "a" ARE NOT inherited by a
772 * binary table, then the struct will not be associated with
773 * any particular table column number and it is up to the user
774 * to provide an association.
775 *
776 * - If the image header keywords for "a" ARE inherited by a
777 * binary table image array, then those keywords are considered
778 * to be "exhausted" and do not result in a separate wcsprm
779 * struct.
780 *
781 * For example, to accept CD00i00j and PC00i00j and reject all other
782 * extensions, use
783 *
784 = relax = WCSHDR_reject | WCSHDR_CD00i00j | WCSHDR_PC00i00j;
785 *
786 * The parser always treats EPOCH as subordinate to EQUINOXa if both are
787 * present, and VSOURCEa is always subordinate to ZSOURCEa.
788 *
789 * Likewise, VELREF is subordinate to the formalism of WCS Paper III, see
790 * spcaips().
791 *
792 * Neither wcspih() nor wcsbth() currently recognize the AIPS-convention
793 * keywords ALTRPIX or ALTRVAL which effectively define an alternative
794 * representation for a spectral axis.
795 *
796 * 6: Depending on what flags have been set in its "relax" argument,
797 * wcsbth() could return as many as 27027 wcsprm structs:
798 *
799 * - Up to 27 unattached representations derived from image header
800 * keywords.
801 *
802 * - Up to 27 structs for each of up to 999 columns containing an image
803 * arrays.
804 *
805 * - Up to 27 structs for a pixel list.
806 *
807 * Note that it is considered legitimate for a column to contain an image
808 * array and also form part of a pixel list, and in particular that
809 * wcsbth() does not check the TFORM keyword for a pixel list column to
810 * check that it is scalar.
811 *
812 * In practice, of course, a realistic binary table header is unlikely to
813 * contain more than a handful of images.
814 *

Generated by Doxygen

376

815 * In order for wcsbth() to create a wcsprm struct for a particular
816 * coordinate representation, at least one WCS keyword that defines an
817 * axis number must be present, either directly or by inheritance if
818 * WCSHDR_ALLIMG is set.
819 *
820 * When the image header keywords for an alternate representation are
821 * inherited by a binary table image array via WCSHDR_ALLIMG, those
822 * keywords are considered to be "exhausted" and do not result in a
823 * separate wcsprm struct. Otherwise they do.
824 *
825 * 7: Neither wcspih() nor wcsbth() check for duplicated keywords, in most
826 * cases they accept the last encountered.
827 *
828 * 8: wcspih() and wcsbth() use wcsnpv() and wcsnps() (refer to the prologue
829 * of wcs.h) to match the size of the pv[] and ps[] arrays in the wcsprm
830 * structs to the number in the header. Consequently there are no unused
831 * elements in the pv[] and ps[] arrays, indeed they will often be of
832 * zero length.
833 *
834 * 9: The FITS WCS standard for pixel lists assumes that a pixel list
835 * defines one and only one image, i.e. that each row of the binary table
836 * refers to just one event, e.g. the detection of a single photon or
837 * neutrino, for which the device "pixel" coordinates are stored in
838 * separate scalar columns of the table.
839 *
840 * In the absence of a standard for pixel lists - or even an informal
841 * description! - let alone a formal mechanism for identifying the columns
842 * containing pixel coordinates (as opposed to pixel values or metadata
843 * recorded at the time the photon or neutrino was detected), WCS Paper I
844 * discusses how the WCS keywords themselves may be used to identify them.
845 *
846 * In practice, however, pixel lists have been used to store multiple
847 * images. Besides not specifying how to identify columns, the pixel list
848 * convention is also silent on the method to be used to associate table
849 * columns with image axes.
850 *
851 * An additional shortcoming is the absence of a formal method for
852 * associating global binary-table WCS keywords, such as WCSNna or MJDOBn,
853 * with a pixel list image, whether one or several.
854 *
855 * In light of these uncertainties, wcsbth() simply collects all WCS
856 * keywords for a particular pixel list coordinate representation (i.e.
857 * the "a" value in TCTYna) into one wcsprm struct. However, these
858 * alternates need not be associated with the same table columns and this
859 * allows a pixel list to contain up to 27 separate images. As usual, if
860 * one of these representations happened to contain more than two
861 * celestial axes, for example, then an error would result when wcsset()
862 * is invoked on it. In this case the "colsel" argument could be used to
863 * restrict the columns used to construct the representation so that it
864 * only contained one pair of celestial axes.
865 *
866 * Global, binary-table WCS keywords are considered to apply to the pixel
867 * list image with matching alternate (e.g. the "a" value in LONPna or
868 * EQUIna), regardless of the table columns the image occupies. In other
869 * words, the column number is ignored (the "n" value in LONPna or
870 * EQUIna). This also applies for global, binary-table WCS keywords that
871 * have no alternates, such as MJDOBn and OBSGXn, which match all images
872 * in a pixel list. Take heed that this may lead to counterintuitive
873 * behaviour, especially where such a keyword references a column that
874 * does not store pixel coordinates, and moreso where the pixel list
875 * stores only a single image. In fact, as the column number, n, is
876 * ignored for such keywords, it would make no difference even if they
877 * referenced non-existent columns. Moreover, there is no requirement for
878 * consistency in the column numbers used for such keywords, even for
879 * OBSGXn, OBSGYn, and OBSGZn which are meant to define the elements of a
880 * coordinate vector. Although it would surely be perverse to construct a
881 * pixel list like this, such a situation may still arise in practice
882 * where columns are deleted from a binary table.
883 *
884 * The situation with global, binary-table WCS keywords becomes
885 * potentially even more confusing when image arrays and pixel list images
886 * coexist in one binary table. In that case, a keyword such as MJDOBn
887 * may legitimately appear multiple times with n referencing different
888 * image arrays. Which then is the one that applies to the pixel list
889 * images? In this implementation, it is the last instance that appears
890 * in the header, whether or not it is also associated with an image
891 * array.
892 *
893 *
894 * wcstab() - Tabular construction routine
895 * ---------------------------------------
896 * wcstab() assists in filling in the information in the wcsprm struct relating
897 * to coordinate lookup tables.
898 *
899 * Tabular coordinates (’TAB’) present certain difficulties in that the main
900 * components of the lookup table - the multidimensional coordinate array plus
901 * an index vector for each dimension - are stored in a FITS binary table

Generated by Doxygen

19.30 wcshdr.h 377

902 * extension (BINTABLE). Information required to locate these arrays is stored
903 * in PVi_ma and PSi_ma keywords in the image header.
904 *
905 * wcstab() parses the PVi_ma and PSi_ma keywords associated with each ’TAB’
906 * axis and allocates memory in the wcsprm struct for the required number of
907 * tabprm structs. It sets as much of the tabprm struct as can be gleaned from
908 * the image header, and also sets up an array of wtbarr structs (described in
909 * the prologue of wtbarr.h) to assist in extracting the required arrays from
910 * the BINTABLE extension(s).
911 *
912 * It is then up to the user to allocate memory for, and copy arrays from the
913 * BINTABLE extension(s) into the tabprm structs. A CFITSIO routine,
914 * fits_read_wcstab(), has been provided for this purpose, see getwcstab.h.
915 * wcsset() will automatically take control of this allocated memory, in
916 * particular causing it to be freed by wcsfree(); the user must not attempt
917 * to free it after wcsset() has been called.
918 *
919 * Note that wcspih() and wcsbth() automatically invoke wcstab() on each of the
920 * wcsprm structs that they return.
921 *
922 * Given and returned:
923 * wcs struct wcsprm*
924 * Coordinate transformation parameters (see below).
925 *
926 * wcstab() sets ntab, tab, nwtb and wtb, allocating
927 * memory for the tab and wtb arrays. This allocated
928 * memory will be freed automatically by wcsfree().
929 *
930 * Function return value:
931 * int Status return value:
932 * 0: Success.
933 * 1: Null wcsprm pointer passed.
934 * 2: Memory allocation failed.
935 * 3: Invalid tabular parameters.
936 *
937 * For returns > 1, a detailed error message is set in
938 * wcsprm::err if enabled, see wcserr_enable().
939 *
940 *
941 * wcsidx() - Index alternate coordinate representations
942 * ---
943 * wcsidx() returns an array of 27 indices for the alternate coordinate
944 * representations in the array of wcsprm structs returned by wcspih(). For
945 * the array returned by wcsbth() it returns indices for the unattached
946 * (colnum == 0) representations derived from image header keywords - use
947 * wcsbdx() for those derived from binary table image arrays or pixel lists
948 * keywords.
949 *
950 * Given:
951 * nwcs int Number of coordinate representations in the array.
952 *
953 * wcs const struct wcsprm**
954 * Pointer to an array of wcsprm structs returned by
955 * wcspih() or wcsbth().
956 *
957 * Returned:
958 * alts int[27] Index of each alternate coordinate representation in
959 * the array: alts[0] for the primary, alts[1] for ’A’,
960 * etc., set to -1 if not present.
961 *
962 * For example, if there was no ’P’ representation then
963 *
964 = alts[’P’-’A’+1] == -1;
965 *
966 * Otherwise, the address of its wcsprm struct would be
967 *
968 = wcs + alts[’P’-’A’+1];
969 *
970 * Function return value:
971 * int Status return value:
972 * 0: Success.
973 * 1: Null wcsprm pointer passed.
974 *
975 *
976 * wcsbdx() - Index alternate coordinate representions
977 * ---
978 * wcsbdx() returns an array of 999 x 27 indices for the alternate coordinate
979 * representions for binary table image arrays xor pixel lists in the array of
980 * wcsprm structs returned by wcsbth(). Use wcsidx() for the unattached
981 * representations derived from image header keywords.
982 *
983 * Given:
984 * nwcs int Number of coordinate representations in the array.
985 *
986 * wcs const struct wcsprm**
987 * Pointer to an array of wcsprm structs returned by
988 * wcsbth().

Generated by Doxygen

378

989 *
990 * type int Select the type of coordinate representation:
991 * 0: binary table image arrays,
992 * 1: pixel lists.
993 *
994 * Returned:
995 * alts short[1000][28]
996 * Index of each alternate coordinate represention in the
997 * array: alts[col][0] for the primary, alts[col][1] for
998 * ’A’, to alts[col][26] for ’Z’, where col is the
999 * 1-relative column number, and col == 0 is used for
1000 * unattached image headers. Set to -1 if not present.
1001 *
1002 * alts[col][27] counts the number of coordinate
1003 * representations of the chosen type for each column.
1004 *
1005 * For example, if there was no ’P’ represention for
1006 * column 13 then
1007 *
1008 = alts[13][’P’-’A’+1] == -1;
1009 *
1010 * Otherwise, the address of its wcsprm struct would be
1011 *
1012 = wcs + alts[13][’P’-’A’+1];
1013 *
1014 * Function return value:
1015 * int Status return value:
1016 * 0: Success.
1017 * 1: Null wcsprm pointer passed.
1018 *
1019 *
1020 * wcsvfree() - Free the array of wcsprm structs
1021 * ---
1022 * wcsvfree() frees the memory allocated by wcspih() or wcsbth() for the array
1023 * of wcsprm structs, first invoking wcsfree() on each of the array members.
1024 *
1025 * Given and returned:
1026 * nwcs int* Number of coordinate representations found; set to 0
1027 * on return.
1028 *
1029 * wcs struct wcsprm**
1030 * Pointer to the array of wcsprm structs; set to 0x0 on
1031 * return.
1032 *
1033 * Function return value:
1034 * int Status return value:
1035 * 0: Success.
1036 * 1: Null wcsprm pointer passed.
1037 *
1038 *
1039 * wcshdo() - Write out a wcsprm struct as a FITS header
1040 * ---
1041 * wcshdo() translates a wcsprm struct into a FITS header. If the colnum
1042 * member of the struct is non-zero then a binary table image array header will
1043 * be produced. Otherwise, if the colax[] member of the struct is set non-zero
1044 * then a pixel list header will be produced. Otherwise, a primary image or
1045 * image extension header will be produced.
1046 *
1047 * If the struct was originally constructed from a header, e.g. by wcspih(),
1048 * the output header will almost certainly differ in a number of respects:
1049 *
1050 * - The output header only contains WCS-related keywords. In particular, it
1051 * does not contain syntactically-required keywords such as SIMPLE, NAXIS,
1052 * BITPIX, or END.
1053 *
1054 * - Elements of the PCi_ja matrix will be written if and only if they differ
1055 * from the unit matrix. Thus, if the matrix is unity then no elements
1056 * will be written.
1057 *
1058 * - The redundant keywords MJDREF, JDREF, JDREFI, JDREFF, all of which
1059 * duplicate MJDREFI + MJDREFF, are never written. OBSGEO-[LBH] are not
1060 * written if OBSGEO-[XYZ] are defined.
1061 *
1062 * - Deprecated (e.g. CROTAn, RESTFREQ, VELREF, RADECSYS, EPOCH, VSOURCEa) or
1063 * non-standard usage will be translated to standard (this is partially
1064 * dependent on whether wcsfix() was applied).
1065 *
1066 * - Additional keywords such as WCSAXESa, CUNITia, LONPOLEa and LATPOLEa may
1067 * appear.
1068 *
1069 * - Quantities will be converted to the units used internally, basically SI
1070 * with the addition of degrees.
1071 *
1072 * - Floating-point quantities may be given to a different decimal precision.
1073 *
1074 * - The original keycomments will be lost, although wcshdo() tries hard to
1075 * write meaningful comments.

Generated by Doxygen

19.30 wcshdr.h 379

1076 *
1077 * - Keyword order will almost certainly be changed.
1078 *
1079 * Keywords can be translated between the image array, binary table, and pixel
1080 * lists forms by manipulating the colnum or colax[] members of the wcsprm
1081 * struct.
1082 *
1083 * Given:
1084 * ctrl int Vector of flag bits that controls the degree of
1085 * permissiveness in departing from the published WCS
1086 * standard, and also controls the formatting of
1087 * floating-point keyvalues. Set it to zero to get the
1088 * default behaviour.
1089 *
1090 * Flag bits for the degree of permissiveness:
1091 * WCSHDO_none: Recognize only FITS keywords defined by
1092 * the published WCS standard.
1093 * WCSHDO_all: Admit all recognized informal extensions
1094 * of the WCS standard.
1095 * Fine-grained control of the degree of permissiveness
1096 * is also possible as explained in the notes below.
1097 *
1098 * As for controlling floating-point formatting, by
1099 * default wcshdo() uses "%20.12G" for non-parameterized
1100 * keywords such as LONPOLEa, and attempts to make the
1101 * header more human-readable by using the same "%f"
1102 * format for all values of each of the following
1103 * parameterized keywords: CRPIXja, PCi_ja, and CDELTia
1104 * (n.b. excluding CRVALia). Each has the same field
1105 * width and precision so that the decimal points line
1106 * up. The precision, allowing for up to 15 significant
1107 * digits, is chosen so that there are no excess trailing
1108 * zeroes. A similar formatting scheme applies by
1109 * default for distortion function parameters.
1110 *
1111 * However, where the values of, for example, CDELTia
1112 * differ by many orders of magnitude, the default
1113 * formatting scheme may cause unacceptable loss of
1114 * precision for the lower-valued keyvalues. Thus the
1115 * default behaviour may be overridden:
1116 * WCSHDO_P12: Use "%20.12G" format for all floating-
1117 * point keyvalues (12 significant digits).
1118 * WCSHDO_P13: Use "%21.13G" format for all floating-
1119 * point keyvalues (13 significant digits).
1120 * WCSHDO_P14: Use "%22.14G" format for all floating-
1121 * point keyvalues (14 significant digits).
1122 * WCSHDO_P15: Use "%23.15G" format for all floating-
1123 * point keyvalues (15 significant digits).
1124 * WCSHDO_P16: Use "%24.16G" format for all floating-
1125 * point keyvalues (16 significant digits).
1126 * WCSHDO_P17: Use "%25.17G" format for all floating-
1127 * point keyvalues (17 significant digits).
1128 * If more than one of the above flags are set, the
1129 * highest number of significant digits prevails. In
1130 * addition, there is an anciliary flag:
1131 * WCSHDO_EFMT: Use "%E" format instead of the default
1132 * "%G" format above.
1133 * Note that excess trailing zeroes are stripped off the
1134 * fractional part with "%G" (which never occurs with
1135 * "%E"). Note also that the higher-precision options
1136 * eat into the keycomment area. In this regard,
1137 * WCSHDO_P14 causes minimal disruption with "%G" format,
1138 * while WCSHDO_P13 is appropriate with "%E".
1139 *
1140 * Given and returned:
1141 * wcs struct wcsprm*
1142 * Pointer to a wcsprm struct containing coordinate
1143 * transformation parameters. Will be initialized if
1144 * necessary.
1145 *
1146 * Returned:
1147 * nkeyrec int* Number of FITS header keyrecords returned in the
1148 * "header" array.
1149 *
1150 * header char** Pointer to an array of char holding the header.
1151 * Storage for the array is allocated by wcshdo() in
1152 * blocks of 2880 bytes (32 x 80-character keyrecords)
1153 * and must be freed by the user to avoid memory leaks.
1154 * See wcsdealloc().
1155 *
1156 * Each keyrecord is 80 characters long and is *NOT*
1157 * null-terminated, so the first keyrecord starts at
1158 * (*header)[0], the second at (*header)[80], etc.
1159 *
1160 * Function return value:
1161 * int Status return value (associated with wcs_errmsg[]):
1162 * 0: Success.

Generated by Doxygen

380

1163 * 1: Null wcsprm pointer passed.
1164 * 2: Memory allocation failed.
1165 * 3: Linear transformation matrix is singular.
1166 * 4: Inconsistent or unrecognized coordinate axis
1167 * types.
1168 * 5: Invalid parameter value.
1169 * 6: Invalid coordinate transformation parameters.
1170 * 7: Ill-conditioned coordinate transformation
1171 * parameters.
1172 *
1173 * For returns > 1, a detailed error message is set in
1174 * wcsprm::err if enabled, see wcserr_enable().
1175 *
1176 * Notes:
1177 * 1: wcshdo() interprets the "relax" argument as a vector of flag bits to
1178 * provide fine-grained control over what non-standard WCS keywords to
1179 * write. The flag bits are subject to change in future and should be set
1180 * by using the preprocessor macros (see below) for the purpose.
1181 *
1182 * - WCSHDO_none: Don’t use any extensions.
1183 *
1184 * - WCSHDO_all: Write all recognized extensions, equivalent to setting
1185 * each flag bit.
1186 *
1187 * - WCSHDO_safe: Write all extensions that are considered to be safe and
1188 * recommended.
1189 *
1190 * - WCSHDO_DOBSn: Write DOBSn, the column-specific analogue of DATE-OBS
1191 * for use in binary tables and pixel lists. WCS Paper III
1192 * introduced DATE-AVG and DAVGn but by an oversight DOBSn (the
1193 * obvious analogy) was never formally defined by the standard.
1194 * The alternative to using DOBSn is to write DATE-OBS which
1195 * applies to the whole table. This usage is considered to be
1196 * safe and is recommended.
1197 *
1198 * - WCSHDO_TPCn_ka: WCS Paper I defined
1199 *
1200 * - TPn_ka and TCn_ka for pixel lists
1201 *
1202 * but WCS Paper II uses TPCn_ka in one example and subsequently
1203 * the errata for the WCS papers legitimized the use of
1204 *
1205 * - TPCn_ka and TCDn_ka for pixel lists
1206 *
1207 * provided that the keyword does not exceed eight characters.
1208 * This usage is considered to be safe and is recommended because
1209 * of the non-mnemonic terseness of the shorter forms.
1210 *
1211 * - WCSHDO_PVn_ma: WCS Paper I defined
1212 *
1213 * - iVn_ma and iSn_ma for bintables and
1214 * - TVn_ma and TSn_ma for pixel lists
1215 *
1216 * but WCS Paper II uses iPVn_ma and TPVn_ma in the examples and
1217 * subsequently the errata for the WCS papers legitimized the use
1218 * of
1219 *
1220 * - iPVn_ma and iPSn_ma for bintables and
1221 * - TPVn_ma and TPSn_ma for pixel lists
1222 *
1223 * provided that the keyword does not exceed eight characters.
1224 * This usage is considered to be safe and is recommended because
1225 * of the non-mnemonic terseness of the shorter forms.
1226 *
1227 * - WCSHDO_CRPXna: For historical reasons WCS Paper I defined
1228 *
1229 * - jCRPXn, iCDLTn, iCUNIn, iCTYPn, and iCRVLn for bintables and
1230 * - TCRPXn, TCDLTn, TCUNIn, TCTYPn, and TCRVLn for pixel lists
1231 *
1232 * for use without an alternate version specifier. However,
1233 * because of the eight-character keyword constraint, in order to
1234 * accommodate column numbers greater than 99 WCS Paper I also
1235 * defined
1236 *
1237 * - jCRPna, iCDEna, iCUNna, iCTYna and iCRVna for bintables and
1238 * - TCRPna, TCDEna, TCUNna, TCTYna and TCRVna for pixel lists
1239 *
1240 * for use with an alternate version specifier (the "a"). Like
1241 * the PC, CD, PV, and PS keywords there is an obvious tendency to
1242 * confuse these two forms for column numbers up to 99. It is
1243 * very unlikely that any parser would reject keywords in the
1244 * first set with a non-blank alternate version specifier so this
1245 * usage is considered to be safe and is recommended.
1246 *
1247 * - WCSHDO_CNAMna: WCS Papers I and III defined
1248 *
1249 * - iCNAna, iCRDna, and iCSYna for bintables and

Generated by Doxygen

19.30 wcshdr.h 381

1250 * - TCNAna, TCRDna, and TCSYna for pixel lists
1251 *
1252 * By analogy with the above, the long forms would be
1253 *
1254 * - iCNAMna, iCRDEna, and iCSYEna for bintables and
1255 * - TCNAMna, TCRDEna, and TCSYEna for pixel lists
1256 *
1257 * Note that these keywords provide auxiliary information only,
1258 * none of them are needed to compute world coordinates. This
1259 * usage is potentially unsafe and is not recommended at this
1260 * time.
1261 *
1262 * - WCSHDO_WCSNna: In light of wcsbth() note 4, write WCSNna instead of
1263 * TWCSna for pixel lists. While wcsbth() treats WCSNna and
1264 * TWCSna as equivalent, other parsers may not. Consequently,
1265 * this usage is potentially unsafe and is not recommended at this
1266 * time.
1267 *
1268 *
1269 * Global variable: const char *wcshdr_errmsg[] - Status return messages
1270 * ---
1271 * Error messages to match the status value returned from each function.
1272 * Use wcs_errmsg[] for status returns from wcshdo().
1273 *
1274 *===*/
1275
1276 #ifndef WCSLIB_WCSHDR
1277 #define WCSLIB_WCSHDR
1278
1279 #include "wcs.h"
1280
1281 #ifdef __cplusplus
1282 extern "C" {
1283 #endif
1284
1285 #define WCSHDR_none 0x00000000
1286 #define WCSHDR_all 0x000FFFFF
1287 #define WCSHDR_reject 0x10000000
1288 #define WCSHDR_strict 0x20000000
1289
1290 #define WCSHDR_CROTAia 0x00000001
1291 #define WCSHDR_VELREFa 0x00000002
1292 #define WCSHDR_CD00i00j 0x00000004
1293 #define WCSHDR_PC00i00j 0x00000008
1294 #define WCSHDR_PROJPn 0x00000010
1295 #define WCSHDR_CD0i_0ja 0x00000020
1296 #define WCSHDR_PC0i_0ja 0x00000040
1297 #define WCSHDR_PV0i_0ma 0x00000080
1298 #define WCSHDR_PS0i_0ma 0x00000100
1299 #define WCSHDR_DOBSn 0x00000200
1300 #define WCSHDR_OBSGLBHn 0x00000400
1301 #define WCSHDR_RADECSYS 0x00000800
1302 #define WCSHDR_EPOCHa 0x00001000
1303 #define WCSHDR_VSOURCE 0x00002000
1304 #define WCSHDR_DATEREF 0x00004000
1305 #define WCSHDR_LONGKEY 0x00008000
1306 #define WCSHDR_CNAMn 0x00010000
1307 #define WCSHDR_AUXIMG 0x00020000
1308 #define WCSHDR_ALLIMG 0x00040000
1309
1310 #define WCSHDR_IMGHEAD 0x00100000
1311 #define WCSHDR_BIMGARR 0x00200000
1312 #define WCSHDR_PIXLIST 0x00400000
1313
1314 #define WCSHDO_none 0x00000
1315 #define WCSHDO_all 0x000FF
1316 #define WCSHDO_safe 0x0000F
1317 #define WCSHDO_DOBSn 0x00001
1318 #define WCSHDO_TPCn_ka 0x00002
1319 #define WCSHDO_PVn_ma 0x00004
1320 #define WCSHDO_CRPXna 0x00008
1321 #define WCSHDO_CNAMna 0x00010
1322 #define WCSHDO_WCSNna 0x00020
1323 #define WCSHDO_P12 0x01000
1324 #define WCSHDO_P13 0x02000
1325 #define WCSHDO_P14 0x04000
1326 #define WCSHDO_P15 0x08000
1327 #define WCSHDO_P16 0x10000
1328 #define WCSHDO_P17 0x20000
1329 #define WCSHDO_EFMT 0x40000
1330
1331
1332 extern const char *wcshdr_errmsg[];
1333
1334 enum wcshdr_errmsg_enum {
1335 WCSHDRERR_SUCCESS = 0, // Success.
1336 WCSHDRERR_NULL_POINTER = 1, // Null wcsprm pointer passed.

