RE_FORMA (7) System Reference Manual RE_FORMA (7)

NAME
re_format — POSIX 1003.2 rgular expressions

DESCRIPTION
Regular expressions (RE’’s), as defined in POSIX 1003.2, come irotferms: modern REs (roughly those
of egr ep(1); 1003.2calls these'éxtended’ REs) and obsolete REs (roughly thoseed{1); 1003.2* ba-
sic” REs). ObsoletdREs mostly rist for backvard compatibility in some old programs; yhwill be dis-
cussed at the endl003.2 leges ome aspects of RE syntax and semantics open; ‘t’ marks decisions on
these aspects that may not be fully portable to other 1003.2 implementations.

A (modern) RE is onet or more non-emptyinches, separated by ‘|'.It matches aything that matches
one of the branches.

A branch is onet or mongieces, concatenated. Inatches a match for the first, folled by a match for the
second, etc.

A piece is aratom possibly follaved by a singlet(, ‘+’, *?’, or bound. An e&om followed by 0 matches a
sequence of 0 or more matches of the atém.atom follaved by ‘+’ matches a sequence of 1 or more
matches of the atomAn atom folloved by ‘?” matches a sequence of 0 or 1 matches of the atom.

A bound is ‘{’ follo wed by an unsigned decimal iges; possibly follaved by ‘, possibly folloved by anoth-
er unsigned decimal inger, always followed by }'. The intgers must lie between 0 and RE_DUP_MAX
(2557) inclusie, and if there are te of them, the first may notxeeed the secondAn atom folloved by a
bound containing one injeri and no comma matches a sequencexattyyi matches of the atomAn atom
followed by a bound containing one igézi and a comma matches a sequenceoofmore matches of the
atom. Anatom folloved by a bound containing éwntegersi andj matches a sequenceidghroughj (inclu-
sive) matches of the atom.

An atom s a rgular pression enclosed in ‘()’ (matching a match for trgular expression), an empty set
of *()’ (matching the null string)t, &racket expression (see belw), ‘.’ (matching ag single character),
(matching the null string at the dianing of a line), ‘$’ (matching the null string at the end of a line), a ‘v
followed by one of the characters “.[$)P{\' (matching that character tak as an ordinary character), a ‘\'
followed by amy other charactert (matching that characteettais an ordinary charactes if the ‘' had not
been presentt), or a single character with no other significance (matching that chatadteigllo wed by

a character other than a digit is an ordinary charaatgrthe bginning of a boundtlt is illegd to end an
RE with ‘\".

A bracket expression is a list of characters enclosed in ‘[t normally matches ansingle character from
the list (lut see belw). If the list bgins with ', it matches ansingle character (¢ see belw) not from
the rest of the listIf two characters in the list are separated by ‘-, this is shorthand for theafigi of
characters between thoseot{inclusive) in the collating sequence, e.g., ‘[0-9]" in ASCII matcheyg deci-
mal digit. It is illegdt for two ranges to share an endpoint, e.g., ‘a-cfeanges areary collating-se-
guence-dependent, and portable programs sheaid eelying on them.

To include a literal T in the list, makit the first character (folleing a possible “”).To include a literal ‘',
male it the first or last charactesr the second endpoint of a rangi use a literal ‘-’ as the first endpoint

of a range, enclose it in“jand ‘]’ to make it a wllating element (see beld. With the exception of these
and some combinations using ‘[(seexnparagraphs), all other special characters, including ‘\', lose their
special significance within a brastkexpression.

Within a brackt expression, a collating element (a chargdaarulti-character sequence that collates as if it
were a single charactenr a mllating-sequence name for either) enclosed irafid ‘]’ stands for the se-
guence of characters of that collating elemdriie sequence is a single element of the letaelpressions

list. A braclet expression containing a multi-character collating element can thus match more than ene char
acter e.qg., if the collating sequence includes a ‘ch’ collating element, then the RE ‘[[ithjhtches the

BSD Experimental March 20, 1994 1

RE_FORMA (7) System Reference Manual RE_FORMA (7)

first five characters of ‘chchcc’.

Within a brackt expression, a collating element enclosed in ‘[=" and ‘=] is an\elgmce class, standing
for the sequences of characters of all collating elementsanti to that one, including itselfIf there are
no other equialent collating elements, the treatment is as if the enclosing delimiters wened[.]’.) For
example, if o and @re the members of an egdence class, then ‘[[=0=]]", ‘[[Ze]]’, and ‘[00]’ are all syn-
onymous. Anequiaence class may nott be an endpoint of a range.

