
SWARM 0.44 Documentation

Michael Dales

Department of Computing Science, University of Glasgow,
17 Lilybank Gardens, Glasgow, G12 8RZ, Scotland.

michael@dcs.gla.ac.uk

Copyright 2000 Michael Dales

Friday 10th November 2000

Abstract

This document gives a brief explanation of the design and implementation of SWARM — the Soft-
ware ARM. It explains what SWARM is, and what it isn’t, along with the design philosophy.

1 Introduction

The original idea behind SWARM was to design an ARM processor module to plug into the SimOS system
developed at Stanford University. SimOS (Rosenblum et al. 1995) is a software simulator of an entire
computer, enough to run real operating systems and applications, in order to easily benchmark changes to
the system. SimOS is based upon MIPS and Alpha processors. A research project at the University of
Glasgow required a complete machine emulator for an ARM based system, so work began on SWARM.
However, it soon became apparent that the work in linking SWARM into SimOS was not justified, and
attempts to link the two projects were abandoned.

SWARM is now a stand alone software project. It comprises a set of C++ classes that allow emulation
of various parts of an ARM processor. The hierarchy allows users to use either the simple core, or a
processor with core and caches.

The aim of SWARM was never to simply run ARM binaries on another platform, but rather to allow
research into the modification of the ARM datapath. Thus SWARM models the internal datapath of the
ARM core1 and instructions are decoded into a set of control signals to manipulate the datapath. Another
requirement for SWARM was that it provide support for the full register/cache/external memory hierarchy.
To this end SWARM provides an abstract cache class which can have different implementations, and also
supports either Harvard or Princeton style caches.

2 SWARM Architecture

2.1 SWARM Datapath

The datapath used in SWARM tries to honour that of the real datapath as much as possible. A simplified
version of the datapath can be found in (Furber 1996), but this does not include all the information nec-
essary. For instance, during load/store multiple commands magic numbers need to appear on one of the
buses. The datapath used inside SWARM can be seen in Figure 1.

The datapath looks as you would expect it: the register file in the centre, the ALU fed by the A bus and
the output of the B bus passed through a barrel shifter. Then there are the registers and the instruction pipe
(the instruction pipe contains the current instruction and the next instruction in the pipeline). However,
there are also two notable additions. Theb hackregister contains the last value on the B input to the ALU,

1The SWARM core is modelled on the ARM6 core. The rest of the system is basedvery loosely on a StrongARM.

1



Address bus

Registers

Incrementer

Address Register

Abus Bbus

Ibus

PCbus

Result
bus

ALU

b_hack

Barrel
shifter

Data out

Write Data Register Read Data Register

Data in

iPipe

a_magic

Figure 1: SWARM datapath.

main memory processor core

issue read
address

In Cache?

Read

Write to cache

Data on input

no

yes

main memory processor core

issue write
address

Note address

issue data

NULL

Use noted
address

write

Figure 2: SWARM memory accesses: 1) Read 2) Write.

anda magicis a magic number. The delay register on the B path is needed to allow load/store writeback
calculations to occur without needing an extra cycle while the B bus is in use. The magic value on the A
input to the ALU is used to generate offsets during load/store multiple instructions.

2.2 Memory Hierarchy

SWARM attempts to realistically model the memory hierarchy for a simple ARM machine. This was
originally necessary due to the intended purpose of SWARM, but turned out to make for a nice way of
making the memory interaction simpler to implement. SWARM does not, unfortunately, implement a full
realistic external memory bus. Currently the ARM processor interface simply provides 32 bit addresses and
data values. This was simple to implement and met the requirements for the project. Memory is provided
as a large array ofchar types.

The memory access process can be split into three parts: ARM core interface, the ARM processor
interface (which includes the cache), and the main memory itself. The cache is an integral part of the
system. If there is a cache miss on a read then the ARM processor halts the core, fetches the data from
memory into the cache and then continues the execution of the core. As far as the core was concerned the
data was in the cache. To help you understand the way control flows between the three within the emulator
see the rough timing diagrams in Figure 2.

2



2.3 Coprocessors

Currently a small amount of support for internal coprocessors is enabled in SWARM. Implemented is a
very basic system coprocessor. This is currently only used to provide a chip type ID and for accessing the
cycle counter from software running on SWARM (seelibc/include/profile.h to see how this is done).

2.4 Communicating between ARM code and SWARM

It is useful to allow applications executing on SWARM to be able to invoke sections of code in SWARM
(for example, asking SWARM to halt at the end of a program). This is done through the Software Interrupt
(SWI) mechanism. A SWI call takes a 24 bit constant as its parameter. This space has been divided into
two parts. All SWI calls where the top bit of the constant is zero are handled as would be expected on a
real ARM and call emulated code via the SWI vector. However, if the top bit is set to one then the call is
emulated as a no-op, and at the same time a function in SWARM can be called.