Generated by Doxygen

382

1337 WCSHDRERR_MEMORY = 2, // Memory allocation failed.
1338 WCSHDRERR_BAD_COLUMN = 3, // Invalid column selection.
1339 WCSHDRERR_PARSER = 4, // Fatal error returned by Flex
1340 // parser.
1341 WCSHDRERR_BAD_TABULAR_PARAMS = 5 // Invalid tabular parameters.
1342 };
1343
1344 int wcspih(char *header, int nkeyrec, int relax, int ctrl, int *nreject,
1345 int *nwcs, struct wcsprm **wcs);
1346
1347 int wcsbth(char *header, int nkeyrec, int relax, int ctrl, int keysel,
1348 int *colsel, int *nreject, int *nwcs, struct wcsprm **wcs);
1349
1350 int wcstab(struct wcsprm *wcs);
1351
1352 int wcsidx(int nwcs, struct wcsprm **wcs, int alts[27]);
1353
1354 int wcsbdx(int nwcs, struct wcsprm **wcs, int type, short alts[1000][28]);
1355
1356 int wcsvfree(int *nwcs, struct wcsprm **wcs);
1357
1358 int wcshdo(int ctrl, struct wcsprm *wcs, int *nkeyrec, char **header);
1359
1360
1361 #ifdef __cplusplus
1362 }
1363 #endif
1364
1365 #endif // WCSLIB_WCSHDR

19.31 wcsmath.h File Reference

Macros

• #define PI 3.141592653589793238462643
• #define D2R PI/180.0

Degrees to radians conversion factor.

• #define R2D 180.0/PI

Radians to degrees conversion factor.

• #define SQRT2 1.4142135623730950488
• #define SQRT2INV 1.0/SQRT2
• #define UNDEFINED 987654321.0e99

Value used to indicate an undefined quantity.

• #define undefined(value) (value == UNDEFINED)

Macro used to test for an undefined quantity.

19.31.1 Detailed Description

Definition of mathematical constants used by WCSLIB.

19.31.2 Macro Definition Documentation

19.31.2.1 PI #define PI 3.141592653589793238462643

Generated by Doxygen

19.32 wcsmath.h 383

19.31.2.2 D2R #define D2R PI/180.0

Factor π/180◦ to convert from degrees to radians.

19.31.2.3 R2D #define R2D 180.0/PI

Factor 180◦/π to convert from radians to degrees.

19.31.2.4 SQRT2 #define SQRT2 1.4142135623730950488

√
2, used only by molset() (MOL projection).

19.31.2.5 SQRT2INV #define SQRT2INV 1.0/SQRT2

1/
√

2, used only by qscx2s() (QSC projection).

19.31.2.6 UNDEFINED #define UNDEFINED 987654321.0e99

Value used to indicate an undefined quantity (noting that NaNs cannot be used portably).

19.31.2.7 undefined #define undefined(

value) (value == UNDEFINED)

Macro used to test for an undefined value.

19.32 wcsmath.h

Go to the documentation of this file.
1 /*==
2 WCSLIB 7.11 - an implementation of the FITS WCS standard.
3 Copyright (C) 1995-2022, Mark Calabretta
4
5 This file is part of WCSLIB.
6
7 WCSLIB is free software: you can redistribute it and/or modify it under the
8 terms of the GNU Lesser General Public License as published by the Free
9 Software Foundation, either version 3 of the License, or (at your option)
10 any later version.
11
12 WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
15 more details.
16
17 You should have received a copy of the GNU Lesser General Public License
18 along with WCSLIB. If not, see http://www.gnu.org/licenses.
19
20 Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
21 http://www.atnf.csiro.au/people/Mark.Calabretta
22 $Id: wcsmath.h,v 7.11 2022/04/26 06:13:52 mcalabre Exp $
23 *===
24 *
25 * WCSLIB 7.11 - C routines that implement the FITS World Coordinate System
26 * (WCS) standard. Refer to the README file provided with WCSLIB for an
27 * overview of the library.
28 *
29 *
30 * Summary of wcsmath.h
31 * --------------------
32 * Definition of mathematical constants used by WCSLIB.
33 *
34 *===*/

Generated by Doxygen

384

35
36 #ifndef WCSLIB_WCSMATH
37 #define WCSLIB_WCSMATH
38
39 #ifdef PI
40 #undef PI
41 #endif
42
43 #ifdef D2R
44 #undef D2R
45 #endif
46
47 #ifdef R2D
48 #undef R2D
49 #endif
50
51 #ifdef SQRT2
52 #undef SQRT2
53 #endif
54
55 #ifdef SQRT2INV
56 #undef SQRT2INV
57 #endif
58
59 #define PI 3.141592653589793238462643
60 #define D2R PI/180.0
61 #define R2D 180.0/PI
62 #define SQRT2 1.4142135623730950488
63 #define SQRT2INV 1.0/SQRT2
64
65 #ifdef UNDEFINED
66 #undef UNDEFINED
67 #endif
68
69 #define UNDEFINED 987654321.0e99
70 #define undefined(value) (value == UNDEFINED)
71
72 #endif // WCSLIB_WCSMATH

19.33 wcsprintf.h File Reference

#include <inttypes.h>
#include <stdio.h>

Macros

• #define WCSPRINTF_PTR(str1, ptr, str2)

Print addresses in a consistent way.

Functions

• int wcsprintf_set (FILE ∗wcsout)

Set output disposition for wcsprintf() and wcsfprintf().

• int wcsprintf (const char ∗format,...)

Print function used by WCSLIB diagnostic routines.

• int wcsfprintf (FILE ∗stream, const char ∗format,...)

Print function used by WCSLIB diagnostic routines.

• const char ∗ wcsprintf_buf (void)

Get the address of the internal string buffer.

Generated by Doxygen

19.33 wcsprintf.h File Reference 385

19.33.1 Detailed Description

Routines in this suite allow diagnostic output from celprt(), linprt(), prjprt(), spcprt(), tabprt(), wcsprt(), and
wcserr_prt() to be redirected to a file or captured in a string buffer. Those routines all use wcsprintf() for output.
Likewise wcsfprintf() is used by wcsbth() and wcspih(). Both functions may be used by application programmers to
have other output go to the same place.

19.33.2 Macro Definition Documentation

19.33.2.1 WCSPRINTF_PTR #define WCSPRINTF_PTR(

str1,

ptr,

str2)

Value:
if (ptr) { \
wcsprintf("%s%#" PRIxPTR "%s", (str1), (uintptr_t)(ptr), (str2)); \

} else { \
wcsprintf("%s0x0%s", (str1), (str2)); \

}

WCSPRINTF_PTR() is a preprocessor macro used to print addresses in a consistent way.

On some systems the "p" format descriptor renders a NULL pointer as the string "0x0". On others, however, it
produces "0" or even "(nil)". On some systems a non-zero address is prefixed with "0x", on others, not.

The WCSPRINTF_PTR() macro ensures that a NULL pointer is always rendered as "0x0" and that non-zero ad-
dresses are prefixed with "0x" thus providing consistency, for example, for comparing the output of test programs.

19.33.3 Function Documentation

19.33.3.1 wcsprintf_set() int wcsprintf_set (

FILE ∗ wcsout)

wcsprintf_set() sets the output disposition for wcsprintf() which is used by the celprt(), linprt(), prjprt(), spcprt(),
tabprt(), wcsprt(), and wcserr_prt() routines, and for wcsfprintf() which is used by wcsbth() and wcspih().

Parameters

in wcsout Pointer to an output stream that has been opened for writing, e.g. by the fopen() stdio library
function, or one of the predefined stdio output streams - stdout and stderr. If zero (NULL),
output is written to an internally-allocated string buffer, the address of which may be obtained
by wcsprintf_buf().

Returns

Status return value:

Generated by Doxygen

386

• 0: Success.

19.33.3.2 wcsprintf() int wcsprintf (

const char ∗ format,

...)

wcsprintf() is used by celprt(), linprt(), prjprt(), spcprt(), tabprt(), wcsprt(), and wcserr_prt() for diagnostic output
which by default goes to stdout. However, it may be redirected to a file or string buffer via wcsprintf_set().

Parameters

in format Format string, passed to one of the printf(3) family of stdio library functions.

in ... Argument list matching format, as per printf(3).

Returns

Number of bytes written.

19.33.3.3 wcsfprintf() int wcsfprintf (

FILE ∗ stream,

const char ∗ format,

...)

wcsfprintf() is used by wcsbth(), and wcspih() for diagnostic output which they send to stderr. However, it may be
redirected to a file or string buffer via wcsprintf_set().

Parameters

in stream The output stream if not overridden by a call to wcsprintf_set().

in format Format string, passed to one of the printf(3) family of stdio library functions.

in ... Argument list matching format, as per printf(3).

Returns

Number of bytes written.

19.33.3.4 wcsprintf_buf() wcsprintf_buf (

void)

wcsprintf_buf() returns the address of the internal string buffer created when wcsprintf_set() is invoked with its
FILE∗ argument set to zero.

Returns

Address of the internal string buffer. The user may free this buffer by calling wcsprintf_set() with a valid FILE∗,
e.g. stdout. The free() stdlib library function must NOT be invoked on this const pointer.

Generated by Doxygen

19.34 wcsprintf.h 387

19.34 wcsprintf.h

Go to the documentation of this file.
1 /*==
2 WCSLIB 7.11 - an implementation of the FITS WCS standard.
3 Copyright (C) 1995-2022, Mark Calabretta
4
5 This file is part of WCSLIB.
6
7 WCSLIB is free software: you can redistribute it and/or modify it under the
8 terms of the GNU Lesser General Public License as published by the Free
9 Software Foundation, either version 3 of the License, or (at your option)
10 any later version.
11
12 WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
15 more details.
16
17 You should have received a copy of the GNU Lesser General Public License
18 along with WCSLIB. If not, see http://www.gnu.org/licenses.
19
20 Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
21 http://www.atnf.csiro.au/people/Mark.Calabretta
22 $Id: wcsprintf.h,v 7.11 2022/04/26 06:13:52 mcalabre Exp $
23 *===
24 *
25 * WCSLIB 7.11 - C routines that implement the FITS World Coordinate System
26 * (WCS) standard. Refer to the README file provided with WCSLIB for an
27 * overview of the library.
28 *
29 *
30 * Summary of the wcsprintf routines
31 * ---------------------------------
32 * Routines in this suite allow diagnostic output from celprt(), linprt(),
33 * prjprt(), spcprt(), tabprt(), wcsprt(), and wcserr_prt() to be redirected to
34 * a file or captured in a string buffer. Those routines all use wcsprintf()
35 * for output. Likewise wcsfprintf() is used by wcsbth() and wcspih(). Both
36 * functions may be used by application programmers to have other output go to
37 * the same place.
38 *
39 *
40 * wcsprintf() - Print function used by WCSLIB diagnostic routines
41 * ---
42 * wcsprintf() is used by celprt(), linprt(), prjprt(), spcprt(), tabprt(),
43 * wcsprt(), and wcserr_prt() for diagnostic output which by default goes to
44 * stdout. However, it may be redirected to a file or string buffer via
45 * wcsprintf_set().
46 *
47 * Given:
48 * format char* Format string, passed to one of the printf(3) family
49 * of stdio library functions.
50 *
51 * ... mixed Argument list matching format, as per printf(3).
52 *
53 * Function return value:
54 * int Number of bytes written.
55 *
56 *
57 * wcsfprintf() - Print function used by WCSLIB diagnostic routines
58 * --
59 * wcsfprintf() is used by wcsbth(), and wcspih() for diagnostic output which
60 * they send to stderr. However, it may be redirected to a file or string
61 * buffer via wcsprintf_set().
62 *
63 * Given:
64 * stream FILE* The output stream if not overridden by a call to
65 * wcsprintf_set().
66 *
67 * format char* Format string, passed to one of the printf(3) family
68 * of stdio library functions.
69 *
70 * ... mixed Argument list matching format, as per printf(3).
71 *
72 * Function return value:
73 * int Number of bytes written.
74 *
75 *
76 * wcsprintf_set() - Set output disposition for wcsprintf() and wcsfprintf()
77 * ---
78 * wcsprintf_set() sets the output disposition for wcsprintf() which is used by
79 * the celprt(), linprt(), prjprt(), spcprt(), tabprt(), wcsprt(), and
80 * wcserr_prt() routines, and for wcsfprintf() which is used by wcsbth() and
81 * wcspih().
82 *
83 * Given:

Generated by Doxygen

388

84 * wcsout FILE* Pointer to an output stream that has been opened for
85 * writing, e.g. by the fopen() stdio library function,
86 * or one of the predefined stdio output streams - stdout
87 * and stderr. If zero (NULL), output is written to an
88 * internally-allocated string buffer, the address of
89 * which may be obtained by wcsprintf_buf().
90 *
91 * Function return value:
92 * int Status return value:
93 * 0: Success.
94 *
95 *
96 * wcsprintf_buf() - Get the address of the internal string buffer
97 * ---
98 * wcsprintf_buf() returns the address of the internal string buffer created
99 * when wcsprintf_set() is invoked with its FILE* argument set to zero.
100 *
101 * Function return value:
102 * const char *
103 * Address of the internal string buffer. The user may
104 * free this buffer by calling wcsprintf_set() with a
105 * valid FILE*, e.g. stdout. The free() stdlib library
106 * function must NOT be invoked on this const pointer.
107 *
108 *
109 * WCSPRINTF_PTR() macro - Print addresses in a consistent way
110 * ---
111 * WCSPRINTF_PTR() is a preprocessor macro used to print addresses in a
112 * consistent way.
113 *
114 * On some systems the "%p" format descriptor renders a NULL pointer as the
115 * string "0x0". On others, however, it produces "0" or even "(nil)". On
116 * some systems a non-zero address is prefixed with "0x", on others, not.
117 *
118 * The WCSPRINTF_PTR() macro ensures that a NULL pointer is always rendered as
119 * "0x0" and that non-zero addresses are prefixed with "0x" thus providing
120 * consistency, for example, for comparing the output of test programs.
121 *
122 *===*/
123
124 #ifndef WCSLIB_WCSPRINTF
125 #define WCSLIB_WCSPRINTF
126
127 #include <inttypes.h>
128 #include <stdio.h>
129
130 #ifdef __cplusplus
131 extern "C" {
132 #endif
133
134 #define WCSPRINTF_PTR(str1, ptr, str2) \
135 if (ptr) { \
136 wcsprintf("%s%#" PRIxPTR "%s", (str1), (uintptr_t)(ptr), (str2)); \
137 } else { \
138 wcsprintf("%s0x0%s", (str1), (str2)); \
139 }
140
141 int wcsprintf_set(FILE *wcsout);
142 int wcsprintf(const char *format, ...);
143 int wcsfprintf(FILE *stream, const char *format, ...);
144 const char *wcsprintf_buf(void);
145
146 #ifdef __cplusplus
147 }
148 #endif
149
150 #endif // WCSLIB_WCSPRINTF

19.35 wcstrig.h File Reference

#include <math.h>
#include "wcsconfig.h"

Macros

• #define WCSTRIG_TOL 1e-10

Domain tolerance for asin() and acos() functions.

Generated by Doxygen

19.35 wcstrig.h File Reference 389

Functions

• double cosd (double angle)

Cosine of an angle in degrees.

• double sind (double angle)

Sine of an angle in degrees.

• void sincosd (double angle, double ∗sin, double ∗cos)

Sine and cosine of an angle in degrees.

• double tand (double angle)

Tangent of an angle in degrees.

• double acosd (double x)

Inverse cosine, returning angle in degrees.

• double asind (double y)

Inverse sine, returning angle in degrees.

• double atand (double s)

Inverse tangent, returning angle in degrees.

• double atan2d (double y, double x)

Polar angle of (x, y), in degrees.

19.35.1 Detailed Description

When dealing with celestial coordinate systems and spherical projections (some moreso than others) it is often
desirable to use an angular measure that provides an exact representation of the latitude of the north or south pole.
The WCSLIB routines use the following trigonometric functions that take or return angles in degrees:

• cosd()

• sind()

• tand()

• acosd()

• asind()

• atand()

• atan2d()

• sincosd()

These "trigd" routines are expected to handle angles that are a multiple of 90◦ returning an exact result. Some C
implementations provide these as part of a system library and in such cases it may (or may not!) be preferable to
use them. WCSLIB provides wrappers on the standard trig functions based on radian measure, adding tests for
multiples of 90◦.

However, wcstrig.h also provides the choice of using preprocessor macro implementations of the trigd functions that
don't test for multiples of 90◦ (compile with -DWCSTRIG_MACRO). These are typically 20% faster but may lead to
problems near the poles.

19.35.2 Macro Definition Documentation

Generated by Doxygen

390

19.35.2.1 WCSTRIG_TOL #define WCSTRIG_TOL 1e-10

Domain tolerance for the asin() and acos() functions to allow for floating point rounding errors.

If v lies in the range 1 < |v| < 1 +WCSTRIG_TOL then it will be treated as |v| == 1.

19.35.3 Function Documentation

19.35.3.1 cosd() double cosd (

double angle)

cosd() returns the cosine of an angle given in degrees.

Parameters

in angle [deg].

Returns

Cosine of the angle.

19.35.3.2 sind() double sind (

double angle)

sind() returns the sine of an angle given in degrees.

Parameters

in angle [deg].

Returns

Sine of the angle.

19.35.3.3 sincosd() void sincosd (

double angle,

double ∗ sin,

double ∗ cos)

sincosd() returns the sine and cosine of an angle given in degrees.

Generated by Doxygen

19.35 wcstrig.h File Reference 391

Parameters

in angle [deg].

out sin Sine of the angle.

out cos Cosine of the angle.

Returns

19.35.3.4 tand() double tand (

double angle)

tand() returns the tangent of an angle given in degrees.

Parameters

in angle [deg].

Returns

Tangent of the angle.

19.35.3.5 acosd() double acosd (

double x)

acosd() returns the inverse cosine in degrees.

Parameters

in x in the range [-1,1].

Returns

Inverse cosine of x [deg].

19.35.3.6 asind() double asind (

double y)

asind() returns the inverse sine in degrees.

Generated by Doxygen

392

Parameters

in y in the range [-1,1].

Returns

Inverse sine of y [deg].

19.35.3.7 atand() double atand (

double s)

atand() returns the inverse tangent in degrees.

Parameters

in s

Returns

Inverse tangent of s [deg].

19.35.3.8 atan2d() double atan2d (

double y,

double x)

atan2d() returns the polar angle, β, in degrees, of polar coordinates (ρ, β) corresponding to Cartesian coordinates
(x, y). It is equivalent to the arg(x, y) function of WCS Paper II, though with transposed arguments.

Parameters

in y Cartesian y-coordinate.

in x Cartesian x-coordinate.

Returns

Polar angle of (x, y) [deg].

