generic-lens-core-2.2.1.0: Generically derive traversals, lenses and prisms.
Copyright(C) 2020 Csongor Kiss
LicenseBSD3
MaintainerCsongor Kiss <kiss.csongor.kiss@gmail.com>
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Data.GenericLens.Internal

Description

The library internals are exposed through this module. Please keep in mind that everything here is subject to change irrespective of the the version numbers.

Synopsis

Documentation

data family Param :: Nat -> j -> k #

Instances

Instances details
newtype Param n (a :: Type) # 
Instance details

Defined in Data.Generics.Internal.GenericN

newtype Param n (a :: Type) = StarParam {}

class (Coercible (Rep a) (RepN a), Generic a) => GenericN a where #

Associated Types

type RepN a :: Type -> Type #

type RepN a = Rep (Indexed a 0)

Methods

toN :: RepN a x -> a #

fromN :: a -> RepN a x #

Instances

Instances details
(Coercible (Rep a) (RepN a), Generic a) => GenericN a # 
Instance details

Defined in Data.Generics.Internal.GenericN

Associated Types

type RepN a 
Instance details

Defined in Data.Generics.Internal.GenericN

type RepN a

Methods

toN :: RepN a x -> a #

fromN :: a -> RepN a x #

newtype Rec p a (x :: k) #

Constructors

Rec 

Fields

type family RepN a :: Type -> Type #

Instances

Instances details
type RepN a # 
Instance details

Defined in Data.Generics.Internal.GenericN

type RepN a

Profunctor optics

type Iso s t a b = forall (p :: Type -> Type -> Type -> Type) i. Profunctor p => p i a b -> p i s t #

repIso :: (Generic a, Generic b) => Iso a b (Rep a x) (Rep b x) #

A type and its generic representation are isomorphic

kIso :: forall r a p1 b p2 i. Profunctor p2 => p2 i a b -> p2 i (K1 r a p1) (K1 r b p1) #

sumIso :: forall a b x a' b' p i. Profunctor p => p i (Either (a x) (b x)) (Either (a' x) (b' x)) -> p i ((a :+: b) x) ((a' :+: b') x) #

mIso :: forall i1 (c :: Meta) f p1 g p2 i2. Profunctor p2 => p2 i2 (f p1) (g p1) -> p2 i2 (M1 i1 c f p1) (M1 i1 c g p1) #

M1 is just a wrapper around `f p` mIso :: Iso' (M1 i c f p) (f p)

type Iso' s a = Iso s s a a #

iso :: (s -> a) -> (b -> t) -> Iso s t a b #

recIso :: forall r a p1 b p2 i. Profunctor p2 => p2 i a b -> p2 i (Rec r a p1) (Rec r b p1) #

prodIso :: forall a b x a' b' p i. Profunctor p => p i (a x, b x) (a' x, b' x) -> p i ((a :*: b) x) ((a' :*: b') x) #

assoc3 :: forall a b c a' b' c' p i. Profunctor p => p i (a, (b, c)) (a', (b', c')) -> p i ((a, b), c) ((a', b'), c') #

fromIso :: Iso s t a b -> Iso b a t s #

withIso :: Iso s t a b -> ((s -> a) -> (b -> t) -> r) -> r #

pairing :: Iso s t a b -> Iso s' t' a' b' -> Iso (s, s') (t, t') (a, a') (b, b') #

first :: forall a (b :: Type -> Type) x a' p i. Strong p => p i (a x) (a' x) -> p i ((a :*: b) x) ((a' :*: b) x) #

Lens focusing on the first element of a product

swap :: (a, b) -> (b, a) #

second :: forall (a :: Type -> Type) b x b' p i. Strong p => p i (b x) (b' x) -> p i ((a :*: b) x) ((a :*: b') x) #

Lens focusing on the second element of a product

type Lens s t a b = forall (p :: Type -> Type -> Type -> Type) i. Strong p => p i a b -> p i s t #

choosing :: Lens s t a b -> Lens s' t' a b -> Lens (Either s s') (Either t t') a b #

view :: Lens s s a a -> s -> a #

set :: ((a -> b) -> s -> t) -> (s, b) -> t #

Setting

type LensLike (p :: Type -> Type -> Type) s t a b = p a b -> p s t #

ravel :: (ALens a b i a b -> ALens a b i s t) -> Lens s t a b #

data ALens a b i s t #

Constructors

ALens (s -> (c, a)) ((c, b) -> t) 