Functions invoked this way mimic the standard ARM procedure call convention. They take four un-
signed integers which receive the first for register values, and will return an unsigned integer which is
placed in register zero after the call. See the code for examples of how this works.

3 SWARM Source Core

3.1 Code Overview

Here is a quick tour of the main classes in SWARM. More detailed explanations will follow as necessary.

� CArmCore (core.cpp/core.h/alu.cpp/alu.h) — This class handles the ARM core; that is the datapath
as described in Section 2.1. Communicates using a bus structure based on the ARM6 core pin–out.

� CArmProc (armproc.cpp/armproc.h)— CArmProc provides a processor view. It includes the caches
and is responsible for managing the memory hierarchy.

� CCache (cache.cpp/cache.h) — Provides an abstract interface for a cache. Reports cache misses
using exceptions.

� CDirectCache(direct.cpp/direct.h) — Implements a direct mapped cache.

� CAssociativeCache(associative.cpp/associative.h) — Implements a fully associative cache.

The main program at the moment is very simple. Its sole purpose is to provide a simple test harness for
SWARM. Currently the test harness requires an ARM binary to be provided as the only parameter. This
binary image is loaded into the emulated system’s memory, and execution starts from address zero.

3.2 CArmCore

CArmCore is where all the interesting bits happen. All the state for the datapath is stored as member
variables in the class. For each each instruction the decode stage will generate a series of control informa-
tion structures (on for each cycle the instruction will take) which are applied to the datapath on the Exec
method call. The structure type CONTROL contains all the information for managing the datapath and
how it interfaces with the bus between the core and the rest of the world.

The user interacts with the core using the Cycle method - this clocks the datapath and causes all the
registers to updates. The Cycle method takes a structure of type CBIOTAG which mimics the pin–out of
the ARM core. Not all the fields are currently used (see comments in core.h).

3.3 CArmProc

This class approximates the system on chip view of an ARM - it basically acts as glue between the external
interface, the caches, and the core. The interesting stuff here happens in the Cycle method. This is the
method that users of the class should call to make things happen. The workings here are like a state

3



Normal Reading 1

ReadingWriting 1

cache miss

reading line

initiated

read with cache hit

Done

Done
write

request

multiple writes

Figure 3: State machine of processor model
.

machine with transitions happening on every invocation. This can be seen in Figure 3. In normal operation
instructions and data are read from the cache and processed. If there is a cache miss then the core is
effectively stalled as the cache line is filled, then execution continues as if the cache hit had been successful.
On a write we note the address generated in the previous instruction and write the data generated in the
current instruction until a read operation occurs.

The type of cache used is defined by the preprocessor defineCACHETYPE. This should be set to the
name of a cache implementation class. By default this is CDirectCache.

Look here to find the OS timer and interrupt controller. These are modelled on those found in the Intel
SA–1110 (see the SA–1110 manual for a description on how they work).

3.4 Status

Currently there is enough of the ARM instruction set implemented to allow simple programs to be compiled
up in gcc and executed on SWARM. The conditional execution works for all instructions, and the following
instruction classes have been implemented:

� SWI calls.

� Branch with and without link.

� Data processing instructions.

� 32 bit multiply with and without accumulate.

� Single word/unsigned byte data transfer.

� Load/store multiple.

� Coprocessor register transfer instructions.

� Reading and writing to the CPSR/SPSR.

SWARM has been tested on the following configurations:

� G++ on ix86 and Alpha RedHat Linux systems.

� Compaq C++ compiler for Alpha Linux.

� Microsoft Developer Studio version 6.0.

The Microsoft Developer Studio workspace can be found in the MSVC directory2. The default make
target is the gnu C++ compiler. The Compaq C++ compiler can be used by passing the optionalpha-cxx
parameter to make.

2My MSVC machine has gone temporarily, so these may be a little out of date.

4



4 Using SWARM

4.1 Compiling for SWARM

Currently the only supported technique for producing ARM binaries for SWARM is using a gcc ARM
compiler. On the author’s system gcc was built to produce binaries forarm-unknown-coff . The technique
is not just as simple as compiling and linking though. The binaries that gcc produces have symbol infor-
mation that SWARM will not understand (unless you want to write an OS to run on top of SWARM to load
your binaries...). The overall procedure is:

1. Compile .c and .S files to .o files.

2. Do a preliminary link of binary.

3. Find size of text, data, and bss sizes.

4. Link a new binary, with text, data, and bss sections packed together.

5. Use objcopy to create a pure binary (i.e. no symbol information)

The output of these steps is a raw ARM binary that can be executed on SWARM. In the test apps
directory it have a look at the make file used to see the specifics of this operation.