19.36 wcstrig.h

Go to the documentation of this file.
1 /*==
2 WCSLIB 7.11 - an implementation of the FITS WCS standard.
3 Copyright (C) 1995-2022, Mark Calabretta
4
5 This file is part of WCSLIB.
6

Generated by Doxygen

19.36 wcstrig.h 393

7 WCSLIB is free software: you can redistribute it and/or modify it under the
8 terms of the GNU Lesser General Public License as published by the Free
9 Software Foundation, either version 3 of the License, or (at your option)
10 any later version.
11
12 WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
15 more details.
16
17 You should have received a copy of the GNU Lesser General Public License
18 along with WCSLIB. If not, see http://www.gnu.org/licenses.
19
20 Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
21 http://www.atnf.csiro.au/people/Mark.Calabretta
22 $Id: wcstrig.h,v 7.11 2022/04/26 06:13:52 mcalabre Exp $
23 *===
24 *
25 * WCSLIB 7.11 - C routines that implement the FITS World Coordinate System
26 * (WCS) standard. Refer to the README file provided with WCSLIB for an
27 * overview of the library.
28 *
29 *
30 * Summary of the wcstrig routines
31 * -------------------------------
32 * When dealing with celestial coordinate systems and spherical projections
33 * (some moreso than others) it is often desirable to use an angular measure
34 * that provides an exact representation of the latitude of the north or south
35 * pole. The WCSLIB routines use the following trigonometric functions that
36 * take or return angles in degrees:
37 *
38 * - cosd()
39 * - sind()
40 * - tand()
41 * - acosd()
42 * - asind()
43 * - atand()
44 * - atan2d()
45 * - sincosd()
46 *
47 * These "trigd" routines are expected to handle angles that are a multiple of
48 * 90 degrees returning an exact result. Some C implementations provide these
49 * as part of a system library and in such cases it may (or may not!) be
50 * preferable to use them. WCSLIB provides wrappers on the standard trig
51 * functions based on radian measure, adding tests for multiples of 90 degrees.
52 *
53 * However, wcstrig.h also provides the choice of using preprocessor macro
54 * implementations of the trigd functions that don’t test for multiples of
55 * 90 degrees (compile with -DWCSTRIG_MACRO). These are typically 20% faster
56 * but may lead to problems near the poles.
57 *
58 *
59 * cosd() - Cosine of an angle in degrees
60 * --------------------------------------
61 * cosd() returns the cosine of an angle given in degrees.
62 *
63 * Given:
64 * angle double [deg].
65 *
66 * Function return value:
67 * double Cosine of the angle.
68 *
69 *
70 * sind() - Sine of an angle in degrees
71 * ------------------------------------
72 * sind() returns the sine of an angle given in degrees.
73 *
74 * Given:
75 * angle double [deg].
76 *
77 * Function return value:
78 * double Sine of the angle.
79 *
80 *
81 * sincosd() - Sine and cosine of an angle in degrees
82 * --
83 * sincosd() returns the sine and cosine of an angle given in degrees.
84 *
85 * Given:
86 * angle double [deg].
87 *
88 * Returned:
89 * sin *double Sine of the angle.
90 *
91 * cos *double Cosine of the angle.
92 *
93 * Function return value:

Generated by Doxygen

394

94 * void
95 *
96 *
97 * tand() - Tangent of an angle in degrees
98 * ---------------------------------------
99 * tand() returns the tangent of an angle given in degrees.
100 *
101 * Given:
102 * angle double [deg].
103 *
104 * Function return value:
105 * double Tangent of the angle.
106 *
107 *
108 * acosd() - Inverse cosine, returning angle in degrees
109 * --
110 * acosd() returns the inverse cosine in degrees.
111 *
112 * Given:
113 * x double in the range [-1,1].
114 *
115 * Function return value:
116 * double Inverse cosine of x [deg].
117 *
118 *
119 * asind() - Inverse sine, returning angle in degrees
120 * --
121 * asind() returns the inverse sine in degrees.
122 *
123 * Given:
124 * y double in the range [-1,1].
125 *
126 * Function return value:
127 * double Inverse sine of y [deg].
128 *
129 *
130 * atand() - Inverse tangent, returning angle in degrees
131 * ---
132 * atand() returns the inverse tangent in degrees.
133 *
134 * Given:
135 * s double
136 *
137 * Function return value:
138 * double Inverse tangent of s [deg].
139 *
140 *
141 * atan2d() - Polar angle of (x,y), in degrees
142 * ---
143 * atan2d() returns the polar angle, beta, in degrees, of polar coordinates
144 * (rho,beta) corresponding to Cartesian coordinates (x,y). It is equivalent
145 * to the arg(x,y) function of WCS Paper II, though with transposed arguments.
146 *
147 * Given:
148 * y double Cartesian y-coordinate.
149 *
150 * x double Cartesian x-coordinate.
151 *
152 * Function return value:
153 * double Polar angle of (x,y) [deg].
154 *
155 *===*/
156
157 #ifndef WCSLIB_WCSTRIG
158 #define WCSLIB_WCSTRIG
159
160 #include <math.h>
161
162 #include "wcsconfig.h"
163
164 #ifdef HAVE_SINCOS
165 void sincos(double angle, double *sin, double *cos);
166 #endif
167
168 #ifdef __cplusplus
169 extern "C" {
170 #endif
171
172
173 #ifdef WCSTRIG_MACRO
174
175 // Macro implementation of the trigd functions.
176 #include "wcsmath.h"
177
178 #define cosd(X) cos((X)*D2R)
179 #define sind(X) sin((X)*D2R)
180 #define tand(X) tan((X)*D2R)

Generated by Doxygen

19.37 wcsunits.h File Reference 395

181 #define acosd(X) acos(X)*R2D
182 #define asind(X) asin(X)*R2D
183 #define atand(X) atan(X)*R2D
184 #define atan2d(Y,X) atan2(Y,X)*R2D
185 #ifdef HAVE_SINCOS
186 #define sincosd(X,S,C) sincos((X)*D2R,(S),(C))
187 #else
188 #define sincosd(X,S,C) *(S) = sin((X)*D2R); *(C) = cos((X)*D2R);
189 #endif
190
191 #else
192
193 // Use WCSLIB wrappers or native trigd functions.
194
195 double cosd(double angle);
196 double sind(double angle);
197 void sincosd(double angle, double *sin, double *cos);
198 double tand(double angle);
199 double acosd(double x);
200 double asind(double y);
201 double atand(double s);
202 double atan2d(double y, double x);
203
204 // Domain tolerance for asin() and acos() functions.
205 #define WCSTRIG_TOL 1e-10
206
207 #endif // WCSTRIG_MACRO
208
209
210 #ifdef __cplusplus
211 }
212 #endif
213
214 #endif // WCSLIB_WCSTRIG

19.37 wcsunits.h File Reference

#include "wcserr.h"

Macros

• #define WCSUNITS_PLANE_ANGLE 0

Array index for plane angle units type.

• #define WCSUNITS_SOLID_ANGLE 1

Array index for solid angle units type.

• #define WCSUNITS_CHARGE 2

Array index for charge units type.

• #define WCSUNITS_MOLE 3

Array index for mole units type.

• #define WCSUNITS_TEMPERATURE 4

Array index for temperature units type.

• #define WCSUNITS_LUMINTEN 5

Array index for luminous intensity units type.

• #define WCSUNITS_MASS 6

Array index for mass units type.

• #define WCSUNITS_LENGTH 7

Array index for length units type.

• #define WCSUNITS_TIME 8

Array index for time units type.

• #define WCSUNITS_BEAM 9

Array index for beam units type.

• #define WCSUNITS_BIN 10

Generated by Doxygen

396

Array index for bin units type.

• #define WCSUNITS_BIT 11

Array index for bit units type.

• #define WCSUNITS_COUNT 12

Array index for count units type.

• #define WCSUNITS_MAGNITUDE 13

Array index for stellar magnitude units type.

• #define WCSUNITS_PIXEL 14

Array index for pixel units type.

• #define WCSUNITS_SOLRATIO 15

Array index for solar mass ratio units type.

• #define WCSUNITS_VOXEL 16

Array index for voxel units type.

• #define WCSUNITS_NTYPE 17

Number of entries in the units array.

Enumerations

• enum wcsunits_errmsg_enum {
UNITSERR_SUCCESS = 0 , UNITSERR_BAD_NUM_MULTIPLIER = 1 , UNITSERR_DANGLING_BINOP =
2 , UNITSERR_BAD_INITIAL_SYMBOL = 3 ,
UNITSERR_FUNCTION_CONTEXT = 4 , UNITSERR_BAD_EXPON_SYMBOL = 5 , UNITSERR_UNBAL_BRACKET
= 6 , UNITSERR_UNBAL_PAREN = 7 ,
UNITSERR_CONSEC_BINOPS = 8 , UNITSERR_PARSER_ERROR = 9 , UNITSERR_BAD_UNIT_SPEC =
10 , UNITSERR_BAD_FUNCS = 11 ,
UNITSERR_UNSAFE_TRANS = 12 }

Functions

• int wcsunitse (const char have[], const char want[], double ∗scale, double ∗offset, double ∗power, struct
wcserr ∗∗err)

FITS units specification conversion.

• int wcsutrne (int ctrl, char unitstr[], struct wcserr ∗∗err)

Translation of non-standard unit specifications.

• int wcsulexe (const char unitstr[], int ∗func, double ∗scale, double units[WCSUNITS_NTYPE], struct wcserr
∗∗err)

FITS units specification parser.

• int wcsunits (const char have[], const char want[], double ∗scale, double ∗offset, double ∗power)
• int wcsutrn (int ctrl, char unitstr[])
• int wcsulex (const char unitstr[], int ∗func, double ∗scale, double units[WCSUNITS_NTYPE])

Variables

• const char ∗ wcsunits_errmsg []

Status return messages.

• const char ∗ wcsunits_types []

Names of physical quantities.

• const char ∗ wcsunits_units []

Names of units.

Generated by Doxygen

19.37 wcsunits.h File Reference 397

19.37.1 Detailed Description

Routines in this suite deal with units specifications and conversions, as described in
"Representations of world coordinates in FITS",
Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)

The Flexible Image Transport System (FITS), a data format widely used in astronomy for data interchange and
archive, is described in
"Definition of the Flexible Image Transport System (FITS), version 3.0",
Pence, W.D., Chiappetti, L., Page, C.G., Shaw, R.A., & Stobie, E. 2010,
A&A, 524, A42 - http://dx.doi.org/10.1051/0004-6361/201015362

See also http:
These routines perform basic units-related operations:

• wcsunitse(): given two unit specifications, derive the conversion from one to the other.

• wcsutrne(): translates certain commonly used but non-standard unit strings. It is intended to be called before
wcsulexe() which only handles standard FITS units specifications.

• wcsulexe(): parses a standard FITS units specification of arbitrary complexity, deriving the conversion to
canonical units.

19.37.2 Macro Definition Documentation

19.37.2.1 WCSUNITS_PLANE_ANGLE #define WCSUNITS_PLANE_ANGLE 0

Array index for plane angle units in the units array returned by wcsulex(), and the wcsunits_types[] and
wcsunits_units[] global variables.

19.37.2.2 WCSUNITS_SOLID_ANGLE #define WCSUNITS_SOLID_ANGLE 1

Array index for solid angle units in the units array returned by wcsulex(), and the wcsunits_types[] and
wcsunits_units[] global variables.

19.37.2.3 WCSUNITS_CHARGE #define WCSUNITS_CHARGE 2

Array index for charge units in the units array returned by wcsulex(), and the wcsunits_types[] and wcsunits_units[]
global variables.

19.37.2.4 WCSUNITS_MOLE #define WCSUNITS_MOLE 3

Array index for mole ("gram molecular weight") units in the units array returned by wcsulex(), and the
wcsunits_types[] and wcsunits_units[] global variables.

19.37.2.5 WCSUNITS_TEMPERATURE #define WCSUNITS_TEMPERATURE 4

Array index for temperature units in the units array returned by wcsulex(), and the wcsunits_types[] and
wcsunits_units[] global variables.

Generated by Doxygen

398

19.37.2.6 WCSUNITS_LUMINTEN #define WCSUNITS_LUMINTEN 5

Array index for luminous intensity units in the units array returned by wcsulex(), and the wcsunits_types[] and
wcsunits_units[] global variables.

19.37.2.7 WCSUNITS_MASS #define WCSUNITS_MASS 6

Array index for mass units in the units array returned by wcsulex(), and the wcsunits_types[] and wcsunits_units[]
global variables.

19.37.2.8 WCSUNITS_LENGTH #define WCSUNITS_LENGTH 7

Array index for length units in the units array returned by wcsulex(), and the wcsunits_types[] and wcsunits_units[]
global variables.

19.37.2.9 WCSUNITS_TIME #define WCSUNITS_TIME 8

Array index for time units in the units array returned by wcsulex(), and the wcsunits_types[] and wcsunits_units[]
global variables.

19.37.2.10 WCSUNITS_BEAM #define WCSUNITS_BEAM 9

Array index for beam units in the units array returned by wcsulex(), and the wcsunits_types[] and wcsunits_units[]
global variables.

19.37.2.11 WCSUNITS_BIN #define WCSUNITS_BIN 10

Array index for bin units in the units array returned by wcsulex(), and the wcsunits_types[] and wcsunits_units[]
global variables.

19.37.2.12 WCSUNITS_BIT #define WCSUNITS_BIT 11

Array index for bit units in the units array returned by wcsulex(), and the wcsunits_types[] and wcsunits_units[] global
variables.

19.37.2.13 WCSUNITS_COUNT #define WCSUNITS_COUNT 12

Array index for count units in the units array returned by wcsulex(), and the wcsunits_types[] and wcsunits_units[]
global variables.

19.37.2.14 WCSUNITS_MAGNITUDE #define WCSUNITS_MAGNITUDE 13

Array index for stellar magnitude units in the units array returned by wcsulex(), and the wcsunits_types[] and
wcsunits_units[] global variables.

19.37.2.15 WCSUNITS_PIXEL #define WCSUNITS_PIXEL 14

Array index for pixel units in the units array returned by wcsulex(), and the wcsunits_types[] and wcsunits_units[]
global variables.

Generated by Doxygen

19.37 wcsunits.h File Reference 399

19.37.2.16 WCSUNITS_SOLRATIO #define WCSUNITS_SOLRATIO 15

Array index for solar mass ratio units in the units array returned by wcsulex(), and the wcsunits_types[] and
wcsunits_units[] global variables.

19.37.2.17 WCSUNITS_VOXEL #define WCSUNITS_VOXEL 16

Array index for voxel units in the units array returned by wcsulex(), and the wcsunits_types[] and wcsunits_units[]
global variables.

19.37.2.18 WCSUNITS_NTYPE #define WCSUNITS_NTYPE 17

Number of entries in the units array returned by wcsulex(), and the wcsunits_types[] and wcsunits_units[] global
variables.

19.37.3 Enumeration Type Documentation

19.37.3.1 wcsunits_errmsg_enum enum wcsunits_errmsg_enum

Enumerator

UNITSERR_SUCCESS
UNITSERR_BAD_NUM_MULTIPLIER

UNITSERR_DANGLING_BINOP
UNITSERR_BAD_INITIAL_SYMBOL
UNITSERR_FUNCTION_CONTEXT

UNITSERR_BAD_EXPON_SYMBOL
UNITSERR_UNBAL_BRACKET

UNITSERR_UNBAL_PAREN
UNITSERR_CONSEC_BINOPS
UNITSERR_PARSER_ERROR
UNITSERR_BAD_UNIT_SPEC

UNITSERR_BAD_FUNCS
UNITSERR_UNSAFE_TRANS

19.37.4 Function Documentation

19.37.4.1 wcsunitse() int wcsunitse (

const char have[],

const char want[],

double ∗ scale,

double ∗ offset,

Generated by Doxygen

400

double ∗ power,

struct wcserr ∗∗ err)

wcsunitse() derives the conversion from one system of units to another.

A deprecated form of this function, wcsunits(), lacks the wcserr∗∗ parameter.

Parameters

in have FITS units specification to convert from (null- terminated), with or without
surrounding square brackets (for inline specifications); text following the closing
bracket is ignored.

in want FITS units specification to convert to (null- terminated), with or without
surrounding square brackets (for inline specifications); text following the closing
bracket is ignored.

out scale,offset,power Convert units using
pow(scale*value + offset, power);

Normally offset is zero except for log() or ln() conversions, e.g. "log(MHz)" to
"ln(Hz)". Likewise, power is normally unity except for exp() conversions, e.g.
"exp(ms)" to "exp(/Hz)". Thus conversions ordinarily consist of
value *= scale;

out err If enabled, for function return values > 1, this struct will contain a detailed error
message, see wcserr_enable(). May be NULL if an error message is not desired.
Otherwise, the user is responsible for deleting the memory allocated for the
wcserr struct.

Returns

Status return value:

• 0: Success.

• 1-9: Status return from wcsulexe().

• 10: Non-conformant unit specifications.

• 11: Non-conformant functions.

scale is zeroed on return if an error occurs.

19.37.4.2 wcsutrne() int wcsutrne (

int ctrl,

char unitstr[],

struct wcserr ∗∗ err)

wcsutrne() translates certain commonly used but non-standard unit strings, e.g. "DEG", "MHZ", "KELVIN", that
are not recognized by wcsulexe(), refer to the notes below for a full list. Compounds are also recognized, e.g.
"JY/BEAM" and "KM/SEC/SEC". Extraneous embedded blanks are removed.

A deprecated form of this function, wcsutrn(), lacks the wcserr∗∗ parameter.

Generated by Doxygen

19.37 wcsunits.h File Reference 401

Parameters

in ctrl Although "S" is commonly used to represent seconds, its translation to "s" is potentially
unsafe since the standard recognizes "S" formally as Siemens, however rarely that may
be used. The same applies to "H" for hours (Henry), and "D" for days (Debye). This
bit-flag controls what to do in such cases:

• 1: Translate "S" to "s".

• 2: Translate "H" to "h".

• 4: Translate "D" to "d".

Thus ctrl == 0 doesn't do any unsafe translations, whereas ctrl == 7 does all of them.

in,out unitstr Null-terminated character array containing the units specification to be translated.
Inline units specifications in a FITS header keycomment are also handled. If the first
non-blank character in unitstr is '[' then the unit string is delimited by its matching ']'.
Blanks preceding '[' will be stripped off, but text following the closing bracket will be
preserved without modification.

in,out err If enabled, for function return values > 1, this struct will contain a detailed error
message, see wcserr_enable(). May be NULL if an error message is not desired.
Otherwise, the user is responsible for deleting the memory allocated for the wcserr
struct.

Returns

Status return value:

• -1: No change was made, other than stripping blanks (not an error).

• 0: Success.

• 9: Internal parser error.

• 12: Potentially unsafe translation, whether applied or not (see notes).

Notes:

1. Translation of non-standard unit specifications: apart from leading and trailing blanks, a case-sensitive match
is required for the aliases listed below, in particular the only recognized aliases with metric prefixes are "KM",
"KHZ", "MHZ", and "GHZ". Potentially unsafe translations of "D", "H", and "S", shown in parentheses, are
optional.
Unit Recognized aliases
---- --
Angstrom Angstroms angstrom angstroms
arcmin arcmins, ARCMIN, ARCMINS
arcsec arcsecs, ARCSEC, ARCSECS
beam BEAM
byte Byte
d day, days, (D), DAY, DAYS
deg degree, degrees, Deg, Degree, Degrees, DEG, DEGREE,

DEGREES
GHz GHZ
h hr, (H), HR
Hz hz, HZ
kHz KHZ
Jy JY
K kelvin, kelvins, Kelvin, Kelvins, KELVIN, KELVINS
km KM
m metre, meter, metres, meters, M, METRE, METER, METRES,

METERS
min MIN
MHz MHZ
Ohm ohm
Pa pascal, pascals, Pascal, Pascals, PASCAL, PASCALS
pixel pixels, PIXEL, PIXELS

Generated by Doxygen

402

rad radian, radians, RAD, RADIAN, RADIANS
s sec, second, seconds, (S), SEC, SECOND, SECONDS
V volt, volts, Volt, Volts, VOLT, VOLTS
yr year, years, YR, YEAR, YEARS

The aliases "angstrom", "ohm", and "Byte" for (Angstrom, Ohm, and byte) are recognized by wcsulexe() itself
as an unofficial extension of the standard, but they are converted to the standard form here.

19.37.4.3 wcsulexe() int wcsulexe (

const char unitstr[],

int ∗ func,

double ∗ scale,

double units[WCSUNITS_NTYPE],

struct wcserr ∗∗ err)

wcsulexe() parses a standard FITS units specification of arbitrary complexity, deriving the scale factor required to
convert to canonical units - basically SI with degrees and "dimensionless" additions such as byte, pixel and count.

A deprecated form of this function, wcsulex(), lacks the wcserr∗∗ parameter.

Parameters

in unitstr Null-terminated character array containing the units specification, with or without surrounding
square brackets (for inline specifications); text following the closing bracket is ignored.

out func Special function type, see note 4:

• 0: None

• 1: log() ...base 10

• 2: ln() ...base e

• 3: exp()

out scale Scale factor for the unit specification; multiply a value expressed in the given units by this
factor to convert it to canonical units.

out units A units specification is decomposed into powers of 16 fundamental unit types: angle, mass,
length, time, count, pixel, etc. Preprocessor macro WCSUNITS_NTYPE is defined to
dimension this vector, and others such WCSUNITS_PLANE_ANGLE,
WCSUNITS_LENGTH, etc. to access its elements.
Corresponding character strings, wcsunits_types[] and wcsunits_units[], are predefined to
describe each quantity and its canonical units.

out err If enabled, for function return values > 1, this struct will contain a detailed error message,
see wcserr_enable(). May be NULL if an error message is not desired. Otherwise, the user is
responsible for deleting the memory allocated for the wcserr struct.

Returns

Status return value:

• 0: Success.

• 1: Invalid numeric multiplier.

• 2: Dangling binary operator.

• 3: Invalid symbol in INITIAL context.

• 4: Function in invalid context.

Generated by Doxygen

19.37 wcsunits.h File Reference 403

• 5: Invalid symbol in EXPON context.

• 6: Unbalanced bracket.

• 7: Unbalanced parenthesis.

• 8: Consecutive binary operators.

• 9: Internal parser error.

scale and units[] are zeroed on return if an error occurs.

Notes:

1. wcsulexe() is permissive in accepting whitespace in all contexts in a units specification where it does not
create ambiguity (e.g. not between a metric prefix and a basic unit string), including in strings like "log (m ∗∗
2)" which is formally disallowed.

2. Supported extensions:

• "angstrom" (OGIP usage) is allowed in addition to "Angstrom".

• "ohm" (OGIP usage) is allowed in addition to "Ohm".

• "Byte" (common usage) is allowed in addition to "byte".

3. Table 6 of WCS Paper I lists eleven units for which metric prefixes are allowed. However, in this implemen-
tation only prefixes greater than unity are allowed for "a" (annum), "yr" (year), "pc" (parsec), "bit", and "byte",
and only prefixes less than unity are allowed for "mag" (stellar magnitude).

Metric prefix "P" (peta) is specifically forbidden for "a" (annum) to avoid confusion with "Pa" (Pascal, not peta-
annum). Note that metric prefixes are specifically disallowed for "h" (hour) and "d" (day) so that "ph" (photons)
cannot be interpreted as pico-hours, nor "cd" (candela) as centi-days.

4. Function types log(), ln() and exp() may only occur at the start of the units specification. The scale and units[]
returned for these refers to the string inside the function "argument", e.g. to "MHz" in log(MHz) for which a
scale of 106 will be returned.

19.37.4.4 wcsunits() int wcsunits (

const char have[],

const char want[],

double ∗ scale,

double ∗ offset,

double ∗ power)

19.37.4.5 wcsutrn() int wcsutrn (

int ctrl,

char unitstr[])

19.37.4.6 wcsulex() int wcsulex (

const char unitstr[],

int ∗ func,

double ∗ scale,

double units[WCSUNITS_NTYPE])

Generated by Doxygen

404

19.37.5 Variable Documentation

19.37.5.1 wcsunits_errmsg const char ∗ wcsunits_errmsg[] [extern]

Error messages to match the status value returned from each function.

19.37.5.2 wcsunits_types const char ∗ wcsunits_types[] [extern]

Names for physical quantities to match the units vector returned by wcsulexe():

• 0: plane angle

• 1: solid angle

• 2: charge

• 3: mole

• 4: temperature

• 5: luminous intensity

• 6: mass

• 7: length

• 8: time

• 9: beam

• 10: bin

• 11: bit

• 12: count

• 13: stellar magnitude

• 14: pixel

• 15: solar ratio

• 16: voxel

19.37.5.3 wcsunits_units const char ∗ wcsunits_units[] [extern]

Names for the units (SI) to match the units vector returned by wcsulexe():

• 0: degree

• 1: steradian

• 2: Coulomb

• 3: mole

• 4: Kelvin

• 5: candela

• 6: kilogram

• 7: metre

• 8: second

The remainder are dimensionless.

