base-orphans-0.9.1: Backwards-compatible orphan instances for base
Safe HaskellTrustworthy
LanguageHaskell2010

Data.Orphans

Description

Exports orphan instances that mimic instances available in later versions of base. To use them, simply import Data.Orphans ().

Orphan instances

Eq (SChar c) # 
Instance details

Methods

(==) :: SChar c -> SChar c -> Bool

(/=) :: SChar c -> SChar c -> Bool

Eq (SSymbol s) # 
Instance details

Methods

(==) :: SSymbol s -> SSymbol s -> Bool

(/=) :: SSymbol s -> SSymbol s -> Bool

Eq (SNat n) # 
Instance details

Methods

(==) :: SNat n -> SNat n -> Bool

(/=) :: SNat n -> SNat n -> Bool

Ord (SChar c) # 
Instance details

Methods

compare :: SChar c -> SChar c -> Ordering

(<) :: SChar c -> SChar c -> Bool

(<=) :: SChar c -> SChar c -> Bool

(>) :: SChar c -> SChar c -> Bool

(>=) :: SChar c -> SChar c -> Bool

max :: SChar c -> SChar c -> SChar c

min :: SChar c -> SChar c -> SChar c

Ord (SSymbol s) # 
Instance details

Methods

compare :: SSymbol s -> SSymbol s -> Ordering

(<) :: SSymbol s -> SSymbol s -> Bool

(<=) :: SSymbol s -> SSymbol s -> Bool

(>) :: SSymbol s -> SSymbol s -> Bool

(>=) :: SSymbol s -> SSymbol s -> Bool

max :: SSymbol s -> SSymbol s -> SSymbol s

min :: SSymbol s -> SSymbol s -> SSymbol s

Ord (SNat n) # 
Instance details

Methods

compare :: SNat n -> SNat n -> Ordering

(<) :: SNat n -> SNat n -> Bool

(<=) :: SNat n -> SNat n -> Bool

(>) :: SNat n -> SNat n -> Bool

(>=) :: SNat n -> SNat n -> Bool

max :: SNat n -> SNat n -> SNat n

min :: SNat n -> SNat n -> SNat n

Bounded (f (g a)) => Bounded (Compose f g a) # 
Instance details

Methods

minBound :: Compose f g a

maxBound :: Compose f g a

Enum (f (g a)) => Enum (Compose f g a) # 
Instance details

Methods

succ :: Compose f g a -> Compose f g a

pred :: Compose f g a -> Compose f g a

toEnum :: Int -> Compose f g a

fromEnum :: Compose f g a -> Int

enumFrom :: Compose f g a -> [Compose f g a]

enumFromThen :: Compose f g a -> Compose f g a -> [Compose f g a]

enumFromTo :: Compose f g a -> Compose f g a -> [Compose f g a]

enumFromThenTo :: Compose f g a -> Compose f g a -> Compose f g a -> [Compose f g a]

Num (f (g a)) => Num (Compose f g a) # 
Instance details

Methods

(+) :: Compose f g a -> Compose f g a -> Compose f g a

(-) :: Compose f g a -> Compose f g a -> Compose f g a

(*) :: Compose f g a -> Compose f g a -> Compose f g a

negate :: Compose f g a -> Compose f g a

abs :: Compose f g a -> Compose f g a

signum :: Compose f g a -> Compose f g a

fromInteger :: Integer -> Compose f g a

Integral (f (g a)) => Integral (Compose f g a) # 
Instance details

Methods

quot :: Compose f g a -> Compose f g a -> Compose f g a

rem :: Compose f g a -> Compose f g a -> Compose f g a

div :: Compose f g a -> Compose f g a -> Compose f g a

mod :: Compose f g a -> Compose f g a -> Compose f g a

quotRem :: Compose f g a -> Compose f g a -> (Compose f g a, Compose f g a)

divMod :: Compose f g a -> Compose f g a -> (Compose f g a, Compose f g a)

toInteger :: Compose f g a -> Integer

Real (f (g a)) => Real (Compose f g a) # 
Instance details

Methods

toRational :: Compose f g a -> Rational