Within a brackt expression, the name ofcharacter class enclosed in ‘[’ and “:]' stands for the list of all
characters belonging to that clag&tandard character class names are:

alnum digit punct
alpha graph space
blank lover upper
cntrl print xdigit

These stand for the character classes definet yipe(3). Alocale may preide others.A character class
may not be used as an endpoint of a range.

There are tw gecial casest of braekexpressions: the braek expressions ‘[:<:]]" and ‘[[:>:]]' match the
null string at the bginning and end of aevd respectiely. A word is defined as a sequence afrd/charac-
ters which is neither preceded nor falked by word charactersA word character is aalnum character (as
defined byct ype(3)) oran underscoreThis is an gtension, compatible withut not specified by POSIX
1003.2, and should be used with caution in safénntended to be portable to other systems.

In the eent that an RE could match more than one substring ofea gring, the RE matches the one start-

ing earliest in the stringlf the RE could match more than one substring starting at that point, it matches the
longest. Subepressions also match the longest possible substrings, subject to the constraint that the whole
match be as long as possible, with sydvessions starting earlier in the RE taking prioriegraones starting

later Note that highetevel subexpressions thus takpriority over their lover-level component subgres-

sions.

Match lengths are measured in characters, not collating elemfentd! string is considered longer than no
match at all. For example, ‘blil matches the three middle characters of ‘abbbc’,
‘(wee|week)(knights|nights)’ matches all ten characters of ‘weeknights’, whgnl‘(.s matched aginst
‘abc’ the parenthesized sufpession matches all three characters, and whéjit(es matched aginst ‘bc’
both the whole RE and the parenthesizedquigssion match the null string.

If case-independent matching is specified, tifiecefs much as if all case distinctions hashighed from the
alphabet. Whean alphabetic thaixests in multiple cases appears as an ordinary character outside et brack
expression, it is ééctively transformed into a braek expression containing both cases, e.g., ‘X’ becomes
‘IXX]'. When it appears inside a braskepression, all case counterparts of it are added to thedtreck
pression, so that (e.g.) ‘[x]' becomes ‘[xX]’ and ‘["x]’ becomes ‘["xX]'.

No particular limit is imposed on the length of RE$rograms intended to be portable should not eynplo
REs longer than 256 bytes, as an implementation can refuse to accept such REs and remain POSIX-compli-
ant.

Obsolete (basic”) regular expressions dfér in several respects!|’, ‘+’, and ‘?’ are ordinary characters and
there is no equélent for their functionality The delimiters for bounds are \{’ and \}, with ‘{" and ‘} by
themseles ordinary characterd’he parentheses for nested syivessions are ‘\(" and “)’, with ‘(" and)’

by themseles ordinary characters. is an ordinary characterxeept at the bginning of the RE ort the be-
ginning of a parenthesized supeession, ‘$’ is an ordinary charactexcept at the end of the RE ort the end
of a parenthesized sutgression, andld i s an ordinary character if it appears at theyimming of the RE or
the bginning of a parenthesized subeession (after a possible leading “Finally, there is one ne type

of atom, aback reference: ‘\’ followed by a non-zero decimal digitmatches the same sequence of charac-
ters matched by thdth parenthesized sukgression (numbering sukgressions by the positions of their

BSD Experimental March 20, 1994 2

RE_FORMA (7) System Reference Manual RE_FORMA (7)

opening parentheses, left to right), so that (e.g.) \([bc]\)\1' matches ‘bb’ oruteidi ‘bc’.
SEE ALSO

regex(3)

POSIX 1003.2, section 2.8 (Rdaar Expression Notation).
BUGS

Having two kinds of REs is a botch.

The current 1003.2 spec says that ‘)’ is an ordinary character in the absence of an unmatchedd§;ahis w
unintentional result of a@rding erroyand change is ligly. Avoid relying on it.

Back references are a dreadful botch, posing major problemsfitaerafimplementationsThey are also
somavhat vaguely defined (does ‘a\(\(R}2\)Cd’ match ‘abbbd’?).Avoid using them.

1003.25 gecification of case-independent matchingague. The' one case implies all casedefinition
given above is aurrent consensus among implementors as to the right interpretation.

The syntax for wrd boundaries is incredibly ugly

BSD Experimental March 20, 1994 3