Generated by Doxygen

19.38 wcsunits.h 405

19.38 wcsunits.h

Go to the documentation of this file.
1 /*==
2 WCSLIB 7.11 - an implementation of the FITS WCS standard.
3 Copyright (C) 1995-2022, Mark Calabretta
4
5 This file is part of WCSLIB.
6
7 WCSLIB is free software: you can redistribute it and/or modify it under the
8 terms of the GNU Lesser General Public License as published by the Free
9 Software Foundation, either version 3 of the License, or (at your option)
10 any later version.
11
12 WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
15 more details.
16
17 You should have received a copy of the GNU Lesser General Public License
18 along with WCSLIB. If not, see http://www.gnu.org/licenses.
19
20 Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
21 http://www.atnf.csiro.au/people/Mark.Calabretta
22 $Id: wcsunits.h,v 7.11 2022/04/26 06:13:52 mcalabre Exp $
23 *===
24 *
25 * WCSLIB 7.11 - C routines that implement the FITS World Coordinate System
26 * (WCS) standard. Refer to the README file provided with WCSLIB for an
27 * overview of the library.
28 *
29 *
30 * Summary of the wcsunits routines
31 * --------------------------------
32 * Routines in this suite deal with units specifications and conversions, as
33 * described in
34 *
35 = "Representations of world coordinates in FITS",
36 = Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061 (WCS Paper I)
37 *
38 * The Flexible Image Transport System (FITS), a data format widely used in
39 * astronomy for data interchange and archive, is described in
40 *
41 = "Definition of the Flexible Image Transport System (FITS), version 3.0",
42 = Pence, W.D., Chiappetti, L., Page, C.G., Shaw, R.A., & Stobie, E. 2010,
43 = A&A, 524, A42 - http://dx.doi.org/10.1051/0004-6361/201015362
44 *
45 * See also http://fits.gsfc.nasa.gov
46 *
47 * These routines perform basic units-related operations:
48 *
49 * - wcsunitse(): given two unit specifications, derive the conversion from
50 * one to the other.
51 *
52 * - wcsutrne(): translates certain commonly used but non-standard unit
53 * strings. It is intended to be called before wcsulexe() which only
54 * handles standard FITS units specifications.
55 *
56 * - wcsulexe(): parses a standard FITS units specification of arbitrary
57 * complexity, deriving the conversion to canonical units.
58 *
59 *
60 * wcsunitse() - FITS units specification conversion
61 * ---
62 * wcsunitse() derives the conversion from one system of units to another.
63 *
64 * A deprecated form of this function, wcsunits(), lacks the wcserr**
65 * parameter.
66 *
67 * Given:
68 * have const char []
69 * FITS units specification to convert from (null-
70 * terminated), with or without surrounding square
71 * brackets (for inline specifications); text following
72 * the closing bracket is ignored.
73 *
74 * want const char []
75 * FITS units specification to convert to (null-
76 * terminated), with or without surrounding square
77 * brackets (for inline specifications); text following
78 * the closing bracket is ignored.
79 *
80 * Returned:
81 * scale,
82 * offset,
83 * power double* Convert units using

Generated by Doxygen

406

84 *
85 = pow(scale*value + offset, power);
86 *
87 * Normally offset is zero except for log() or ln()
88 * conversions, e.g. "log(MHz)" to "ln(Hz)". Likewise,
89 * power is normally unity except for exp() conversions,
90 * e.g. "exp(ms)" to "exp(/Hz)". Thus conversions
91 * ordinarily consist of
92 *
93 = value *= scale;
94 *
95 * err struct wcserr **
96 * If enabled, for function return values > 1, this
97 * struct will contain a detailed error message, see
98 * wcserr_enable(). May be NULL if an error message is
99 * not desired. Otherwise, the user is responsible for
100 * deleting the memory allocated for the wcserr struct.
101 *
102 * Function return value:
103 * int Status return value:
104 * 0: Success.
105 * 1-9: Status return from wcsulexe().
106 * 10: Non-conformant unit specifications.
107 * 11: Non-conformant functions.
108 *
109 * scale is zeroed on return if an error occurs.
110 *
111 *
112 * wcsutrne() - Translation of non-standard unit specifications
113 * --
114 * wcsutrne() translates certain commonly used but non-standard unit strings,
115 * e.g. "DEG", "MHZ", "KELVIN", that are not recognized by wcsulexe(), refer to
116 * the notes below for a full list. Compounds are also recognized, e.g.
117 * "JY/BEAM" and "KM/SEC/SEC". Extraneous embedded blanks are removed.
118 *
119 * A deprecated form of this function, wcsutrn(), lacks the wcserr** parameter.
120 *
121 * Given:
122 * ctrl int Although "S" is commonly used to represent seconds,
123 * its translation to "s" is potentially unsafe since the
124 * standard recognizes "S" formally as Siemens, however
125 * rarely that may be used. The same applies to "H" for
126 * hours (Henry), and "D" for days (Debye). This
127 * bit-flag controls what to do in such cases:
128 * 1: Translate "S" to "s".
129 * 2: Translate "H" to "h".
130 * 4: Translate "D" to "d".
131 * Thus ctrl == 0 doesn’t do any unsafe translations,
132 * whereas ctrl == 7 does all of them.
133 *
134 * Given and returned:
135 * unitstr char [] Null-terminated character array containing the units
136 * specification to be translated.
137 *
138 * Inline units specifications in a FITS header
139 * keycomment are also handled. If the first non-blank
140 * character in unitstr is ’[’ then the unit string is
141 * delimited by its matching ’]’. Blanks preceding ’[’
142 * will be stripped off, but text following the closing
143 * bracket will be preserved without modification.
144 *
145 * err struct wcserr **
146 * If enabled, for function return values > 1, this
147 * struct will contain a detailed error message, see
148 * wcserr_enable(). May be NULL if an error message is
149 * not desired. Otherwise, the user is responsible for
150 * deleting the memory allocated for the wcserr struct.
151 *
152 * Function return value:
153 * int Status return value:
154 * -1: No change was made, other than stripping blanks
155 * (not an error).
156 * 0: Success.
157 * 9: Internal parser error.
158 * 12: Potentially unsafe translation, whether applied
159 * or not (see notes).
160 *
161 * Notes:
162 * 1: Translation of non-standard unit specifications: apart from leading and
163 * trailing blanks, a case-sensitive match is required for the aliases
164 * listed below, in particular the only recognized aliases with metric
165 * prefixes are "KM", "KHZ", "MHZ", and "GHZ". Potentially unsafe
166 * translations of "D", "H", and "S", shown in parentheses, are optional.
167 *
168 = Unit Recognized aliases
169 = ---- --
170 = Angstrom Angstroms angstrom angstroms

Generated by Doxygen

19.38 wcsunits.h 407

171 = arcmin arcmins, ARCMIN, ARCMINS
172 = arcsec arcsecs, ARCSEC, ARCSECS
173 = beam BEAM
174 = byte Byte
175 = d day, days, (D), DAY, DAYS
176 = deg degree, degrees, Deg, Degree, Degrees, DEG, DEGREE,
177 = DEGREES
178 = GHz GHZ
179 = h hr, (H), HR
180 = Hz hz, HZ
181 = kHz KHZ
182 = Jy JY
183 = K kelvin, kelvins, Kelvin, Kelvins, KELVIN, KELVINS
184 = km KM
185 = m metre, meter, metres, meters, M, METRE, METER, METRES,
186 = METERS
187 = min MIN
188 = MHz MHZ
189 = Ohm ohm
190 = Pa pascal, pascals, Pascal, Pascals, PASCAL, PASCALS
191 = pixel pixels, PIXEL, PIXELS
192 = rad radian, radians, RAD, RADIAN, RADIANS
193 = s sec, second, seconds, (S), SEC, SECOND, SECONDS
194 = V volt, volts, Volt, Volts, VOLT, VOLTS
195 = yr year, years, YR, YEAR, YEARS
196 *
197 * The aliases "angstrom", "ohm", and "Byte" for (Angstrom, Ohm, and byte)
198 * are recognized by wcsulexe() itself as an unofficial extension of the
199 * standard, but they are converted to the standard form here.
200 *
201 *
202 * wcsulexe() - FITS units specification parser
203 * --
204 * wcsulexe() parses a standard FITS units specification of arbitrary
205 * complexity, deriving the scale factor required to convert to canonical
206 * units - basically SI with degrees and "dimensionless" additions such as
207 * byte, pixel and count.
208 *
209 * A deprecated form of this function, wcsulex(), lacks the wcserr** parameter.
210 *
211 * Given:
212 * unitstr const char []
213 * Null-terminated character array containing the units
214 * specification, with or without surrounding square
215 * brackets (for inline specifications); text following
216 * the closing bracket is ignored.
217 *
218 * Returned:
219 * func int* Special function type, see note 4:
220 * 0: None
221 * 1: log() ...base 10
222 * 2: ln() ...base e
223 * 3: exp()
224 *
225 * scale double* Scale factor for the unit specification; multiply a
226 * value expressed in the given units by this factor to
227 * convert it to canonical units.
228 *
229 * units double[WCSUNITS_NTYPE]
230 * A units specification is decomposed into powers of 16
231 * fundamental unit types: angle, mass, length, time,
232 * count, pixel, etc. Preprocessor macro WCSUNITS_NTYPE
233 * is defined to dimension this vector, and others such
234 * WCSUNITS_PLANE_ANGLE, WCSUNITS_LENGTH, etc. to access
235 * its elements.
236 *
237 * Corresponding character strings, wcsunits_types[] and
238 * wcsunits_units[], are predefined to describe each
239 * quantity and its canonical units.
240 *
241 * err struct wcserr **
242 * If enabled, for function return values > 1, this
243 * struct will contain a detailed error message, see
244 * wcserr_enable(). May be NULL if an error message is
245 * not desired. Otherwise, the user is responsible for
246 * deleting the memory allocated for the wcserr struct.
247 *
248 * Function return value:
249 * int Status return value:
250 * 0: Success.
251 * 1: Invalid numeric multiplier.
252 * 2: Dangling binary operator.
253 * 3: Invalid symbol in INITIAL context.
254 * 4: Function in invalid context.
255 * 5: Invalid symbol in EXPON context.
256 * 6: Unbalanced bracket.
257 * 7: Unbalanced parenthesis.

Generated by Doxygen

408

258 * 8: Consecutive binary operators.
259 * 9: Internal parser error.
260 *
261 * scale and units[] are zeroed on return if an error
262 * occurs.
263 *
264 * Notes:
265 * 1: wcsulexe() is permissive in accepting whitespace in all contexts in a
266 * units specification where it does not create ambiguity (e.g. not
267 * between a metric prefix and a basic unit string), including in strings
268 * like "log (m ** 2)" which is formally disallowed.
269 *
270 * 2: Supported extensions:
271 * - "angstrom" (OGIP usage) is allowed in addition to "Angstrom".
272 * - "ohm" (OGIP usage) is allowed in addition to "Ohm".
273 * - "Byte" (common usage) is allowed in addition to "byte".
274 *
275 * 3: Table 6 of WCS Paper I lists eleven units for which metric prefixes are
276 * allowed. However, in this implementation only prefixes greater than
277 * unity are allowed for "a" (annum), "yr" (year), "pc" (parsec), "bit",
278 * and "byte", and only prefixes less than unity are allowed for "mag"
279 * (stellar magnitude).
280 *
281 * Metric prefix "P" (peta) is specifically forbidden for "a" (annum) to
282 * avoid confusion with "Pa" (Pascal, not peta-annum). Note that metric
283 * prefixes are specifically disallowed for "h" (hour) and "d" (day) so
284 * that "ph" (photons) cannot be interpreted as pico-hours, nor "cd"
285 * (candela) as centi-days.
286 *
287 * 4: Function types log(), ln() and exp() may only occur at the start of the
288 * units specification. The scale and units[] returned for these refers
289 * to the string inside the function "argument", e.g. to "MHz" in log(MHz)
290 * for which a scale of 1e6 will be returned.
291 *
292 *
293 * Global variable: const char *wcsunits_errmsg[] - Status return messages
294 * ---
295 * Error messages to match the status value returned from each function.
296 *
297 *
298 * Global variable: const char *wcsunits_types[] - Names of physical quantities
299 * --
300 * Names for physical quantities to match the units vector returned by
301 * wcsulexe():
302 * - 0: plane angle
303 * - 1: solid angle
304 * - 2: charge
305 * - 3: mole
306 * - 4: temperature
307 * - 5: luminous intensity
308 * - 6: mass
309 * - 7: length
310 * - 8: time
311 * - 9: beam
312 * - 10: bin
313 * - 11: bit
314 * - 12: count
315 * - 13: stellar magnitude
316 * - 14: pixel
317 * - 15: solar ratio
318 * - 16: voxel
319 *
320 *
321 * Global variable: const char *wcsunits_units[] - Names of units
322 * --
323 * Names for the units (SI) to match the units vector returned by wcsulexe():
324 * - 0: degree
325 * - 1: steradian
326 * - 2: Coulomb
327 * - 3: mole
328 * - 4: Kelvin
329 * - 5: candela
330 * - 6: kilogram
331 * - 7: metre
332 * - 8: second
333 *
334 * The remainder are dimensionless.
335 *===*/
336
337 #ifndef WCSLIB_WCSUNITS
338 #define WCSLIB_WCSUNITS
339
340 #include "wcserr.h"
341
342 #ifdef __cplusplus
343 extern "C" {
344 #endif

Generated by Doxygen

19.39 wcsutil.h File Reference 409

345
346
347 extern const char *wcsunits_errmsg[];
348
349 enum wcsunits_errmsg_enum {
350 UNITSERR_SUCCESS = 0, // Success.
351 UNITSERR_BAD_NUM_MULTIPLIER = 1, // Invalid numeric multiplier.
352 UNITSERR_DANGLING_BINOP = 2, // Dangling binary operator.
353 UNITSERR_BAD_INITIAL_SYMBOL = 3, // Invalid symbol in INITIAL context.
354 UNITSERR_FUNCTION_CONTEXT = 4, // Function in invalid context.
355 UNITSERR_BAD_EXPON_SYMBOL = 5, // Invalid symbol in EXPON context.
356 UNITSERR_UNBAL_BRACKET = 6, // Unbalanced bracket.
357 UNITSERR_UNBAL_PAREN = 7, // Unbalanced parenthesis.
358 UNITSERR_CONSEC_BINOPS = 8, // Consecutive binary operators.
359 UNITSERR_PARSER_ERROR = 9, // Internal parser error.
360 UNITSERR_BAD_UNIT_SPEC = 10, // Non-conformant unit specifications.
361 UNITSERR_BAD_FUNCS = 11, // Non-conformant functions.
362 UNITSERR_UNSAFE_TRANS = 12 // Potentially unsafe translation.
363 };
364
365 extern const char *wcsunits_types[];
366 extern const char *wcsunits_units[];
367
368 #define WCSUNITS_PLANE_ANGLE 0
369 #define WCSUNITS_SOLID_ANGLE 1
370 #define WCSUNITS_CHARGE 2
371 #define WCSUNITS_MOLE 3
372 #define WCSUNITS_TEMPERATURE 4
373 #define WCSUNITS_LUMINTEN 5
374 #define WCSUNITS_MASS 6
375 #define WCSUNITS_LENGTH 7
376 #define WCSUNITS_TIME 8
377 #define WCSUNITS_BEAM 9
378 #define WCSUNITS_BIN 10
379 #define WCSUNITS_BIT 11
380 #define WCSUNITS_COUNT 12
381 #define WCSUNITS_MAGNITUDE 13
382 #define WCSUNITS_PIXEL 14
383 #define WCSUNITS_SOLRATIO 15
384 #define WCSUNITS_VOXEL 16
385
386 #define WCSUNITS_NTYPE 17
387
388
389 int wcsunitse(const char have[], const char want[], double *scale,
390 double *offset, double *power, struct wcserr **err);
391
392 int wcsutrne(int ctrl, char unitstr[], struct wcserr **err);
393
394 int wcsulexe(const char unitstr[], int *func, double *scale,
395 double units[WCSUNITS_NTYPE], struct wcserr **err);
396
397 // Deprecated.
398 int wcsunits(const char have[], const char want[], double *scale,
399 double *offset, double *power);
400 int wcsutrn(int ctrl, char unitstr[]);
401 int wcsulex(const char unitstr[], int *func, double *scale,
402 double units[WCSUNITS_NTYPE]);
403
404 #ifdef __cplusplus
405 }
406 #endif
407
408 #endif // WCSLIB_WCSUNITS

19.39 wcsutil.h File Reference

Functions

• void wcsdealloc (void ∗ptr)

free memory allocated by WCSLIB functions.

• void wcsutil_strcvt (int n, char c, int nt, const char src[], char dst[])

Copy character string with padding.

• void wcsutil_blank_fill (int n, char c[])

Fill a character string with blanks.

• void wcsutil_null_fill (int n, char c[])

Generated by Doxygen

410

Fill a character string with NULLs.
• int wcsutil_all_ival (int nelem, int ival, const int iarr[])

Test if all elements an int array have a given value.
• int wcsutil_all_dval (int nelem, double dval, const double darr[])

Test if all elements a double array have a given value.
• int wcsutil_all_sval (int nelem, const char ∗sval, const char(∗sarr)[72])

Test if all elements a string array have a given value.
• int wcsutil_allEq (int nvec, int nelem, const double ∗first)

Test for equality of a particular vector element.
• int wcsutil_dblEq (int nelem, double tol, const double ∗arr1, const double ∗arr2)

Test for equality of two arrays of type double.
• int wcsutil_intEq (int nelem, const int ∗arr1, const int ∗arr2)

Test for equality of two arrays of type int.
• int wcsutil_strEq (int nelem, char(∗arr1)[72], char(∗arr2)[72])

Test for equality of two string arrays.
• void wcsutil_setAll (int nvec, int nelem, double ∗first)

Set a particular vector element.
• void wcsutil_setAli (int nvec, int nelem, int ∗first)

Set a particular vector element.
• void wcsutil_setBit (int nelem, const int ∗sel, int bits, int ∗array)

Set bits in selected elements of an array.
• char ∗ wcsutil_fptr2str (void(∗fptr)(void), char hext[19])

Translate pointer-to-function to string.
• void wcsutil_double2str (char ∗buf, const char ∗format, double value)

Translate double to string ignoring the locale.
• int wcsutil_str2double (const char ∗buf, double ∗value)

Translate string to a double, ignoring the locale.
• int wcsutil_str2double2 (const char ∗buf, double ∗value)

Translate string to doubles, ignoring the locale.

19.39.1 Detailed Description

Simple utility functions. With the exception of wcsdealloc(), these functions are intended for internal use only by
WCSLIB.

The internal-use functions are documented here solely as an aid to understanding the code. They are not intended
for external use - the API may change without notice!

19.39.2 Function Documentation

19.39.2.1 wcsdealloc() void wcsdealloc (

void ∗ ptr)

wcsdealloc() invokes the free() system routine to free memory. Specifically, it is intended to free memory allocated
(using calloc()) by certain WCSLIB functions (e.g. wcshdo(), wcsfixi(), fitshdr()), which it is the user's responsibility
to deallocate.

In certain situations, for example multithreading, it may be important that this be done within the WCSLIB sharable
library's runtime environment.

PLEASE NOTE: wcsdealloc() must not be used in place of the destructors for particular structs, such as wcsfree(),
celfree(), etc.

Generated by Doxygen

19.39 wcsutil.h File Reference 411

Parameters

in,out ptr Address of the allocated memory.

Returns

19.39.2.2 wcsutil_strcvt() void wcsutil_strcvt (

int n,

char c,

int nt,

const char src[],

char dst[])

INTERNAL USE ONLY.

wcsutil_strcvt() copies one character string to another up to the specified maximum number of characters.

If the given string is null-terminated, then the NULL character copied to the returned string, and all characters
following it up to the specified maximum, are replaced with the specified substitute character, either blank or NULL.

If the source string is not null-terminated and the substitute character is blank, then copy the maximum number
of characters and do nothing further. However, if the substitute character is NULL, then the last character and all
consecutive blank characters preceding it will be replaced with NULLs.

Used by the Fortran wrapper functions in translating C strings into Fortran CHARACTER variables and vice versa.

Parameters

in n Maximum number of characters to copy.

in c Substitute character, either NULL or blank (anything other than NULL).

in nt If true, then dst is of length n+1, with the last character always set to NULL.

in src Character string to be copied. If null-terminated, then need not be of length n, otherwise it must
be.

out dst Destination character string, which must be long enough to hold n characters. Note that this
string will not be null-terminated if the substitute character is blank.

Returns

19.39.2.3 wcsutil_blank_fill() void wcsutil_blank_fill (

int n,

char c[])

INTERNAL USE ONLY.

wcsutil_blank_fill() pads a character sub-string with blanks starting with the terminating NULL character (if any).

Generated by Doxygen

412

Parameters

in n Length of the sub-string.

in,out c The character sub-string, which will not be null-terminated on return.

Returns

19.39.2.4 wcsutil_null_fill() void wcsutil_null_fill (

int n,

char c[])

INTERNAL USE ONLY.

wcsutil_null_fill() strips trailing blanks from a string (or sub-string) and propagates the terminating NULL character
(if any) to the end of the string.

If the string is not null-terminated, then the last character and all consecutive blank characters preceding it will be
replaced with NULLs.

Mainly used in the C library to strip trailing blanks from FITS keyvalues. Also used to make character strings intel-
ligible in the GNU debugger, which prints the rubbish following the terminating NULL character, thereby obscuring
the valid part of the string.

Parameters

in n Number of characters.
in,out c The character (sub-)string.

Returns

19.39.2.5 wcsutil_all_ival() int wcsutil_all_ival (

int nelem,

int ival,

const int iarr[])

INTERNAL USE ONLY.

wcsutil_all_ival() tests whether all elements of an array of type int all have the specified value.

Parameters

in nelem The length of the array.

in ival Value to be tested.
in iarr Pointer to the first element of the array.

Generated by Doxygen

19.39 wcsutil.h File Reference 413

Returns

Status return value:

• 0: Not all equal.

• 1: All equal.

19.39.2.6 wcsutil_all_dval() int wcsutil_all_dval (

int nelem,

double dval,

const double darr[])

INTERNAL USE ONLY.

wcsutil_all_dval() tests whether all elements of an array of type double all have the specified value.

Parameters

in nelem The length of the array.

in dval Value to be tested.
in darr Pointer to the first element of the array.

Returns

Status return value:

• 0: Not all equal.

• 1: All equal.

19.39.2.7 wcsutil_all_sval() int wcsutil_all_sval (

int nelem,

const char ∗ sval,

const char(∗) sarr[72])

INTERNAL USE ONLY.

wcsutil_all_sval() tests whether the elements of an array of type char (∗)[72] all have the specified value.

Parameters

in nelem The length of the array.

in sval String to be tested.

in sarr Pointer to the first element of the array.

Returns

Status return value:

Generated by Doxygen

414

• 0: Not all equal.

• 1: All equal.

19.39.2.8 wcsutil_allEq() int wcsutil_allEq (

int nvec,

int nelem,

const double ∗ first)

INTERNAL USE ONLY.

wcsutil_allEq() tests for equality of a particular element in a set of vectors.

Parameters

in nvec The number of vectors.
in nelem The length of each vector.

in first Pointer to the first element to test in the array. The elements tested for equality are
*first == *(first + nelem) == *(first + nelem*2)
:
== *(first + nelem*(nvec-1));

The array might be dimensioned as
double v[nvec][nelem];

Returns

Status return value:

• 0: Not all equal.

• 1: All equal.

19.39.2.9 wcsutil_dblEq() int wcsutil_dblEq (

int nelem,

double tol,

const double ∗ arr1,

const double ∗ arr2)

INTERNAL USE ONLY.

wcsutil_dblEq() tests for equality of two double-precision arrays.

Parameters

in nelem The number of elements in each array.

in tol Tolerance for comparison of the floating-point values. For example, for tol == 1e-6, all
floating-point values in the arrays must be equal to the first 6 decimal places. A value of 0
implies exact equality.

in arr1 The first array.

in arr2 The second array

Generated by Doxygen

19.39 wcsutil.h File Reference 415

Returns

Status return value:

• 0: Not equal.

• 1: Equal.

19.39.2.10 wcsutil_intEq() int wcsutil_intEq (

int nelem,

const int ∗ arr1,

const int ∗ arr2)

INTERNAL USE ONLY.

wcsutil_intEq() tests for equality of two int arrays.

Parameters

in nelem The number of elements in each array.

in arr1 The first array.

in arr2 The second array

Returns

Status return value:

• 0: Not equal.

• 1: Equal.

19.39.2.11 wcsutil_strEq() int wcsutil_strEq (

int nelem,

char(∗) arr1[72],

char(∗) arr2[72])

INTERNAL USE ONLY.

wcsutil_strEq() tests for equality of two string arrays.

Parameters

in nelem The number of elements in each array.

in arr1 The first array.

in arr2 The second array

Returns

Status return value:

Generated by Doxygen

416

• 0: Not equal.

• 1: Equal.

19.39.2.12 wcsutil_setAll() void wcsutil_setAll (

int nvec,

int nelem,

double ∗ first)

INTERNAL USE ONLY.

wcsutil_setAll() sets the value of a particular element in a set of vectors of type double.