Applications compiled using gcc require to be linked against a library that provides functions called
gccmain and start . In addition we need to place the correct branches into the first 6 (or 7 if you’re

not implementing FIQ properly) memory addresses. To this end,vector.S contains the vector table, and
should be the first code in a binary image. Next comes crt0.S which contains thestart code. This is
jumped to from the reset vector. Unlike previous releases of SWARM,gccmain is now brought in from
the standard gcc libraries (and does nothing).

There is a minimal C library implementation. This works in two halves. Part of the system is imple-
mented “natively” in ARM assembler and has been taken from the NetBSD 1.4.1 release. More complex
parts (like those that implement I/O) have been implemented using SWI calls the emulator which has wrap-
pers to the C library it is linked against. The idea is that as much as possible should run emulated on the
ARM to provide more realistic profiling figures.

4.2 Test Applications

In the test apps directory are (currently) three test applications. There are not particularly large applications,
more tests that have been added as SWARM grew in functionality. The simpler tests remain for regression
testing.

� test1— Simple program to calculate the first 10 Fibonacci numbers.

� test2— Program that duplicates a BMP file. It uses a combination of the BSD libc memcpy and
actual byte by byte transfers.

� test3— Simple test for memcpy.

� test4— Simple test for printf and stdio.

� filter — Program that runs an image through a sharpen filter. Uses dynamic memory allocation.

� dumptest — Demonstrates both coprocessor data transfers and thedump call to get SWARM to do
a debug dump.

� cpsrtest— Demonstrates the ability to read and write to the CPSR and SPSR.

� timertest — Demonstrates the use of the OSTimer and interrupt controller to generate events.

More meaningful examples may appear over time. The main limitation is the lack of libc implementa-
tion, and of course, time.

5



4.3 Utilities

Swarm comes with some additional utilities. These can be found in the bin directory at the top of the
SWARM tree. Inside are:

� size.pl — This is a wrapper for the gcc size utility. It is used by the make file in the test apps
directory.

� memcheck.pl— If you compile SWARM with-DDEBUGMEMthen SWARM will display all memory
allocations/deallocations in core.cpp. This Perl script will check this output for anything that is not
being freed up.

� arch — This is a wrapper script for Unix systems. It returns information on processor type, OS
type, and OS version. It is used by the make files to guess the architecture type. This arch script is
Copyright 2000 University of Cambridge Computer Laboratory. It is distributed with SWARM
with their consent.

� disarm — Disarm will take a raw ARM binary and convert it into ARM assembly. Useful as obj-
dump won’t work on the raw binaries produced for SWARM.

5 Todo List and Maintainance

There is a lot still to do. The main contenders are:

� Integrated Disarm — The observant may notice that parts of disarm are in SWARM but commented
out. In verbose mode SWARM would spit out not only register information, but also the current
instruction in human readable form. However support for this is incomplete at time of writing, so
this has been deactivated. Expect this to appear in a near release.

� Documentation— Obviously.

If you are have an improvement for SWARM then feel free to mail it to me and I’ll test your submission
and more than likely include it with SWARM. Submissions should be in the form of patch files that I can
apply to the source (you can get diff for platforms other than Unix, so being a non–Unix person is no
excuse). If youreally can’t send me a patch, then send me as little source as possible and clearly highlight
what you have changed.

There is no CVS repository on–line. I doubt demand is that great for updates, so SWARM will simply
be provided as a tar–ball on the web. If the demand is such then I am willing to move SWARM onto a
service such as Source Forge, but for the time being the distribution mechanism will be kept as simple
as possible. Announcements on important new versions of SWARM could be posted to comp.sys.arm if
nobody there has any objections.

Bug reports should be e–mailed to me at the address given at the start of this document.

6 Acknowledgements

SWARM was originally produced as part of the author’s PhD work at the Department of Computing Sci-
ence at the University of Glasgow. More information on this work can be found at:

http://www.dcs.gla.ac.uk/ ∼michael/phd/ .

Additional technical information on the workings of the ARM processor were provided by Dr. Richard
Black. The research is funded by the Engineering and Physical Sciences Research Council (EPSRC) and
Xilinx, Inc.

6



References

Furber, S. (1996),ARM Sytem Architecture, Addison Wesley Longman.

Rosenblum, M., Bugnion, E., Herrod, S. A., Witchel, E. & Gupta, A. (1995), The Impact of Architectural
Trends on Operating System Performance,in ‘Proceedings of the 15th ACM SIGOPS Symposium on
Operating Systems Principles, Operating Systems Review’.

7