Instances

Instances details
Profunctor (ALens a b) # 
Instance details

Defined in Data.Generics.Internal.Profunctor.Lens

Methods

dimap :: (a0 -> b0) -> (c -> d) -> ALens a b i b0 c -> ALens a b i a0 d #

lmap :: (a0 -> b0) -> ALens a b i b0 c -> ALens a b i a0 c #

rmap :: (c -> d) -> ALens a b i b0 c -> ALens a b i b0 d #

lcoerce' :: Coercible a0 b0 => ALens a b i a0 c -> ALens a b i b0 c #

rcoerce' :: Coercible a0 b0 => ALens a b i c a0 -> ALens a b i c b0 #

conjoined__ :: (ALens a b i a0 b0 -> ALens a b i s t) -> (ALens a b i a0 b0 -> ALens a b j s t) -> ALens a b i a0 b0 -> ALens a b j s t #

ixcontramap :: (j -> i) -> ALens a b i a0 b0 -> ALens a b j a0 b0 #

Strong (ALens a b) # 
Instance details

Defined in Data.Generics.Internal.Profunctor.Lens

Methods

first' :: ALens a b i a0 b0 -> ALens a b i (a0, c) (b0, c) #

second' :: ALens a b i a0 b0 -> ALens a b i (c, a0) (c, b0) #

linear :: (forall (f :: Type -> Type). Functor f => (a0 -> f b0) -> s -> f t) -> ALens a b i a0 b0 -> ALens a b i s t #

ilinear :: (forall (f :: Type -> Type). Functor f => (i -> a0 -> f b0) -> s -> f t) -> ALens a b j a0 b0 -> ALens a b (i -> j) s t #

Functor (ALens a b i s) # 
Instance details

Defined in Data.Generics.Internal.Profunctor.Lens

Methods

fmap :: (a0 -> b0) -> ALens a b i s a0 -> ALens a b i s b0 #

(<$) :: a0 -> ALens a b i s b0 -> ALens a b i s a0 #

idLens :: ALens a b i a b #

lens :: (s -> (c, a)) -> ((c, b) -> t) -> Lens s t a b #

withLensPrim :: Lens s t a b -> (forall c. (s -> (c, a)) -> ((c, b) -> t) -> r) -> r #

fork :: (a -> b) -> (a -> c) -> a -> (b, c) #

data Coyoneda (f :: Type -> Type) b #

Constructors

Coyoneda (a -> b) (f a) 

Instances

Instances details
Functor (Coyoneda f) # 
Instance details

Defined in Data.Generics.Internal.Profunctor.Lens

Methods

fmap :: (a -> b) -> Coyoneda f a -> Coyoneda f b #

(<$) :: a -> Coyoneda f b -> Coyoneda f a #

inj :: Functor f => Coyoneda f a -> f a #

proj :: Functor f => f a -> Coyoneda f a #

(??) :: Functor f => f (a -> b) -> a -> f b #

assoc3L :: forall a b c a' b' c' p i. Strong p => p i (a, (b, c)) (a', (b', c')) -> p i ((a, b), c) ((a', b'), c') #

stron :: (Either s s', b) -> Either (s, b) (s', b) #

build :: (Tagged i b b -> Tagged i t t) -> b -> t #

left :: forall a (c :: Type -> Type) x b p i. Choice p => p i (a x) (b x) -> p i ((a :+: c) x) ((b :+: c) x) #

right :: forall (a :: Type -> Type) b x c p i. Choice p => p i (b x) (c x) -> p i ((a :+: b) x) ((a :+: c) x) #

match :: Prism s t a b -> s -> Either t a #

type APrism i s t a b = Market a b i a b -> Market a b i s t #

type Prism s t a b = forall (p :: Type -> Type -> Type -> Type) i. Choice p => p i a b -> p i s t #

type Prism' s a = forall (p :: Type -> Type -> Type -> Type) i. Choice p => p i a a -> p i s s #

prism :: (b -> t) -> (s -> Either t a) -> Prism s t a b #

gsum :: (a x -> c) -> (b x -> c) -> (a :+: b) x -> c #

_Left :: forall a c b p i. Choice p => p i a b -> p i (Either a c) (Either b c) #

_Right :: forall c a b p i. Choice p => p i a b -> p i (Either c a) (Either c b) #

prismPRavel :: APrism i s t a b -> Prism s t a b #

prism2prismp :: Market a b i s t -> Prism s t a b #

idPrism :: Market a b i a b #

withPrism :: APrism i s t a b -> ((b -> t) -> (s -> Either t a) -> r) -> r #

without' :: Prism s t a b -> Prism s t c d -> Prism s t (Either a c) (Either b d) #