Parameters

in nvec The number of vectors.
in nelem The length of each vector.

in,out first Pointer to the first element in the array, the value of which is used to set the others
*(first + nelem) = *first; *(first + nelem*2) = *first;
:

(first + nelem(nvec-1)) = *first;

The array might be dimensioned as
double v[nvec][nelem];

Returns

19.39.2.13 wcsutil_setAli() void wcsutil_setAli (

int nvec,

int nelem,

int ∗ first)

INTERNAL USE ONLY.

wcsutil_setAli() sets the value of a particular element in a set of vectors of type int.

Parameters

in nvec The number of vectors.
in nelem The length of each vector.

in,out first Pointer to the first element in the array, the value of which is used to set the others
*(first + nelem) = *first; *(first + nelem*2) = *first;
:

(first + nelem(nvec-1)) = *first;

The array might be dimensioned as
int v[nvec][nelem];

Generated by Doxygen

19.39 wcsutil.h File Reference 417

Returns

19.39.2.14 wcsutil_setBit() void wcsutil_setBit (

int nelem,

const int ∗ sel,

int bits,

int ∗ array)

INTERNAL USE ONLY.

wcsutil_setBit() sets bits in selected elements of an array.

Parameters

in nelem Number of elements in the array.

in sel Address of a selection array of length nelem. May be specified as the null pointer in
which case all elements are selected.

in bits Bit mask.
in,out array Address of the array of length nelem.

Returns

19.39.2.15 wcsutil_fptr2str() char ∗ wcsutil_fptr2str (

void(∗)(void) fptr,

char hext[19])

INTERNAL USE ONLY.

wcsutil_fptr2str() translates a pointer-to-function to hexadecimal string representation for output. It is used by the
various routines that print the contents of WCSLIB structs, noting that it is not strictly legal to type-pun a function
pointer to void∗. See http://stackoverflow.com/questions/2741683/how-to-format-a-function-pointer

Parameters

in fptr

out hext Null-terminated string. Should be at least 19 bytes in size to accomodate a 64-bit address (16
bytes in hex), plus the leading "0x" and trailing '\0'.

Returns

The address of hext.

Generated by Doxygen

http://stackoverflow.com/questions/2741683/how-to-format-a-function-pointer

418

19.39.2.16 wcsutil_double2str() void wcsutil_double2str (

char ∗ buf,

const char ∗ format,

double value)

INTERNAL USE ONLY.

wcsutil_double2str() converts a double to a string, but unlike sprintf() it ignores the locale and always uses
a '.' as the decimal separator. Also, unless it includes an exponent, the formatted value will always have a fractional
part, ".0" being appended if necessary.

Parameters

out buf The buffer to write the string into.

in format The formatting directive, such as "f". This may be any of the forms accepted by
sprintf(), but should only include a formatting directive and nothing else. For "g" and
"G" formats, unless it includes an exponent, the formatted value will always have a fractional
part, ".0" being appended if necessary.

in value The value to convert to a string.

19.39.2.17 wcsutil_str2double() int wcsutil_str2double (

const char ∗ buf,

double ∗ value)

INTERNAL USE ONLY.

wcsutil_str2double() converts a string to a double, but unlike sscanf() it ignores the locale and always expects
a '.' as the decimal separator.

Parameters

in buf The string containing the value

out value The double value parsed from the string.

19.39.2.18 wcsutil_str2double2() int wcsutil_str2double2 (

const char ∗ buf,

double ∗ value)

INTERNAL USE ONLY.

wcsutil_str2double2() converts a string to a pair of doubles containing the integer and fractional parts. Unlike
sscanf() it ignores the locale and always expects a '.' as the decimal separator.

Parameters

in buf The string containing the value

out value parts, parsed from the string.

Generated by Doxygen

19.40 wcsutil.h 419

19.40 wcsutil.h

Go to the documentation of this file.
1 /*==
2 WCSLIB 7.11 - an implementation of the FITS WCS standard.
3 Copyright (C) 1995-2022, Mark Calabretta
4
5 This file is part of WCSLIB.
6
7 WCSLIB is free software: you can redistribute it and/or modify it under the
8 terms of the GNU Lesser General Public License as published by the Free
9 Software Foundation, either version 3 of the License, or (at your option)
10 any later version.
11
12 WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
15 more details.
16
17 You should have received a copy of the GNU Lesser General Public License
18 along with WCSLIB. If not, see http://www.gnu.org/licenses.
19
20 Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
21 http://www.atnf.csiro.au/people/Mark.Calabretta
22 $Id: wcsutil.h,v 7.11 2022/04/26 06:13:52 mcalabre Exp $
23 *===
24 *
25 * WCSLIB 7.11 - C routines that implement the FITS World Coordinate System
26 * (WCS) standard. Refer to the README file provided with WCSLIB for an
27 * overview of the library.
28 *
29 *
30 * Summary of the wcsutil routines
31 * -------------------------------
32 * Simple utility functions. With the exception of wcsdealloc(), these
33 * functions are intended for internal use only by WCSLIB.
34 *
35 * The internal-use functions are documented here solely as an aid to
36 * understanding the code. They are not intended for external use - the API
37 * may change without notice!
38 *
39 *
40 * wcsdealloc() - free memory allocated by WCSLIB functions
41 * --
42 * wcsdealloc() invokes the free() system routine to free memory.
43 * Specifically, it is intended to free memory allocated (using calloc()) by
44 * certain WCSLIB functions (e.g. wcshdo(), wcsfixi(), fitshdr()), which it is
45 * the user’s responsibility to deallocate.
46 *
47 * In certain situations, for example multithreading, it may be important that
48 * this be done within the WCSLIB sharable library’s runtime environment.
49 *
50 * PLEASE NOTE: wcsdealloc() must not be used in place of the destructors for
51 * particular structs, such as wcsfree(), celfree(), etc.
52 *
53 * Given and returned:
54 * ptr void* Address of the allocated memory.
55 *
56 * Function return value:
57 * void
58 *
59 *
60 * wcsutil_strcvt() - Copy character string with padding
61 * ---
62 * INTERNAL USE ONLY.
63 *
64 * wcsutil_strcvt() copies one character string to another up to the specified
65 * maximum number of characters.
66 *
67 * If the given string is null-terminated, then the NULL character copied to
68 * the returned string, and all characters following it up to the specified
69 * maximum, are replaced with the specified substitute character, either blank
70 * or NULL.
71 *
72 * If the source string is not null-terminated and the substitute character is
73 * blank, then copy the maximum number of characters and do nothing further.
74 * However, if the substitute character is NULL, then the last character and
75 * all consecutive blank characters preceding it will be replaced with NULLs.
76 *
77 * Used by the Fortran wrapper functions in translating C strings into Fortran
78 * CHARACTER variables and vice versa.
79 *
80 * Given:
81 * n int Maximum number of characters to copy.
82 *
83 * c char Substitute character, either NULL or blank (anything

Generated by Doxygen

420

84 * other than NULL).
85 *
86 * nt int If true, then dst is of length n+1, with the last
87 * character always set to NULL.
88 *
89 * src char[] Character string to be copied. If null-terminated,
90 * then need not be of length n, otherwise it must be.
91 *
92 * Returned:
93 * dst char[] Destination character string, which must be long
94 * enough to hold n characters. Note that this string
95 * will not be null-terminated if the substitute
96 * character is blank.
97 *
98 * Function return value:
99 * void
100 *
101 *
102 * wcsutil_blank_fill() - Fill a character string with blanks
103 * --
104 * INTERNAL USE ONLY.
105 *
106 * wcsutil_blank_fill() pads a character sub-string with blanks starting with
107 * the terminating NULL character (if any).
108 *
109 * Given:
110 * n int Length of the sub-string.
111 *
112 * Given and returned:
113 * c char[] The character sub-string, which will not be
114 * null-terminated on return.
115 *
116 * Function return value:
117 * void
118 *
119 *
120 * wcsutil_null_fill() - Fill a character string with NULLs
121 * --
122 * INTERNAL USE ONLY.
123 *
124 * wcsutil_null_fill() strips trailing blanks from a string (or sub-string) and
125 * propagates the terminating NULL character (if any) to the end of the string.
126 *
127 * If the string is not null-terminated, then the last character and all
128 * consecutive blank characters preceding it will be replaced with NULLs.
129 *
130 * Mainly used in the C library to strip trailing blanks from FITS keyvalues.
131 * Also used to make character strings intelligible in the GNU debugger, which
132 * prints the rubbish following the terminating NULL character, thereby
133 * obscuring the valid part of the string.
134 *
135 * Given:
136 * n int Number of characters.
137 *
138 * Given and returned:
139 * c char[] The character (sub-)string.
140 *
141 * Function return value:
142 * void
143 *
144 *
145 * wcsutil_all_ival() - Test if all elements an int array have a given value
146 * ---
147 * INTERNAL USE ONLY.
148 *
149 * wcsutil_all_ival() tests whether all elements of an array of type int all
150 * have the specified value.
151 *
152 * Given:
153 * nelem int The length of the array.
154 *
155 * ival int Value to be tested.
156 *
157 * iarr const int[]
158 * Pointer to the first element of the array.
159 *
160 * Function return value:
161 * int Status return value:
162 * 0: Not all equal.
163 * 1: All equal.
164 *
165 *
166 * wcsutil_all_dval() - Test if all elements a double array have a given value
167 * ---
168 * INTERNAL USE ONLY.
169 *
170 * wcsutil_all_dval() tests whether all elements of an array of type double all

Generated by Doxygen

19.40 wcsutil.h 421

171 * have the specified value.
172 *
173 * Given:
174 * nelem int The length of the array.
175 *
176 * dval int Value to be tested.
177 *
178 * darr const double[]
179 * Pointer to the first element of the array.
180 *
181 * Function return value:
182 * int Status return value:
183 * 0: Not all equal.
184 * 1: All equal.
185 *
186 *
187 * wcsutil_all_sval() - Test if all elements a string array have a given value
188 * ---
189 * INTERNAL USE ONLY.
190 *
191 * wcsutil_all_sval() tests whether the elements of an array of type
192 * char (*)[72] all have the specified value.
193 *
194 * Given:
195 * nelem int The length of the array.
196 *
197 * sval const char *
198 * String to be tested.
199 *
200 * sarr const char (*)[72]
201 * Pointer to the first element of the array.
202 *
203 * Function return value:
204 * int Status return value:
205 * 0: Not all equal.
206 * 1: All equal.
207 *
208 *
209 * wcsutil_allEq() - Test for equality of a particular vector element
210 * --
211 * INTERNAL USE ONLY.
212 *
213 * wcsutil_allEq() tests for equality of a particular element in a set of
214 * vectors.
215 *
216 * Given:
217 * nvec int The number of vectors.
218 *
219 * nelem int The length of each vector.
220 *
221 * first const double*
222 * Pointer to the first element to test in the array.
223 * The elements tested for equality are
224 *
225 = *first == *(first + nelem)
226 = == *(first + nelem*2)
227 = :
228 = == *(first + nelem*(nvec-1));
229 *
230 * The array might be dimensioned as
231 *
232 = double v[nvec][nelem];
233 *
234 * Function return value:
235 * int Status return value:
236 * 0: Not all equal.
237 * 1: All equal.
238 *
239 *
240 * wcsutil_dblEq() - Test for equality of two arrays of type double
241 * --
242 * INTERNAL USE ONLY.
243 *
244 * wcsutil_dblEq() tests for equality of two double-precision arrays.
245 *
246 * Given:
247 * nelem int The number of elements in each array.
248 *
249 * tol double Tolerance for comparison of the floating-point values.
250 * For example, for tol == 1e-6, all floating-point
251 * values in the arrays must be equal to the first 6
252 * decimal places. A value of 0 implies exact equality.
253 *
254 * arr1 const double*
255 * The first array.
256 *
257 * arr2 const double*

Generated by Doxygen

422

258 * The second array
259 *
260 * Function return value:
261 * int Status return value:
262 * 0: Not equal.
263 * 1: Equal.
264 *
265 *
266 * wcsutil_intEq() - Test for equality of two arrays of type int
267 * ---
268 * INTERNAL USE ONLY.
269 *
270 * wcsutil_intEq() tests for equality of two int arrays.
271 *
272 * Given:
273 * nelem int The number of elements in each array.
274 *
275 * arr1 const int*
276 * The first array.
277 *
278 * arr2 const int*
279 * The second array
280 *
281 * Function return value:
282 * int Status return value:
283 * 0: Not equal.
284 * 1: Equal.
285 *
286 *
287 * wcsutil_strEq() - Test for equality of two string arrays
288 * --
289 * INTERNAL USE ONLY.
290 *
291 * wcsutil_strEq() tests for equality of two string arrays.
292 *
293 * Given:
294 * nelem int The number of elements in each array.
295 *
296 * arr1 const char**
297 * The first array.
298 *
299 * arr2 const char**
300 * The second array
301 *
302 * Function return value:
303 * int Status return value:
304 * 0: Not equal.
305 * 1: Equal.
306 *
307 *
308 * wcsutil_setAll() - Set a particular vector element
309 * --
310 * INTERNAL USE ONLY.
311 *
312 * wcsutil_setAll() sets the value of a particular element in a set of vectors
313 * of type double.
314 *
315 * Given:
316 * nvec int The number of vectors.
317 *
318 * nelem int The length of each vector.
319 *
320 * Given and returned:
321 * first double* Pointer to the first element in the array, the value
322 * of which is used to set the others
323 *
324 = *(first + nelem) = *first;
325 = *(first + nelem*2) = *first;
326 = :
327 = *(first + nelem*(nvec-1)) = *first;
328 *
329 * The array might be dimensioned as
330 *
331 = double v[nvec][nelem];
332 *
333 * Function return value:
334 * void
335 *
336 *
337 * wcsutil_setAli() - Set a particular vector element
338 * --
339 * INTERNAL USE ONLY.
340 *
341 * wcsutil_setAli() sets the value of a particular element in a set of vectors
342 * of type int.
343 *
344 * Given:

Generated by Doxygen

19.40 wcsutil.h 423

345 * nvec int The number of vectors.
346 *
347 * nelem int The length of each vector.
348 *
349 * Given and returned:
350 * first int* Pointer to the first element in the array, the value
351 * of which is used to set the others
352 *
353 = *(first + nelem) = *first;
354 = *(first + nelem*2) = *first;
355 = :
356 = *(first + nelem*(nvec-1)) = *first;
357 *
358 * The array might be dimensioned as
359 *
360 = int v[nvec][nelem];
361 *
362 * Function return value:
363 * void
364 *
365 *
366 * wcsutil_setBit() - Set bits in selected elements of an array
367 * --
368 * INTERNAL USE ONLY.
369 *
370 * wcsutil_setBit() sets bits in selected elements of an array.
371 *
372 * Given:
373 * nelem int Number of elements in the array.
374 *
375 * sel const int*
376 * Address of a selection array of length nelem. May
377 * be specified as the null pointer in which case all
378 * elements are selected.
379 *
380 * bits int Bit mask.
381 *
382 * Given and returned:
383 * array int* Address of the array of length nelem.
384 *
385 * Function return value:
386 * void
387 *
388 *
389 * wcsutil_fptr2str() - Translate pointer-to-function to string
390 * --
391 * INTERNAL USE ONLY.
392 *
393 * wcsutil_fptr2str() translates a pointer-to-function to hexadecimal string
394 * representation for output. It is used by the various routines that print
395 * the contents of WCSLIB structs, noting that it is not strictly legal to
396 * type-pun a function pointer to void*. See
397 * http://stackoverflow.com/questions/2741683/how-to-format-a-function-pointer
398 *
399 * Given:
400 * fptr void(*)() Pointer to function.
401 *
402 * Returned:
403 * hext char[19] Null-terminated string. Should be at least 19 bytes
404 * in size to accomodate a 64-bit address (16 bytes in
405 * hex), plus the leading "0x" and trailing ’\0’.
406 *
407 * Function return value:
408 * char * The address of hext.
409 *
410 *
411 * wcsutil_double2str() - Translate double to string ignoring the locale
412 * ---
413 * INTERNAL USE ONLY.
414 *
415 * wcsutil_double2str() converts a double to a string, but unlike sprintf() it
416 * ignores the locale and always uses a ’.’ as the decimal separator. Also,
417 * unless it includes an exponent, the formatted value will always have a
418 * fractional part, ".0" being appended if necessary.
419 *
420 * Returned:
421 * buf char * The buffer to write the string into.
422 *
423 * Given:
424 * format char * The formatting directive, such as "%f". This
425 * may be any of the forms accepted by sprintf(), but
426 * should only include a formatting directive and
427 * nothing else. For "%g" and "%G" formats, unless it
428 * includes an exponent, the formatted value will always
429 * have a fractional part, ".0" being appended if
430 * necessary.
431 *

Generated by Doxygen

424

432 * value double The value to convert to a string.
433 *
434 *
435 * wcsutil_str2double() - Translate string to a double, ignoring the locale
436 * --
437 * INTERNAL USE ONLY.
438 *
439 * wcsutil_str2double() converts a string to a double, but unlike sscanf() it
440 * ignores the locale and always expects a ’.’ as the decimal separator.
441 *
442 * Given:
443 * buf char * The string containing the value
444 *
445 * Returned:
446 * value double * The double value parsed from the string.
447 *
448 *
449 * wcsutil_str2double2() - Translate string to doubles, ignoring the locale
450 * --
451 * INTERNAL USE ONLY.
452 *
453 * wcsutil_str2double2() converts a string to a pair of doubles containing the
454 * integer and fractional parts. Unlike sscanf() it ignores the locale and
455 * always expects a ’.’ as the decimal separator.
456 *
457 * Given:
458 * buf char * The string containing the value
459 *
460 * Returned:
461 * value double[2] The double value, split into integer and fractional
462 * parts, parsed from the string.
463 *
464 *===*/
465
466 #ifndef WCSLIB_WCSUTIL
467 #define WCSLIB_WCSUTIL
468
469 #ifdef __cplusplus
470 extern "C" {
471 #endif
472
473 void wcsdealloc(void *ptr);
474
475 void wcsutil_strcvt(int n, char c, int nt, const char src[], char dst[]);
476
477 void wcsutil_blank_fill(int n, char c[]);
478 void wcsutil_null_fill (int n, char c[]);
479
480 int wcsutil_all_ival(int nelem, int ival, const int iarr[]);
481 int wcsutil_all_dval(int nelem, double dval, const double darr[]);
482 int wcsutil_all_sval(int nelem, const char *sval, const char (*sarr)[72]);
483 int wcsutil_allEq (int nvec, int nelem, const double *first);
484
485 int wcsutil_dblEq(int nelem, double tol, const double *arr1,
486 const double *arr2);
487 int wcsutil_intEq(int nelem, const int *arr1, const int *arr2);
488 int wcsutil_strEq(int nelem, char (*arr1)[72], char (*arr2)[72]);
489 void wcsutil_setAll(int nvec, int nelem, double *first);
490 void wcsutil_setAli(int nvec, int nelem, int *first);
491 void wcsutil_setBit(int nelem, const int *sel, int bits, int *array);
492 char *wcsutil_fptr2str(void (*fptr)(void), char hext[19]);
493 void wcsutil_double2str(char *buf, const char *format, double value);
494 int wcsutil_str2double(const char *buf, double *value);
495 int wcsutil_str2double2(const char *buf, double *value);
496
497 #ifdef __cplusplus
498 }
499 #endif
500
501 #endif // WCSLIB_WCSUTIL

19.41 wtbarr.h File Reference

Data Structures

• struct wtbarr

Extraction of coordinate lookup tables from BINTABLE.

Generated by Doxygen

19.42 wtbarr.h 425

19.41.1 Detailed Description

The wtbarr struct is used by wcstab() in extracting coordinate lookup tables from a binary table extension
(BINTABLE) and copying them into the tabprm structs stored in wcsprm.

19.42 wtbarr.h

Go to the documentation of this file.
1 /*==
2 WCSLIB 7.11 - an implementation of the FITS WCS standard.
3 Copyright (C) 1995-2022, Mark Calabretta
4
5 This file is part of WCSLIB.
6
7 WCSLIB is free software: you can redistribute it and/or modify it under the
8 terms of the GNU Lesser General Public License as published by the Free
9 Software Foundation, either version 3 of the License, or (at your option)
10 any later version.
11
12 WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
15 more details.
16
17 You should have received a copy of the GNU Lesser General Public License
18 along with WCSLIB. If not, see http://www.gnu.org/licenses.
19
20 Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
21 http://www.atnf.csiro.au/people/Mark.Calabretta
22 $Id: wtbarr.h,v 7.11 2022/04/26 06:13:52 mcalabre Exp $
23 *===
24 *
25 * WCSLIB 7.11 - C routines that implement the FITS World Coordinate System
26 * (WCS) standard. Refer to the README file provided with WCSLIB for an
27 * overview of the library.
28 *
29 *
30 * Summary of the wtbarr struct
31 * ----------------------------
32 * The wtbarr struct is used by wcstab() in extracting coordinate lookup tables
33 * from a binary table extension (BINTABLE) and copying them into the tabprm
34 * structs stored in wcsprm.
35 *
36 *
37 * wtbarr struct - Extraction of coordinate lookup tables from BINTABLE
38 * --
39 * Function wcstab(), which is invoked automatically by wcspih(), sets up an
40 * array of wtbarr structs to assist in extracting coordinate lookup tables
41 * from a binary table extension (BINTABLE) and copying them into the tabprm
42 * structs stored in wcsprm. Refer to the usage notes for wcspih() and
43 * wcstab() in wcshdr.h, and also the prologue to tab.h.
44 *
45 * For C++ usage, because of a name space conflict with the wtbarr typedef
46 * defined in CFITSIO header fitsio.h, the wtbarr struct is renamed to wtbarr_s
47 * by preprocessor macro substitution with scope limited to wtbarr.h itself,
48 * and similarly in wcs.h.
49 *
50 * int i
51 * (Given) Image axis number.
52 *
53 * int m
54 * (Given) wcstab array axis number for index vectors.
55 *
56 * int kind
57 * (Given) Character identifying the wcstab array type:
58 * - c: coordinate array,
59 * - i: index vector.
60 *
61 * char extnam[72]
62 * (Given) EXTNAME identifying the binary table extension.
63 *
64 * int extver
65 * (Given) EXTVER identifying the binary table extension.
66 *
67 * int extlev
68 * (Given) EXTLEV identifying the binary table extension.
69 *
70 * char ttype[72]
71 * (Given) TTYPEn identifying the column of the binary table that contains
72 * the wcstab array.

Generated by Doxygen

426

73 *
74 * long row
75 * (Given) Table row number.
76 *
77 * int ndim
78 * (Given) Expected dimensionality of the wcstab array.
79 *
80 * int *dimlen
81 * (Given) Address of the first element of an array of int of length ndim
82 * into which the wcstab array axis lengths are to be written.
83 *
84 * double **arrayp
85 * (Given) Pointer to an array of double which is to be allocated by the
86 * user and into which the wcstab array is to be written.
87 *
88 *===*/
89
90 #ifndef WCSLIB_WTBARR
91 #define WCSLIB_WTBARR
92
93 #ifdef __cplusplus
94 extern "C" {
95 #define wtbarr wtbarr_s // See prologue above.
96 #endif
97 // For extracting wcstab arrays. Matches
98 // the wtbarr typedef defined in CFITSIO
99 // header fitsio.h.
100 struct wtbarr {
101 int i; // Image axis number.
102 int m; // Array axis number for index vectors.
103 int kind; // wcstab array type.
104 char extnam[72]; // EXTNAME of binary table extension.
105 int extver; // EXTVER of binary table extension.
106 int extlev; // EXTLEV of binary table extension.
107 char ttype[72]; // TTYPEn of column containing the array.
108 long row; // Table row number.
109 int ndim; // Expected wcstab array dimensionality.
110 int *dimlen; // Where to write the array axis lengths.
111 double **arrayp; // Where to write the address of the array
112 // allocated to store the wcstab array.
113 };
114
115 #ifdef __cplusplus
116 #undef wtbarr
117 }
118 #endif
119
120 #endif // WCSLIB_WTBARR

19.43 wcslib.h File Reference

#include "cel.h"
#include "dis.h"
#include "fitshdr.h"
#include "lin.h"
#include "log.h"
#include "prj.h"
#include "spc.h"
#include "sph.h"
#include "spx.h"
#include "tab.h"
#include "wcs.h"
#include "wcserr.h"
#include "wcsfix.h"
#include "wcshdr.h"
#include "wcsmath.h"
#include "wcsprintf.h"
#include "wcstrig.h"
#include "wcsunits.h"
#include "wcsutil.h"
#include "wtbarr.h"

Generated by Doxygen

19.44 wcslib.h 427

19.43.1 Detailed Description

This header file is provided purely for convenience. Use it to include all of the separate WCSLIB headers.

19.44 wcslib.h

Go to the documentation of this file.
1 /*==
2 WCSLIB 7.11 - an implementation of the FITS WCS standard.
3 Copyright (C) 1995-2022, Mark Calabretta
4
5 This file is part of WCSLIB.
6
7 WCSLIB is free software: you can redistribute it and/or modify it under the
8 terms of the GNU Lesser General Public License as published by the Free
9 Software Foundation, either version 3 of the License, or (at your option)
10 any later version.
11
12 WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
15 more details.
16
17 You should have received a copy of the GNU Lesser General Public License
18 along with WCSLIB. If not, see http://www.gnu.org/licenses.
19
20 Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
21 http://www.atnf.csiro.au/people/Mark.Calabretta
22 $Id: wcslib.h,v 7.11 2022/04/26 06:13:52 mcalabre Exp $
23 *===
24 *
25 * WCSLIB 7.11 - C routines that implement the FITS World Coordinate System
26 * (WCS) standard. Refer to the README file provided with WCSLIB for an
27 * overview of the library.
28 *
29 * Summary of wcslib.h
30 * -------------------
31 * This header file is provided purely for convenience. Use it to include all
32 * of the separate WCSLIB headers.
33 *
34 *===*/
35
36 #ifndef WCSLIB_WCSLIB
37 #define WCSLIB_WCSLIB
38
39 #include "cel.h"
40 #include "dis.h"
41 #include "fitshdr.h"
42 #include "lin.h"
43 #include "log.h"
44 #include "prj.h"
45 #include "spc.h"
46 #include "sph.h"
47 #include "spx.h"
48 #include "tab.h"
49 #include "wcs.h"
50 #include "wcserr.h"
51 #include "wcsfix.h"
52 #include "wcshdr.h"
53 #include "wcsmath.h"
54 #include "wcsprintf.h"
55 #include "wcstrig.h"
56 #include "wcsunits.h"
57 #include "wcsutil.h"
58 #include "wtbarr.h"
59
60 #endif // WCSLIB_WCSLIB
3582 wcserr_enable(1);
3583 wcsprintf_set(stderr);
3584
3585 ...
3586
3587 if (wcsset(&wcs) {
3588 wcsperr(&wcs);
3589 return wcs.err->status;
3590 }
3591 @endverbatim
3592 In this example, if an error was generated in one of the prjset() functions,
3593 wcsperr() would print an error traceback starting with wcsset(), then
3594 celset(), and finally the particular projection-setting function that

Generated by Doxygen

428

3595 generated the error. For each of them it would print the status return value,
3596 function name, source file, line number, and an error message which may be
3597 more specific and informative than the general error messages reported in the
3598 first example. For example, in response to a deliberately generated error,
3599 the @c twcs test program, which tests wcserr among other things, produces a
3600 traceback similar to this:
3601 @verbatim
3602 ERROR 5 in wcsset() at line 1564 of file wcs.c:
3603 Invalid parameter value.
3604 ERROR 2 in celset() at line 196 of file cel.c:
3605 Invalid projection parameters.
3606 ERROR 2 in bonset() at line 5727 of file prj.c:
3607 Invalid parameters for Bonne’s projection.
3608 @endverbatim
3609
3610 Each of the @ref structs "structs" in @ref overview "WCSLIB" includes a
3611 pointer, called @a err, to a wcserr struct. When an error occurs, a struct is
3612 allocated and error information stored in it. The wcserr pointers and the
3613 @ref memory "memory" allocated for them are managed by the routines that
3614 manage the various structs such as wcsinit() and wcsfree().
3615
3616 wcserr messaging is an opt-in system enabled via wcserr_enable(), as in the
3617 example above. If enabled, when an error occurs it is the user’s
3618 responsibility to free the memory allocated for the error message using
3619 wcsfree(), celfree(), prjfree(), etc. Failure to do so before the struct goes
3620 out of scope will result in memory leaks (if execution continues beyond the
3621 error).
3622 */
3623
3624

Generated by Doxygen

Index

acosd
wcstrig.h, 391

affine
linprm, 39

afrq
spxprm, 50

afrqfreq
spx.h, 234

airs2x
prj.h, 176

airset
prj.h, 175

airx2s
prj.h, 176

aits2x
prj.h, 179

aitset
prj.h, 179

aitx2s
prj.h, 179

alt
wcsprm, 66

altlin
wcsprm, 65

arcs2x
prj.h, 174

arcset
prj.h, 174

arcx2s
prj.h, 174

arrayp
wtbarr, 78

asind
wcstrig.h, 391

atan2d
wcstrig.h, 392

atand
wcstrig.h, 392

aux
wcsprm, 72

AUXLEN
wcs.h, 268

auxprm, 22
crln_obs, 23
dsun_obs, 23
hgln_obs, 23
hglt_obs, 23
rsun_ref, 22

auxsize
wcs.h, 277

awav
spxprm, 51

awavfreq
spx.h, 235

awavvelo

spx.h, 238
awavwave

spx.h, 236
axmap

disprm, 28
azps2x

prj.h, 172
azpset

prj.h, 172
azpx2s

prj.h, 172

bepoch
wcsprm, 69

beta
spxprm, 51

betavelo
spx.h, 236

bons2x
prj.h, 181

bonset
prj.h, 181

bonx2s
prj.h, 181

bounds
prjprm, 41

c
fitskey, 34

cars2x
prj.h, 177

carset
prj.h, 177

carx2s
prj.h, 177

category
prjprm, 42

cd
wcsprm, 64

cdelt
linprm, 37
wcsprm, 62

CDFIX
wcsfix.h, 323

cdfix
wcsfix.h, 326

ceas2x
prj.h, 177

ceaset
prj.h, 176

ceax2s
prj.h, 176

cel
wcsprm, 74

cel.h, 78, 86
cel_errmsg, 86

Generated by Doxygen

430 INDEX

cel_errmsg_enum, 81
CELERR_BAD_COORD_TRANS, 81
CELERR_BAD_PARAM, 81
CELERR_BAD_PIX, 81
CELERR_BAD_WORLD, 81
CELERR_ILL_COORD_TRANS, 81
CELERR_NULL_POINTER, 81
CELERR_SUCCESS, 81
celfree, 82
celini, 81
celini_errmsg, 80
CELLEN, 80
celperr, 83
celprt, 83
celprt_errmsg, 80
cels2x, 85
cels2x_errmsg, 81
celset, 83
celset_errmsg, 80
celsize, 82
celx2s, 84
celx2s_errmsg, 81

cel_errmsg
cel.h, 86

cel_errmsg_enum
cel.h, 81

CELERR_BAD_COORD_TRANS
cel.h, 81

CELERR_BAD_PARAM
cel.h, 81

CELERR_BAD_PIX
cel.h, 81

CELERR_BAD_WORLD
cel.h, 81

CELERR_ILL_COORD_TRANS
cel.h, 81

CELERR_NULL_POINTER
cel.h, 81

CELERR_SUCCESS
cel.h, 81

CELFIX
wcsfix.h, 323

celfix
wcsfix.h, 330

celfree
cel.h, 82

celini
cel.h, 81

celini_errmsg
cel.h, 80

CELLEN
cel.h, 80

celperr
cel.h, 83

celprm, 23
err, 25
euler, 25
flag, 24

isolat, 25
latpreq, 25
offset, 24
padding, 26
phi0, 24
prj, 25
ref, 24
theta0, 24

celprt
cel.h, 83

celprt_errmsg
cel.h, 80

cels2x
cel.h, 85

cels2x_errmsg
cel.h, 81

celset
cel.h, 83

celset_errmsg
cel.h, 80

celsize
cel.h, 82

celx2s
cel.h, 84

celx2s_errmsg
cel.h, 81

cname
wcsprm, 66

code
prjprm, 41
spcprm, 47

cods2x
prj.h, 180

codset
prj.h, 180

codx2s
prj.h, 180

coes2x
prj.h, 180

coeset
prj.h, 180

coex2s
prj.h, 180

colax
wcsprm, 66

colnum
wcsprm, 66

comment
fitskey, 35

conformal
prjprm, 43

CONIC
prj.h, 184

CONVENTIONAL
prj.h, 184

coord
tabprm, 56

coos2x

Generated by Doxygen

INDEX 431

prj.h, 181
cooset

prj.h, 181
coox2s

prj.h, 181
cops2x

prj.h, 180
copset

prj.h, 179
copx2s

prj.h, 179
cosd

wcstrig.h, 390
count

fitskeyid, 35
cperi

wcsprm, 67
crder

wcsprm, 66
crln_obs

auxprm, 23
crota

wcsprm, 65
crpix

linprm, 37
wcsprm, 62

crval
spcprm, 47
tabprm, 55
wcsprm, 63

cscs2x
prj.h, 183

cscset
prj.h, 182

cscx2s
prj.h, 182

csyer
wcsprm, 66

ctype
wcsprm, 63

cubeface
wcsprm, 73

cunit
wcsprm, 63

CYLFIX
wcsfix.h, 323

cylfix
wcsfix.h, 330

cylfix_errmsg
wcsfix.h, 323

CYLINDRICAL
prj.h, 184

cyps2x
prj.h, 176

cypset
prj.h, 176

cypx2s
prj.h, 176

czphs
wcsprm, 67

D2R
wcsmath.h, 382

dafrqfreq
spxprm, 51

dateavg
wcsprm, 68

datebeg
wcsprm, 68

dateend
wcsprm, 68

dateobs
wcsprm, 68

dateref
wcsprm, 68

DATFIX
wcsfix.h, 323

datfix
wcsfix.h, 326

dawavfreq
spxprm, 52

dawavvelo
spxprm, 53

dawavwave
spxprm, 53

dbetavelo
spxprm, 53

delta
tabprm, 56

denerfreq
spxprm, 51

dfreqafrq
spxprm, 51

dfreqawav
spxprm, 52

dfreqener
spxprm, 51

dfreqvelo
spxprm, 52

dfreqvrad
spxprm, 52

dfreqwave
spxprm, 52

dfreqwavn
spxprm, 51

dimlen
wtbarr, 78

dis.h, 91, 106
dis_errmsg, 106
dis_errmsg_enum, 97
discpy, 100
DISERR_BAD_PARAM, 97
DISERR_DEDISTORT, 97
DISERR_DISTORT, 97
DISERR_MEMORY, 97
DISERR_NULL_POINTER, 97
DISERR_SUCCESS, 97

Generated by Doxygen

432 INDEX

disfree, 101
dishdo, 102
disini, 99
disinit, 99
DISLEN, 97
disndp, 97
disp2x, 103
DISP2X_ARGS, 97
disperr, 102
disprt, 102
disset, 103
dissize, 101
diswarp, 104
disx2p, 103
DISX2P_ARGS, 97
dpfill, 98
dpkeyd, 99
dpkeyi, 99
DPLEN, 97

dis_errmsg
dis.h, 106

dis_errmsg_enum
dis.h, 97

discpy
dis.h, 100

DISERR_BAD_PARAM
dis.h, 97

DISERR_DEDISTORT
dis.h, 97

DISERR_DISTORT
dis.h, 97

DISERR_MEMORY
dis.h, 97

DISERR_NULL_POINTER
dis.h, 97

DISERR_SUCCESS
dis.h, 97

disfree
dis.h, 101

dishdo
dis.h, 102

disini
dis.h, 99

disinit
dis.h, 99

DISLEN
dis.h, 97

disndp
dis.h, 97

disp2x
dis.h, 103
disprm, 29

DISP2X_ARGS
dis.h, 97

disperr
dis.h, 102

dispre
linprm, 38

disprm, 26
axmap, 28
disp2x, 29
disx2p, 29
docorr, 28
dp, 27
dparm, 29
dtype, 27
err, 29
flag, 27
i_naxis, 29
iparm, 29
m_dp, 30
m_dtype, 30
m_flag, 29
m_maxdis, 30
m_naxis, 30
maxdis, 28
naxis, 27
ndis, 29
ndp, 27
ndpmax, 27
Nhat, 28
offset, 28
scale, 29
tmpmem, 29
totdis, 28

disprt
dis.h, 102

disseq
linprm, 38

disset
dis.h, 103

dissize
dis.h, 101

diswarp
dis.h, 104

disx2p
dis.h, 103
disprm, 29

DISX2P_ARGS
dis.h, 97

divergent
prjprm, 43

docorr
disprm, 28

dp
disprm, 27

dparm
disprm, 29

dpfill
dis.h, 98

dpkey, 30
f, 31
field, 30
i, 31
j, 31
type, 31

Generated by Doxygen

INDEX 433

value, 31
dpkeyd

dis.h, 99
dpkeyi

dis.h, 99
DPLEN

dis.h, 97
dsun_obs

auxprm, 23
dtype

disprm, 27
dveloawav

spxprm, 53
dvelobeta

spxprm, 53
dvelofreq

spxprm, 52
dvelowave

spxprm, 53
dvoptwave

spxprm, 52
dvradfreq

spxprm, 52
dwaveawav

spxprm, 53
dwavefreq

spxprm, 52
dwavevelo

spxprm, 53
dwavevopt

spxprm, 52
dwavezopt

spxprm, 53
dwavnfreq

spxprm, 52
dzoptwave

spxprm, 53

ener
spxprm, 50

enerfreq
spx.h, 234

equiareal
prjprm, 43

equinox
wcsprm, 71

err
celprm, 25
disprm, 29
linprm, 39
prjprm, 43
spcprm, 48
spxprm, 53
tabprm, 57
wcsprm, 74

ERRLEN
wcserr.h, 313

euler
celprm, 25

extlev
wtbarr, 78

extnam
wtbarr, 77

extrema
tabprm, 56

extver
wtbarr, 77

f
dpkey, 31
fitskey, 34

field
dpkey, 30

file
wcserr, 58

fits_read_wcstab
getwcstab.h, 130

fitshdr
fitshdr.h, 122

fitshdr.h, 119, 124
fitshdr, 122
FITSHDR_CARD, 121
FITSHDR_COMMENT, 121
fitshdr_errmsg, 124
fitshdr_errmsg_enum, 122
FITSHDR_KEYREC, 121
FITSHDR_KEYVALUE, 121
FITSHDR_KEYWORD, 121
FITSHDR_TRAILER, 121
FITSHDRERR_DATA_TYPE, 122
FITSHDRERR_FLEX_PARSER, 122
FITSHDRERR_MEMORY, 122
FITSHDRERR_NULL_POINTER, 122
FITSHDRERR_SUCCESS, 122
int64, 122
KEYIDLEN, 121
KEYLEN, 121

FITSHDR_CARD
fitshdr.h, 121

FITSHDR_COMMENT
fitshdr.h, 121

fitshdr_errmsg
fitshdr.h, 124

fitshdr_errmsg_enum
fitshdr.h, 122

FITSHDR_KEYREC
fitshdr.h, 121

FITSHDR_KEYVALUE
fitshdr.h, 121

FITSHDR_KEYWORD
fitshdr.h, 121

FITSHDR_TRAILER
fitshdr.h, 121

FITSHDRERR_DATA_TYPE
fitshdr.h, 122

FITSHDRERR_FLEX_PARSER
fitshdr.h, 122

FITSHDRERR_MEMORY

Generated by Doxygen

434 INDEX

fitshdr.h, 122
FITSHDRERR_NULL_POINTER

fitshdr.h, 122
FITSHDRERR_SUCCESS

fitshdr.h, 122
fitskey, 31

c, 34
comment, 35
f, 34
i, 34
k, 34
keyid, 32
keyno, 32
keyvalue, 34
keyword, 32
l, 34
padding, 33
s, 34
status, 32
type, 33
ulen, 34

fitskeyid, 35
count, 35
idx, 35
name, 35

FIXERR_BAD_COORD_TRANS
wcsfix.h, 325

FIXERR_BAD_CORNER_PIX
wcsfix.h, 325

FIXERR_BAD_CTYPE
wcsfix.h, 325

FIXERR_BAD_PARAM
wcsfix.h, 325

FIXERR_DATE_FIX
wcsfix.h, 325

FIXERR_ILL_COORD_TRANS
wcsfix.h, 325

FIXERR_MEMORY
wcsfix.h, 325

FIXERR_NO_CHANGE
wcsfix.h, 325

FIXERR_NO_REF_PIX_COORD
wcsfix.h, 325

FIXERR_NO_REF_PIX_VAL
wcsfix.h, 325

FIXERR_NULL_POINTER
wcsfix.h, 325

FIXERR_OBSGEO_FIX
wcsfix.h, 325

FIXERR_SINGULAR_MTX
wcsfix.h, 325

FIXERR_SPC_UPDATE
wcsfix.h, 325

FIXERR_SUCCESS
wcsfix.h, 325

FIXERR_UNITS_ALIAS
wcsfix.h, 325

flag

celprm, 24
disprm, 27
linprm, 36
prjprm, 40
spcprm, 46
tabprm, 55
wcsprm, 61

freq
spxprm, 50

freqafrq
spx.h, 234

freqawav
spx.h, 235

freqener
spx.h, 234

freqvelo
spx.h, 236

freqvrad
spx.h, 237

freqwave
spx.h, 235

freqwavn
spx.h, 235

function
wcserr, 58

getwcstab.h, 129, 131
fits_read_wcstab, 130

global
prjprm, 43

HEALPIX
prj.h, 185

hgln_obs
auxprm, 23

hglt_obs
auxprm, 23

hpxs2x
prj.h, 183

hpxset
prj.h, 183

hpxx2s
prj.h, 183

i
dpkey, 31
fitskey, 34
pscard, 44
pvcard, 45
wtbarr, 77

i_naxis
disprm, 29
linprm, 38

idx
fitskeyid, 35

imgpix
linprm, 38

index
tabprm, 56

Generated by Doxygen

INDEX 435

int64
fitshdr.h, 122

iparm
disprm, 29

isGrism
spcprm, 47

isolat
celprm, 25

j
dpkey, 31

jepoch
wcsprm, 69

K
tabprm, 55

k
fitskey, 34

keyid
fitskey, 32

KEYIDLEN
fitshdr.h, 121

KEYLEN
fitshdr.h, 121

keyno
fitskey, 32

keyvalue
fitskey, 34

keyword
fitskey, 32

kind
wtbarr, 77

l
fitskey, 34

lat
wcsprm, 73

latpole
wcsprm, 63

latpreq
celprm, 25

lattyp
wcsprm, 73

lin
wcsprm, 74

lin.h, 133, 145
lin_errmsg, 145
lin_errmsg_enum, 136
lincpy, 139
lincpy_errmsg, 135
lindis, 138
lindist, 138
LINERR_DEDISTORT, 137
LINERR_DISTORT, 137
LINERR_DISTORT_INIT, 137
LINERR_MEMORY, 137
LINERR_NULL_POINTER, 137
LINERR_SINGULAR_MTX, 137
LINERR_SUCCESS, 137

linfree, 139
linfree_errmsg, 136
linini, 137
linini_errmsg, 135
lininit, 137
LINLEN, 135
linp2x, 141
linp2x_errmsg, 136
linperr, 140
linprt, 140
linprt_errmsg, 136
linset, 141
linset_errmsg, 136
linsize, 140
linwarp, 143
linx2p, 143
linx2p_errmsg, 136
matinv, 145

lin_errmsg
lin.h, 145

lin_errmsg_enum
lin.h, 136

lincpy
lin.h, 139

lincpy_errmsg
lin.h, 135

lindis
lin.h, 138

lindist
lin.h, 138

line_no
wcserr, 58

LINERR_DEDISTORT
lin.h, 137

LINERR_DISTORT
lin.h, 137

LINERR_DISTORT_INIT
lin.h, 137

LINERR_MEMORY
lin.h, 137

LINERR_NULL_POINTER
lin.h, 137

LINERR_SINGULAR_MTX
lin.h, 137

LINERR_SUCCESS
lin.h, 137

linfree
lin.h, 139

linfree_errmsg
lin.h, 136

linini
lin.h, 137

linini_errmsg
lin.h, 135

lininit
lin.h, 137

LINLEN
lin.h, 135

Generated by Doxygen

436 INDEX

linp2x
lin.h, 141

linp2x_errmsg
lin.h, 136

linperr
lin.h, 140

linprm, 36
affine, 39
cdelt, 37
crpix, 37
dispre, 38
disseq, 38
err, 39
flag, 36
i_naxis, 38
imgpix, 38
m_cdelt, 39
m_crpix, 39
m_dispre, 39
m_disseq, 39
m_flag, 39
m_naxis, 39
m_pc, 39
naxis, 37
pc, 37
piximg, 38
simple, 39
tmpcrd, 39
unity, 38

linprt
lin.h, 140

linprt_errmsg
lin.h, 136

linset
lin.h, 141

linset_errmsg
lin.h, 136

linsize
lin.h, 140

linwarp
lin.h, 143

linx2p
lin.h, 143

linx2p_errmsg
lin.h, 136

lng
wcsprm, 73

lngtyp
wcsprm, 73

log.h, 154, 157
log_errmsg, 157
log_errmsg_enum, 155
LOGERR_BAD_LOG_REF_VAL, 155
LOGERR_BAD_WORLD, 155
LOGERR_BAD_X, 155
LOGERR_NULL_POINTER, 155
LOGERR_SUCCESS, 155
logs2x, 156

logx2s, 155
log_errmsg

log.h, 157
log_errmsg_enum

log.h, 155
LOGERR_BAD_LOG_REF_VAL

log.h, 155
LOGERR_BAD_WORLD

log.h, 155
LOGERR_BAD_X

log.h, 155
LOGERR_NULL_POINTER

log.h, 155
LOGERR_SUCCESS

log.h, 155
logs2x

log.h, 156
logx2s

log.h, 155
lonpole

wcsprm, 63

M
tabprm, 55

m
prjprm, 44
pscard, 45
pvcard, 45
wtbarr, 77

m_aux
wcsprm, 76

m_cd
wcsprm, 75

m_cdelt
linprm, 39
wcsprm, 75

m_cname
wcsprm, 76

m_colax
wcsprm, 76

m_coord
tabprm, 58

m_cperi
wcsprm, 76

m_crder
wcsprm, 76

m_crota
wcsprm, 75

m_crpix
linprm, 39
wcsprm, 75

m_crval
tabprm, 57
wcsprm, 75

m_csyer
wcsprm, 76

m_ctype
wcsprm, 75

m_cunit

Generated by Doxygen

INDEX 437

wcsprm, 75
m_czphs

wcsprm, 76
m_dispre

linprm, 39
m_disseq

linprm, 39
m_dp

disprm, 30
m_dtype

disprm, 30
m_flag

disprm, 29
linprm, 39
tabprm, 57
wcsprm, 74

m_index
tabprm, 57

m_indxs
tabprm, 57

m_K
tabprm, 57

m_M
tabprm, 57

m_map
tabprm, 57

m_maxdis
disprm, 30

m_N
tabprm, 57

m_naxis
disprm, 30
linprm, 39
wcsprm, 75

m_pc
linprm, 39
wcsprm, 75

m_ps
wcsprm, 75

m_pv
wcsprm, 75

m_tab
wcsprm, 76

m_wtb
wcsprm, 76

map
tabprm, 55

matinv
lin.h, 145

maxdis
disprm, 28

mers2x
prj.h, 177

merset
prj.h, 177

merx2s
prj.h, 177

mjdavg

wcsprm, 69
mjdbeg

wcsprm, 69
mjdend

wcsprm, 69
mjdobs

wcsprm, 69
mjdref

wcsprm, 68
mols2x

prj.h, 179
molset

prj.h, 178
molx2s

prj.h, 179
msg

wcserr, 59

n
prjprm, 44

name
fitskeyid, 35
prjprm, 42

naxis
disprm, 27
linprm, 37
wcsprm, 62

nc
tabprm, 56

ndim
wtbarr, 78

ndis
disprm, 29

ndp
disprm, 27

ndpmax
disprm, 27

Nhat
disprm, 28

nps
wcsprm, 64

npsmax
wcsprm, 64

npv
wcsprm, 64

npvmax
wcsprm, 64

ntab
wcsprm, 72

NWCSFIX
wcsfix.h, 323

nwtb
wcsprm, 72

OBSFIX
wcsfix.h, 323

obsfix
wcsfix.h, 327

obsgeo

Generated by Doxygen

438 INDEX

wcsprm, 70
obsorbit

wcsprm, 71
offset

celprm, 24
disprm, 28

p0
tabprm, 56

padding
celprm, 26
fitskey, 33
prjprm, 43
spxprm, 54
tabprm, 56

padding1
spcprm, 48

padding2
spcprm, 48

pars2x
prj.h, 178

parset
prj.h, 178

parx2s
prj.h, 178

pc
linprm, 37
wcsprm, 62

pcos2x
prj.h, 182

pcoset
prj.h, 181

pcox2s
prj.h, 182

phi0
celprm, 24
prjprm, 41

PI
wcsmath.h, 382

piximg
linprm, 38

plephem
wcsprm, 67

POLYCONIC
prj.h, 184

prj
celprm, 25

prj.h, 159, 185
airs2x, 176
airset, 175
airx2s, 176
aits2x, 179
aitset, 179
aitx2s, 179
arcs2x, 174
arcset, 174
arcx2s, 174
azps2x, 172
azpset, 172

azpx2s, 172
bons2x, 181
bonset, 181
bonx2s, 181
cars2x, 177
carset, 177
carx2s, 177
ceas2x, 177
ceaset, 176
ceax2s, 176
cods2x, 180
codset, 180
codx2s, 180
coes2x, 180
coeset, 180
coex2s, 180
CONIC, 184
CONVENTIONAL, 184
coos2x, 181
cooset, 181
coox2s, 181
cops2x, 180
copset, 179
copx2s, 179
cscs2x, 183
cscset, 182
cscx2s, 182
CYLINDRICAL, 184
cyps2x, 176
cypset, 176
cypx2s, 176
HEALPIX, 185
hpxs2x, 183
hpxset, 183
hpxx2s, 183
mers2x, 177
merset, 177
merx2s, 177
mols2x, 179
molset, 178
molx2s, 179
pars2x, 178
parset, 178
parx2s, 178
pcos2x, 182
pcoset, 181
pcox2s, 182
POLYCONIC, 184
prj_categories, 185
prj_codes, 185
prj_errmsg, 184
prj_errmsg_enum, 167
prj_ncode, 185
prjbchk, 169
PRJERR_BAD_PARAM, 167
PRJERR_BAD_PIX, 167
PRJERR_BAD_WORLD, 167
PRJERR_NULL_POINTER, 167

Generated by Doxygen

INDEX 439

PRJERR_SUCCESS, 167
prjfree, 168
prjini, 167
prjini_errmsg, 166
PRJLEN, 166
prjperr, 169
prjprt, 169
prjprt_errmsg, 166
prjs2x, 171
PRJS2X_ARGS, 166
prjs2x_errmsg, 167
prjset, 170
prjset_errmsg, 167
prjsize, 168
prjx2s, 171
PRJX2S_ARGS, 166
prjx2s_errmsg, 167
PSEUDOCYLINDRICAL, 184
PVN, 166
qscs2x, 183
qscset, 183
qscx2s, 183
QUADCUBE, 185
sfls2x, 178
sflset, 178
sflx2s, 178
sins2x, 174
sinset, 174
sinx2s, 174
stgs2x, 174
stgset, 173
stgx2s, 173
szps2x, 173
szpset, 172
szpx2s, 173
tans2x, 173
tanset, 173
tanx2s, 173
tscs2x, 182
tscset, 182
tscx2s, 182
xphs2x, 184
xphset, 184
xphx2s, 184
zeas2x, 175
zeaset, 175
zeax2s, 175
ZENITHAL, 185
zpns2x, 175
zpnset, 175
zpnx2s, 175

prj_categories
prj.h, 185

prj_codes
prj.h, 185

prj_errmsg
prj.h, 184

prj_errmsg_enum

prj.h, 167
prj_ncode

prj.h, 185
prjbchk

prj.h, 169
PRJERR_BAD_PARAM

prj.h, 167
PRJERR_BAD_PIX

prj.h, 167
PRJERR_BAD_WORLD

prj.h, 167
PRJERR_NULL_POINTER

prj.h, 167
PRJERR_SUCCESS

prj.h, 167
prjfree

prj.h, 168
prjini

prj.h, 167
prjini_errmsg

prj.h, 166
PRJLEN

prj.h, 166
prjperr

prj.h, 169
prjprm, 40

bounds, 41
category, 42
code, 41
conformal, 43
divergent, 43
equiareal, 43
err, 43
flag, 40
global, 43
m, 44
n, 44
name, 42
padding, 43
phi0, 41
prjs2x, 44
prjx2s, 44
pv, 41
pvrange, 42
r0, 41
simplezen, 42
theta0, 41
w, 43
x0, 43
y0, 43

prjprt
prj.h, 169

prjprt_errmsg
prj.h, 166

prjs2x
prj.h, 171
prjprm, 44

PRJS2X_ARGS

Generated by Doxygen

440 INDEX

prj.h, 166
prjs2x_errmsg

prj.h, 167
prjset

prj.h, 170
prjset_errmsg

prj.h, 167
prjsize

prj.h, 168
prjx2s

prj.h, 171
prjprm, 44

PRJX2S_ARGS
prj.h, 166

prjx2s_errmsg
prj.h, 167

ps
wcsprm, 64

pscard, 44
i, 44
m, 45
value, 45

PSEUDOCYLINDRICAL
prj.h, 184

PSLEN
wcs.h, 268

pv
prjprm, 41
spcprm, 47
wcsprm, 64

pvcard, 45
i, 45
m, 45
value, 45

PVLEN
wcs.h, 268

PVN
prj.h, 166

pvrange
prjprm, 42

qscs2x
prj.h, 183

qscset
prj.h, 183

qscx2s
prj.h, 183

QUADCUBE
prj.h, 185

r0
prjprm, 41

R2D
wcsmath.h, 383

radesys
wcsprm, 71

ref
celprm, 24

restfrq

spcprm, 47
spxprm, 50
wcsprm, 63

restwav
spcprm, 47
spxprm, 50
wcsprm, 64

row
wtbarr, 78

rsun_ref
auxprm, 22

s
fitskey, 34

scale
disprm, 29

sense
tabprm, 56

set_M
tabprm, 57

sfls2x
prj.h, 178

sflset
prj.h, 178

sflx2s
prj.h, 178

simple
linprm, 39

simplezen
prjprm, 42

sincosd
wcstrig.h, 390

sind
wcstrig.h, 390

sins2x
prj.h, 174

sinset
prj.h, 174

sinx2s
prj.h, 174

spc
wcsprm, 74

spc.h, 195, 211
spc_errmsg, 210
spc_errmsg_enum, 200
spcaips, 208
SPCERR_BAD_SPEC, 200
SPCERR_BAD_SPEC_PARAMS, 200
SPCERR_BAD_X, 200
SPCERR_NO_CHANGE, 200
SPCERR_NULL_POINTER, 200
SPCERR_SUCCESS, 200
spcfree, 201
spcini, 200
spcini_errmsg, 199
SPCLEN, 199
spcperr, 202
spcprt, 202
spcprt_errmsg, 199

Generated by Doxygen

INDEX 441

spcs2x, 203
spcs2x_errmsg, 200
spcset, 202
spcset_errmsg, 200
spcsize, 201
spcspx, 209
spcspxe, 205
spctrn, 210
spctrne, 207
spctyp, 209
spctype, 204
spcx2s, 203
spcx2s_errmsg, 200
spcxps, 210
spcxpse, 206

spc_errmsg
spc.h, 210

spc_errmsg_enum
spc.h, 200

spcaips
spc.h, 208

SPCERR_BAD_SPEC
spc.h, 200

SPCERR_BAD_SPEC_PARAMS
spc.h, 200

SPCERR_BAD_X
spc.h, 200

SPCERR_NO_CHANGE
spc.h, 200

SPCERR_NULL_POINTER
spc.h, 200

SPCERR_SUCCESS
spc.h, 200

SPCFIX
wcsfix.h, 323

spcfix
wcsfix.h, 329

spcfree
spc.h, 201

spcini
spc.h, 200

spcini_errmsg
spc.h, 199

SPCLEN
spc.h, 199

spcperr
spc.h, 202

spcprm, 46
code, 47
crval, 47
err, 48
flag, 46
isGrism, 47
padding1, 48
padding2, 48
pv, 47
restfrq, 47
restwav, 47

spxP2S, 48
spxP2X, 48
spxS2P, 48
spxX2P, 48
type, 46
w, 47

spcprt
spc.h, 202

spcprt_errmsg
spc.h, 199

spcs2x
spc.h, 203

spcs2x_errmsg
spc.h, 200

spcset
spc.h, 202

spcset_errmsg
spc.h, 200

spcsize
spc.h, 201

spcspx
spc.h, 209

spcspxe
spc.h, 205

spctrn
spc.h, 210

spctrne
spc.h, 207

spctyp
spc.h, 209

spctype
spc.h, 204

spcx2s
spc.h, 203

spcx2s_errmsg
spc.h, 200

spcxps
spc.h, 210

spcxpse
spc.h, 206

spec
wcsprm, 73

specsys
wcsprm, 71

specx
spx.h, 233

sph.h, 222, 225
sphdpa, 224
sphpad, 225
sphs2x, 223
sphx2s, 222

sphdpa
sph.h, 224

sphpad
sph.h, 225

sphs2x
sph.h, 223

sphx2s

Generated by Doxygen

442 INDEX

sph.h, 222
spx.h, 228, 239

afrqfreq, 234
awavfreq, 235
awavvelo, 238
awavwave, 236
betavelo, 236
enerfreq, 234
freqafrq, 234
freqawav, 235
freqener, 234
freqvelo, 236
freqvrad, 237
freqwave, 235
freqwavn, 235
specx, 233
SPX_ARGS, 232
spx_errmsg, 232, 239
SPXERR_BAD_INSPEC_COORD, 232
SPXERR_BAD_SPEC_PARAMS, 232
SPXERR_BAD_SPEC_VAR, 232
SPXERR_NULL_POINTER, 232
SPXERR_SUCCESS, 232
SPXLEN, 232
spxperr, 233
veloawav, 238
velobeta, 236
velofreq, 237
velowave, 238
voptwave, 238
vradfreq, 237
waveawav, 235
wavefreq, 235
wavevelo, 237
wavevopt, 238
wavezopt, 238
wavnfreq, 235
zoptwave, 238

SPX_ARGS
spx.h, 232

spx_errmsg
spx.h, 232, 239

SPXERR_BAD_INSPEC_COORD
spx.h, 232

SPXERR_BAD_SPEC_PARAMS
spx.h, 232

SPXERR_BAD_SPEC_VAR
spx.h, 232

SPXERR_NULL_POINTER
spx.h, 232

SPXERR_SUCCESS
spx.h, 232

SPXLEN
spx.h, 232

spxP2S
spcprm, 48

spxP2X
spcprm, 48

spxperr
spx.h, 233

spxprm, 49
afrq, 50
awav, 51
beta, 51
dafrqfreq, 51
dawavfreq, 52
dawavvelo, 53
dawavwave, 53
dbetavelo, 53
denerfreq, 51
dfreqafrq, 51
dfreqawav, 52
dfreqener, 51
dfreqvelo, 52
dfreqvrad, 52
dfreqwave, 52
dfreqwavn, 51
dveloawav, 53
dvelobeta, 53
dvelofreq, 52
dvelowave, 53
dvoptwave, 52
dvradfreq, 52
dwaveawav, 53
dwavefreq, 52
dwavevelo, 53
dwavevopt, 52
dwavezopt, 53
dwavnfreq, 52
dzoptwave, 53
ener, 50
err, 53
freq, 50
padding, 54
restfrq, 50
restwav, 50
velo, 51
velotype, 50
vopt, 51
vrad, 50
wave, 51
wavetype, 50
wavn, 50
zopt, 51

spxS2P
spcprm, 48

spxX2P
spcprm, 48

SQRT2
wcsmath.h, 383

SQRT2INV
wcsmath.h, 383

ssysobs
wcsprm, 71

ssyssrc
wcsprm, 72

Generated by Doxygen

INDEX 443

status
fitskey, 32
wcserr, 58

stgs2x
prj.h, 174

stgset
prj.h, 173

stgx2s
prj.h, 173

szps2x
prj.h, 173

szpset
prj.h, 172

szpx2s
prj.h, 173

tab
wcsprm, 72

tab.h, 246, 256
tab_errmsg, 256
tab_errmsg_enum, 248
tabcmp, 251
tabcpy, 250
tabcpy_errmsg, 248
TABERR_BAD_PARAMS, 249
TABERR_BAD_WORLD, 249
TABERR_BAD_X, 249
TABERR_MEMORY, 249
TABERR_NULL_POINTER, 249
TABERR_SUCCESS, 249
tabfree, 251
tabfree_errmsg, 248
tabini, 249
tabini_errmsg, 248
TABLEN, 248
tabmem, 250
tabperr, 252
tabprt, 252
tabprt_errmsg, 248
tabs2x, 255
tabs2x_errmsg, 248
tabset, 254
tabset_errmsg, 248
tabsize, 252
tabx2s, 254
tabx2s_errmsg, 248

tab_errmsg
tab.h, 256

tab_errmsg_enum
tab.h, 248

tabcmp
tab.h, 251

tabcpy
tab.h, 250

tabcpy_errmsg
tab.h, 248

TABERR_BAD_PARAMS
tab.h, 249

TABERR_BAD_WORLD

tab.h, 249
TABERR_BAD_X

tab.h, 249
TABERR_MEMORY

tab.h, 249
TABERR_NULL_POINTER

tab.h, 249
TABERR_SUCCESS

tab.h, 249
tabfree

tab.h, 251
tabfree_errmsg

tab.h, 248
tabini

tab.h, 249
tabini_errmsg

tab.h, 248
TABLEN

tab.h, 248
tabmem

tab.h, 250
tabperr

tab.h, 252
tabprm, 54

coord, 56
crval, 55
delta, 56
err, 57
extrema, 56
flag, 55
index, 56
K, 55
M, 55
m_coord, 58
m_crval, 57
m_flag, 57
m_index, 57
m_indxs, 57
m_K, 57
m_M, 57
m_map, 57
m_N, 57
map, 55
nc, 56
p0, 56
padding, 56
sense, 56
set_M, 57

tabprt
tab.h, 252

tabprt_errmsg
tab.h, 248

tabs2x
tab.h, 255

tabs2x_errmsg
tab.h, 248

tabset
tab.h, 254

Generated by Doxygen

444 INDEX

tabset_errmsg
tab.h, 248

tabsize
tab.h, 252

tabx2s
tab.h, 254

tabx2s_errmsg
tab.h, 248

tand
wcstrig.h, 391

tans2x
prj.h, 173

tanset
prj.h, 173

tanx2s
prj.h, 173

telapse
wcsprm, 70

theta0
celprm, 24
prjprm, 41

timedel
wcsprm, 70

timeoffs
wcsprm, 68

timepixr
wcsprm, 70

timesys
wcsprm, 67

timeunit
wcsprm, 67

timrder
wcsprm, 70

timsyer
wcsprm, 70

tmpcrd
linprm, 39

tmpmem
disprm, 29

totdis
disprm, 28

trefdir
wcsprm, 67

trefpos
wcsprm, 67

tscs2x
prj.h, 182

tscset
prj.h, 182

tscx2s
prj.h, 182

tstart
wcsprm, 69

tstop
wcsprm, 70

ttype
wtbarr, 78

type

dpkey, 31
fitskey, 33
spcprm, 46

types
wcsprm, 73

ulen
fitskey, 34

UNDEFINED
wcsmath.h, 383

undefined
wcsmath.h, 383

UNITFIX
wcsfix.h, 323

unitfix
wcsfix.h, 328

UNITSERR_BAD_EXPON_SYMBOL
wcsunits.h, 399

UNITSERR_BAD_FUNCS
wcsunits.h, 399

UNITSERR_BAD_INITIAL_SYMBOL
wcsunits.h, 399

UNITSERR_BAD_NUM_MULTIPLIER
wcsunits.h, 399

UNITSERR_BAD_UNIT_SPEC
wcsunits.h, 399

UNITSERR_CONSEC_BINOPS
wcsunits.h, 399

UNITSERR_DANGLING_BINOP
wcsunits.h, 399

UNITSERR_FUNCTION_CONTEXT
wcsunits.h, 399

UNITSERR_PARSER_ERROR
wcsunits.h, 399

UNITSERR_SUCCESS
wcsunits.h, 399

UNITSERR_UNBAL_BRACKET
wcsunits.h, 399

UNITSERR_UNBAL_PAREN
wcsunits.h, 399

UNITSERR_UNSAFE_TRANS
wcsunits.h, 399

unity
linprm, 38

value
dpkey, 31
pscard, 45
pvcard, 45

velangl
wcsprm, 72

velo
spxprm, 51

veloawav
spx.h, 238

velobeta
spx.h, 236

velofreq
spx.h, 237

Generated by Doxygen

INDEX 445

velosys
wcsprm, 71

velotype
spxprm, 50

velowave
spx.h, 238

velref
wcsprm, 65

vopt
spxprm, 51

voptwave
spx.h, 238

vrad
spxprm, 50

vradfreq
spx.h, 237

w
prjprm, 43
spcprm, 47

wave
spxprm, 51

waveawav
spx.h, 235

wavefreq
spx.h, 235

wavetype
spxprm, 50

wavevelo
spx.h, 237

wavevopt
spx.h, 238

wavezopt
spx.h, 238

wavn
spxprm, 50

wavnfreq
spx.h, 235

wcs.h, 264, 286
AUXLEN, 268
auxsize, 277
PSLEN, 268
PVLEN, 268
wcs_errmsg, 286
wcs_errmsg_enum, 270
wcsauxi, 272
wcsbchk, 278
wcsccs, 283
wcscompare, 275
WCSCOMPARE_ANCILLARY, 268
WCSCOMPARE_CRPIX, 268
WCSCOMPARE_TILING, 268
wcscopy, 269
wcscopy_errmsg, 269
WCSERR_BAD_COORD_TRANS, 270
WCSERR_BAD_CTYPE, 270
WCSERR_BAD_PARAM, 270
WCSERR_BAD_PIX, 270
WCSERR_BAD_SUBIMAGE, 270

WCSERR_BAD_WORLD, 270
WCSERR_BAD_WORLD_COORD, 270
WCSERR_ILL_COORD_TRANS, 270
WCSERR_MEMORY, 270
WCSERR_NO_SOLUTION, 270
WCSERR_NON_SEPARABLE, 270
WCSERR_NULL_POINTER, 270
WCSERR_SINGULAR_MTX, 270
WCSERR_SUCCESS, 270
WCSERR_UNSET, 270
wcsfree, 276
wcsfree_errmsg, 269
wcsini, 271
wcsini_errmsg, 269
wcsinit, 271
WCSLEN, 268
wcslib_version, 286
wcsmix, 282
wcsmix_errmsg, 270
wcsnps, 271
wcsnpv, 271
wcsp2s, 280
wcsp2s_errmsg, 270
wcsperr, 278
wcsprt, 277
wcsprt_errmsg, 269
wcss2p, 281
wcss2p_errmsg, 270
wcsset, 279
wcsset_errmsg, 269
wcssize, 277
wcssptr, 285
wcssub, 273
WCSSUB_CELESTIAL, 268
WCSSUB_CUBEFACE, 267
wcssub_errmsg, 269
WCSSUB_LATITUDE, 267
WCSSUB_LONGITUDE, 267
WCSSUB_SPECTRAL, 268
WCSSUB_STOKES, 268
WCSSUB_TIME, 268
wcstrim, 276

wcs_errmsg
wcs.h, 286

wcs_errmsg_enum
wcs.h, 270

wcsauxi
wcs.h, 272

wcsbchk
wcs.h, 278

wcsbdx
wcshdr.h, 362

wcsbth
wcshdr.h, 351

wcsccs
wcs.h, 283

wcscompare
wcs.h, 275

Generated by Doxygen

446 INDEX

WCSCOMPARE_ANCILLARY
wcs.h, 268

WCSCOMPARE_CRPIX
wcs.h, 268

WCSCOMPARE_TILING
wcs.h, 268

wcscopy
wcs.h, 269

wcscopy_errmsg
wcs.h, 269

wcsdealloc
wcsutil.h, 410

wcserr, 58
file, 58
function, 58
line_no, 58
msg, 59
status, 58

wcserr.h, 312, 317
ERRLEN, 313
wcserr_clear, 314
wcserr_copy, 316
wcserr_enable, 313
wcserr_prt, 314
WCSERR_SET, 313
wcserr_set, 316
wcserr_size, 314

WCSERR_BAD_COORD_TRANS
wcs.h, 270

WCSERR_BAD_CTYPE
wcs.h, 270

WCSERR_BAD_PARAM
wcs.h, 270

WCSERR_BAD_PIX
wcs.h, 270

WCSERR_BAD_SUBIMAGE
wcs.h, 270

WCSERR_BAD_WORLD
wcs.h, 270

WCSERR_BAD_WORLD_COORD
wcs.h, 270

wcserr_clear
wcserr.h, 314

wcserr_copy
wcserr.h, 316

wcserr_enable
wcserr.h, 313

WCSERR_ILL_COORD_TRANS
wcs.h, 270

WCSERR_MEMORY
wcs.h, 270

WCSERR_NO_SOLUTION
wcs.h, 270

WCSERR_NON_SEPARABLE
wcs.h, 270

WCSERR_NULL_POINTER
wcs.h, 270

wcserr_prt

wcserr.h, 314
WCSERR_SET

wcserr.h, 313
wcserr_set

wcserr.h, 316
WCSERR_SINGULAR_MTX

wcs.h, 270
wcserr_size

wcserr.h, 314
WCSERR_SUCCESS

wcs.h, 270
WCSERR_UNSET

wcs.h, 270
wcsfix

wcsfix.h, 325
wcsfix.h, 320, 333

CDFIX, 323
cdfix, 326
CELFIX, 323
celfix, 330
CYLFIX, 323
cylfix, 330
cylfix_errmsg, 323
DATFIX, 323
datfix, 326
FIXERR_BAD_COORD_TRANS, 325
FIXERR_BAD_CORNER_PIX, 325
FIXERR_BAD_CTYPE, 325
FIXERR_BAD_PARAM, 325
FIXERR_DATE_FIX, 325
FIXERR_ILL_COORD_TRANS, 325
FIXERR_MEMORY, 325
FIXERR_NO_CHANGE, 325
FIXERR_NO_REF_PIX_COORD, 325
FIXERR_NO_REF_PIX_VAL, 325
FIXERR_NULL_POINTER, 325
FIXERR_OBSGEO_FIX, 325
FIXERR_SINGULAR_MTX, 325
FIXERR_SPC_UPDATE, 325
FIXERR_SUCCESS, 325
FIXERR_UNITS_ALIAS, 325
NWCSFIX, 323
OBSFIX, 323
obsfix, 327
SPCFIX, 323
spcfix, 329
UNITFIX, 323
unitfix, 328
wcsfix, 325
wcsfix_errmsg, 332
wcsfix_errmsg_enum, 324
wcsfixi, 325
wcspcx, 331

wcsfix_errmsg
wcsfix.h, 332

wcsfix_errmsg_enum
wcsfix.h, 324

wcsfixi

Generated by Doxygen

INDEX 447

wcsfix.h, 325
wcsfprintf

wcsprintf.h, 386
wcsfree

wcs.h, 276
wcsfree_errmsg

wcs.h, 269
wcshdo

wcshdr.h, 363
WCSHDO_all

wcshdr.h, 346
WCSHDO_CNAMna

wcshdr.h, 347
WCSHDO_CRPXna

wcshdr.h, 347
WCSHDO_DOBSn

wcshdr.h, 347
WCSHDO_EFMT

wcshdr.h, 348
WCSHDO_none

wcshdr.h, 346
WCSHDO_P12

wcshdr.h, 347
WCSHDO_P13

wcshdr.h, 348
WCSHDO_P14

wcshdr.h, 348
WCSHDO_P15

wcshdr.h, 348
WCSHDO_P16

wcshdr.h, 348
WCSHDO_P17

wcshdr.h, 348
WCSHDO_PVn_ma

wcshdr.h, 347
WCSHDO_safe

wcshdr.h, 347
WCSHDO_TPCn_ka

wcshdr.h, 347
WCSHDO_WCSNna

wcshdr.h, 347
wcshdr.h, 340, 366

wcsbdx, 362
wcsbth, 351
wcshdo, 363
WCSHDO_all, 346
WCSHDO_CNAMna, 347
WCSHDO_CRPXna, 347
WCSHDO_DOBSn, 347
WCSHDO_EFMT, 348
WCSHDO_none, 346
WCSHDO_P12, 347
WCSHDO_P13, 348
WCSHDO_P14, 348
WCSHDO_P15, 348
WCSHDO_P16, 348
WCSHDO_P17, 348
WCSHDO_PVn_ma, 347

WCSHDO_safe, 347
WCSHDO_TPCn_ka, 347
WCSHDO_WCSNna, 347
WCSHDR_all, 344
WCSHDR_ALLIMG, 346
WCSHDR_AUXIMG, 346
WCSHDR_BIMGARR, 346
WCSHDR_CD00i00j, 344
WCSHDR_CD0i_0ja, 345
WCSHDR_CNAMn, 346
WCSHDR_CROTAia, 344
WCSHDR_DATEREF, 345
WCSHDR_DOBSn, 345
WCSHDR_EPOCHa, 345
wcshdr_errmsg, 366
wcshdr_errmsg_enum, 348
WCSHDR_IMGHEAD, 346
WCSHDR_LONGKEY, 346
WCSHDR_none, 344
WCSHDR_OBSGLBHn, 345
WCSHDR_PC00i00j, 344
WCSHDR_PC0i_0ja, 345
WCSHDR_PIXLIST, 346
WCSHDR_PROJPn, 344
WCSHDR_PS0i_0ma, 345
WCSHDR_PV0i_0ma, 345
WCSHDR_RADECSYS, 345
WCSHDR_reject, 344
WCSHDR_strict, 344
WCSHDR_VELREFa, 344
WCSHDR_VSOURCE, 345
WCSHDRERR_BAD_COLUMN, 348
WCSHDRERR_BAD_TABULAR_PARAMS, 348
WCSHDRERR_MEMORY, 348
WCSHDRERR_NULL_POINTER, 348
WCSHDRERR_PARSER, 348
WCSHDRERR_SUCCESS, 348
wcsidx, 361
wcspih, 348
wcstab, 360
wcsvfree, 362

WCSHDR_all
wcshdr.h, 344

WCSHDR_ALLIMG
wcshdr.h, 346

WCSHDR_AUXIMG
wcshdr.h, 346

WCSHDR_BIMGARR
wcshdr.h, 346

WCSHDR_CD00i00j
wcshdr.h, 344

WCSHDR_CD0i_0ja
wcshdr.h, 345

WCSHDR_CNAMn
wcshdr.h, 346

WCSHDR_CROTAia
wcshdr.h, 344

WCSHDR_DATEREF

Generated by Doxygen

448 INDEX

wcshdr.h, 345
WCSHDR_DOBSn

wcshdr.h, 345
WCSHDR_EPOCHa

wcshdr.h, 345
wcshdr_errmsg

wcshdr.h, 366
wcshdr_errmsg_enum

wcshdr.h, 348
WCSHDR_IMGHEAD

wcshdr.h, 346
WCSHDR_LONGKEY

wcshdr.h, 346
WCSHDR_none

wcshdr.h, 344
WCSHDR_OBSGLBHn

wcshdr.h, 345
WCSHDR_PC00i00j

wcshdr.h, 344
WCSHDR_PC0i_0ja

wcshdr.h, 345
WCSHDR_PIXLIST

wcshdr.h, 346
WCSHDR_PROJPn

wcshdr.h, 344
WCSHDR_PS0i_0ma

wcshdr.h, 345
WCSHDR_PV0i_0ma

wcshdr.h, 345
WCSHDR_RADECSYS

wcshdr.h, 345
WCSHDR_reject

wcshdr.h, 344
WCSHDR_strict

wcshdr.h, 344
WCSHDR_VELREFa

wcshdr.h, 344
WCSHDR_VSOURCE

wcshdr.h, 345
WCSHDRERR_BAD_COLUMN

wcshdr.h, 348
WCSHDRERR_BAD_TABULAR_PARAMS

wcshdr.h, 348
WCSHDRERR_MEMORY

wcshdr.h, 348
WCSHDRERR_NULL_POINTER

wcshdr.h, 348
WCSHDRERR_PARSER

wcshdr.h, 348
WCSHDRERR_SUCCESS

wcshdr.h, 348
wcsidx

wcshdr.h, 361
wcsini

wcs.h, 271
wcsini_errmsg

wcs.h, 269
wcsinit

wcs.h, 271
WCSLEN

wcs.h, 268
wcslib.h, 426
wcslib_version

wcs.h, 286
wcsmath.h, 382, 383

D2R, 382
PI, 382
R2D, 383
SQRT2, 383
SQRT2INV, 383
UNDEFINED, 383
undefined, 383

wcsmix
wcs.h, 282

wcsmix_errmsg
wcs.h, 270

wcsname
wcsprm, 67

wcsnps
wcs.h, 271

wcsnpv
wcs.h, 271

wcsp2s
wcs.h, 280

wcsp2s_errmsg
wcs.h, 270

wcspcx
wcsfix.h, 331

wcsperr
wcs.h, 278

wcspih
wcshdr.h, 348

wcsprintf
wcsprintf.h, 386

wcsprintf.h, 384, 387
wcsfprintf, 386
wcsprintf, 386
wcsprintf_buf, 386
WCSPRINTF_PTR, 385
wcsprintf_set, 385

wcsprintf_buf
wcsprintf.h, 386

WCSPRINTF_PTR
wcsprintf.h, 385

wcsprintf_set
wcsprintf.h, 385

wcsprm, 59
alt, 66
altlin, 65
aux, 72
bepoch, 69
cd, 64
cdelt, 62
cel, 74
cname, 66
colax, 66

Generated by Doxygen

INDEX 449

colnum, 66
cperi, 67
crder, 66
crota, 65
crpix, 62
crval, 63
csyer, 66
ctype, 63
cubeface, 73
cunit, 63
czphs, 67
dateavg, 68
datebeg, 68
dateend, 68
dateobs, 68
dateref, 68
equinox, 71
err, 74
flag, 61
jepoch, 69
lat, 73
latpole, 63
lattyp, 73
lin, 74
lng, 73
lngtyp, 73
lonpole, 63
m_aux, 76
m_cd, 75
m_cdelt, 75
m_cname, 76
m_colax, 76
m_cperi, 76
m_crder, 76
m_crota, 75
m_crpix, 75
m_crval, 75
m_csyer, 76
m_ctype, 75
m_cunit, 75
m_czphs, 76
m_flag, 74
m_naxis, 75
m_pc, 75
m_ps, 75
m_pv, 75
m_tab, 76
m_wtb, 76
mjdavg, 69
mjdbeg, 69
mjdend, 69
mjdobs, 69
mjdref, 68
naxis, 62
nps, 64
npsmax, 64
npv, 64
npvmax, 64

ntab, 72
nwtb, 72
obsgeo, 70
obsorbit, 71
pc, 62
plephem, 67
ps, 64
pv, 64
radesys, 71
restfrq, 63
restwav, 64
spc, 74
spec, 73
specsys, 71
ssysobs, 71
ssyssrc, 72
tab, 72
telapse, 70
timedel, 70
timeoffs, 68
timepixr, 70
timesys, 67
timeunit, 67
timrder, 70
timsyer, 70
trefdir, 67
trefpos, 67
tstart, 69
tstop, 70
types, 73
velangl, 72
velosys, 71
velref, 65
wcsname, 67
wtb, 72
xposure, 70
zsource, 71

wcsprt
wcs.h, 277

wcsprt_errmsg
wcs.h, 269

wcss2p
wcs.h, 281

wcss2p_errmsg
wcs.h, 270

wcsset
wcs.h, 279

wcsset_errmsg
wcs.h, 269

wcssize
wcs.h, 277

wcssptr
wcs.h, 285

wcssub
wcs.h, 273

WCSSUB_CELESTIAL
wcs.h, 268

WCSSUB_CUBEFACE

Generated by Doxygen

450 INDEX

wcs.h, 267
wcssub_errmsg

wcs.h, 269
WCSSUB_LATITUDE

wcs.h, 267
WCSSUB_LONGITUDE

wcs.h, 267
WCSSUB_SPECTRAL

wcs.h, 268
WCSSUB_STOKES

wcs.h, 268
WCSSUB_TIME

wcs.h, 268
wcstab

wcshdr.h, 360
wcstrig.h, 388, 392

acosd, 391
asind, 391
atan2d, 392
atand, 392
cosd, 390
sincosd, 390
sind, 390
tand, 391
WCSTRIG_TOL, 389

WCSTRIG_TOL
wcstrig.h, 389

wcstrim
wcs.h, 276

wcsulex
wcsunits.h, 403

wcsulexe
wcsunits.h, 402

wcsunits
wcsunits.h, 403

wcsunits.h, 395, 405
UNITSERR_BAD_EXPON_SYMBOL, 399
UNITSERR_BAD_FUNCS, 399
UNITSERR_BAD_INITIAL_SYMBOL, 399
UNITSERR_BAD_NUM_MULTIPLIER, 399
UNITSERR_BAD_UNIT_SPEC, 399
UNITSERR_CONSEC_BINOPS, 399
UNITSERR_DANGLING_BINOP, 399
UNITSERR_FUNCTION_CONTEXT, 399
UNITSERR_PARSER_ERROR, 399
UNITSERR_SUCCESS, 399
UNITSERR_UNBAL_BRACKET, 399
UNITSERR_UNBAL_PAREN, 399
UNITSERR_UNSAFE_TRANS, 399
wcsulex, 403
wcsulexe, 402
wcsunits, 403
WCSUNITS_BEAM, 398
WCSUNITS_BIN, 398
WCSUNITS_BIT, 398
WCSUNITS_CHARGE, 397
WCSUNITS_COUNT, 398
wcsunits_errmsg, 404

wcsunits_errmsg_enum, 399
WCSUNITS_LENGTH, 398
WCSUNITS_LUMINTEN, 397
WCSUNITS_MAGNITUDE, 398
WCSUNITS_MASS, 398
WCSUNITS_MOLE, 397
WCSUNITS_NTYPE, 399
WCSUNITS_PIXEL, 398
WCSUNITS_PLANE_ANGLE, 397
WCSUNITS_SOLID_ANGLE, 397
WCSUNITS_SOLRATIO, 398
WCSUNITS_TEMPERATURE, 397
WCSUNITS_TIME, 398
wcsunits_types, 404
wcsunits_units, 404
WCSUNITS_VOXEL, 399
wcsunitse, 399
wcsutrn, 403
wcsutrne, 400

WCSUNITS_BEAM
wcsunits.h, 398

WCSUNITS_BIN
wcsunits.h, 398

WCSUNITS_BIT
wcsunits.h, 398

WCSUNITS_CHARGE
wcsunits.h, 397

WCSUNITS_COUNT
wcsunits.h, 398

wcsunits_errmsg
wcsunits.h, 404

wcsunits_errmsg_enum
wcsunits.h, 399

WCSUNITS_LENGTH
wcsunits.h, 398

WCSUNITS_LUMINTEN
wcsunits.h, 397

WCSUNITS_MAGNITUDE
wcsunits.h, 398

WCSUNITS_MASS
wcsunits.h, 398

WCSUNITS_MOLE
wcsunits.h, 397

WCSUNITS_NTYPE
wcsunits.h, 399

WCSUNITS_PIXEL
wcsunits.h, 398

WCSUNITS_PLANE_ANGLE
wcsunits.h, 397

WCSUNITS_SOLID_ANGLE
wcsunits.h, 397

WCSUNITS_SOLRATIO
wcsunits.h, 398

WCSUNITS_TEMPERATURE
wcsunits.h, 397

WCSUNITS_TIME
wcsunits.h, 398

wcsunits_types

Generated by Doxygen

INDEX 451

wcsunits.h, 404
wcsunits_units

wcsunits.h, 404
WCSUNITS_VOXEL

wcsunits.h, 399
wcsunitse

wcsunits.h, 399
wcsutil.h, 409, 419

wcsdealloc, 410
wcsutil_all_dval, 413
wcsutil_all_ival, 412
wcsutil_all_sval, 413
wcsutil_allEq, 414
wcsutil_blank_fill, 411
wcsutil_dblEq, 414
wcsutil_double2str, 417
wcsutil_fptr2str, 417
wcsutil_intEq, 415
wcsutil_null_fill, 412
wcsutil_setAli, 416
wcsutil_setAll, 416
wcsutil_setBit, 417
wcsutil_str2double, 418
wcsutil_str2double2, 418
wcsutil_strcvt, 411
wcsutil_strEq, 415

wcsutil_all_dval
wcsutil.h, 413

wcsutil_all_ival
wcsutil.h, 412

wcsutil_all_sval
wcsutil.h, 413

wcsutil_allEq
wcsutil.h, 414

wcsutil_blank_fill
wcsutil.h, 411

wcsutil_dblEq
wcsutil.h, 414

wcsutil_double2str
wcsutil.h, 417

wcsutil_fptr2str
wcsutil.h, 417

wcsutil_intEq
wcsutil.h, 415

wcsutil_null_fill
wcsutil.h, 412

wcsutil_setAli
wcsutil.h, 416

wcsutil_setAll
wcsutil.h, 416

wcsutil_setBit
wcsutil.h, 417

wcsutil_str2double
wcsutil.h, 418

wcsutil_str2double2
wcsutil.h, 418

wcsutil_strcvt
wcsutil.h, 411

wcsutil_strEq
wcsutil.h, 415

wcsutrn
wcsunits.h, 403

wcsutrne
wcsunits.h, 400

wcsvfree
wcshdr.h, 362

wtb
wcsprm, 72

wtbarr, 76
arrayp, 78
dimlen, 78
extlev, 78
extnam, 77
extver, 77
i, 77
kind, 77
m, 77
ndim, 78
row, 78
ttype, 78

wtbarr.h, 424, 425

x0
prjprm, 43

xphs2x
prj.h, 184

xphset
prj.h, 184

xphx2s
prj.h, 184

xposure
wcsprm, 70

y0
prjprm, 43

zeas2x
prj.h, 175

zeaset
prj.h, 175

zeax2s
prj.h, 175

ZENITHAL
prj.h, 185

zopt
spxprm, 51

zoptwave
spx.h, 238

zpns2x
prj.h, 175

zpnset
prj.h, 175

zpnx2s
prj.h, 175

zsource
wcsprm, 71

Generated by Doxygen

	1 WCSLIB 7.11 and PGSBOX 7.11
	1.1 Contents
	1.2 Copyright

	2 Introduction
	3 FITS-WCS and related software
	4 Overview of WCSLIB
	5 WCSLIB data structures
	6 Memory management
	7 Diagnostic output
	8 Vector API
	8.1 Vector lengths
	8.2 Vector strides

	9 Thread-safety
	10 Limits
	11 Example code, testing and verification
	12 WCSLIB Fortran wrappers
	13 PGSBOX
	14 WCSLIB version numbers
	15 Deprecated List
	16 Data Structure Index
	16.1 Data Structures

	17 File Index
	17.1 File List

	18 Data Structure Documentation
	18.1 auxprm Struct Reference
	18.1.1 Detailed Description
	18.1.2 Field Documentation

	18.2 celprm Struct Reference
	18.2.1 Detailed Description
	18.2.2 Field Documentation

	18.3 disprm Struct Reference
	18.3.1 Detailed Description
	18.3.2 Field Documentation

	18.4 dpkey Struct Reference
	18.4.1 Detailed Description
	18.4.2 Field Documentation

	18.5 fitskey Struct Reference
	18.5.1 Detailed Description
	18.5.2 Field Documentation

	18.6 fitskeyid Struct Reference
	18.6.1 Detailed Description
	18.6.2 Field Documentation

	18.7 linprm Struct Reference
	18.7.1 Detailed Description
	18.7.2 Field Documentation

	18.8 prjprm Struct Reference
	18.8.1 Detailed Description
	18.8.2 Field Documentation

	18.9 pscard Struct Reference
	18.9.1 Detailed Description
	18.9.2 Field Documentation

	18.10 pvcard Struct Reference
	18.10.1 Detailed Description
	18.10.2 Field Documentation

	18.11 spcprm Struct Reference
	18.11.1 Detailed Description
	18.11.2 Field Documentation

	18.12 spxprm Struct Reference
	18.12.1 Detailed Description
	18.12.2 Field Documentation

	18.13 tabprm Struct Reference
	18.13.1 Detailed Description
	18.13.2 Field Documentation

	18.14 wcserr Struct Reference
	18.14.1 Detailed Description
	18.14.2 Field Documentation

	18.15 wcsprm Struct Reference
	18.15.1 Detailed Description
	18.15.2 Field Documentation

	18.16 wtbarr Struct Reference
	18.16.1 Detailed Description
	18.16.2 Field Documentation

	19 File Documentation
	19.1 cel.h File Reference
	19.1.1 Detailed Description
	19.1.2 Macro Definition Documentation
	19.1.3 Enumeration Type Documentation
	19.1.4 Function Documentation
	19.1.5 Variable Documentation

	19.2 cel.h
	19.3 dis.h File Reference
	19.3.1 Detailed Description
	19.3.2 Macro Definition Documentation
	19.3.3 Enumeration Type Documentation
	19.3.4 Function Documentation
	19.3.5 Variable Documentation

	19.4 dis.h
	19.5 fitshdr.h File Reference
	19.5.1 Detailed Description
	19.5.2 Macro Definition Documentation
	19.5.3 Typedef Documentation
	19.5.4 Enumeration Type Documentation
	19.5.5 Function Documentation
	19.5.6 Variable Documentation

	19.6 fitshdr.h
	19.7 getwcstab.h File Reference
	19.7.1 Detailed Description
	19.7.2 Function Documentation

	19.8 getwcstab.h
	19.9 lin.h File Reference
	19.9.1 Detailed Description
	19.9.2 Macro Definition Documentation
	19.9.3 Enumeration Type Documentation
	19.9.4 Function Documentation
	19.9.5 Variable Documentation

	19.10 lin.h
	19.11 log.h File Reference
	19.11.1 Detailed Description
	19.11.2 Enumeration Type Documentation
	19.11.3 Function Documentation
	19.11.4 Variable Documentation

	19.12 log.h
	19.13 prj.h File Reference
	19.13.1 Detailed Description
	19.13.2 Macro Definition Documentation
	19.13.3 Enumeration Type Documentation
	19.13.4 Function Documentation
	19.13.5 Variable Documentation

	19.14 prj.h
	19.15 spc.h File Reference
	19.15.1 Detailed Description
	19.15.2 Macro Definition Documentation
	19.15.3 Enumeration Type Documentation
	19.15.4 Function Documentation
	19.15.5 Variable Documentation

	19.16 spc.h
	19.17 sph.h File Reference
	19.17.1 Detailed Description
	19.17.2 Function Documentation

	19.18 sph.h
	19.19 spx.h File Reference
	19.19.1 Detailed Description
	19.19.2 Macro Definition Documentation
	19.19.3 Enumeration Type Documentation
	19.19.4 Function Documentation
	19.19.5 Variable Documentation

	19.20 spx.h
	19.21 tab.h File Reference
	19.21.1 Detailed Description
	19.21.2 Macro Definition Documentation
	19.21.3 Enumeration Type Documentation
	19.21.4 Function Documentation
	19.21.5 Variable Documentation

	19.22 tab.h
	19.23 wcs.h File Reference
	19.23.1 Detailed Description
	19.23.2 Macro Definition Documentation
	19.23.3 Enumeration Type Documentation
	19.23.4 Function Documentation
	19.23.5 Variable Documentation

	19.24 wcs.h
	19.25 wcserr.h File Reference
	19.25.1 Detailed Description
	19.25.2 Macro Definition Documentation
	19.25.3 Function Documentation

	19.26 wcserr.h
	19.27 wcsfix.h File Reference
	19.27.1 Detailed Description
	19.27.2 Macro Definition Documentation
	19.27.3 Enumeration Type Documentation
	19.27.4 Function Documentation
	19.27.5 Variable Documentation

	19.28 wcsfix.h
	19.29 wcshdr.h File Reference
	19.29.1 Detailed Description
	19.29.2 Macro Definition Documentation
	19.29.3 Enumeration Type Documentation
	19.29.4 Function Documentation
	19.29.5 Variable Documentation

	19.30 wcshdr.h
	19.31 wcsmath.h File Reference
	19.31.1 Detailed Description
	19.31.2 Macro Definition Documentation

	19.32 wcsmath.h
	19.33 wcsprintf.h File Reference
	19.33.1 Detailed Description
	19.33.2 Macro Definition Documentation
	19.33.3 Function Documentation

	19.34 wcsprintf.h
	19.35 wcstrig.h File Reference
	19.35.1 Detailed Description
	19.35.2 Macro Definition Documentation
	19.35.3 Function Documentation

	19.36 wcstrig.h
	19.37 wcsunits.h File Reference
	19.37.1 Detailed Description
	19.37.2 Macro Definition Documentation
	19.37.3 Enumeration Type Documentation
	19.37.4 Function Documentation
	19.37.5 Variable Documentation

	19.38 wcsunits.h
	19.39 wcsutil.h File Reference
	19.39.1 Detailed Description
	19.39.2 Function Documentation

	19.40 wcsutil.h
	19.41 wtbarr.h File Reference
	19.41.1 Detailed Description

	19.42 wtbarr.h
	19.43 wcslib.h File Reference
	19.43.1 Detailed Description

	19.44 wcslib.h

	Index

