
Nanosaur Game Engine
Information

V7/15/98

©1998-99 Pangea Software
All Rights Reserved

OVERVIEW

QUICKDRAW 3D
The Nanosaur game engine uses QuickDraw 3D as it’s core 3D geometry
processing engine, therefore, the bulk of the Nanosaur code deals with
generating the terrain and doing skinned animation on the dinosaur
models. A complete understanding of QuickDraw 3D is necessary to use
this engine and will not be covered in this documentation.

THE CODE
The Nanosaur code is well documented and the functions should be fairly
clear. I don’t use cryptic variable or function naming conventions, and I
generally put functions in C files with logical names. For example, all of
the code pertaining to the terrain generation resides in the files Terrain.c
& Terrain2.c. Likewise, all of the code dealing with the T-Rex enemy is in
the file Enemy_Rex.c.

In the CodeWarrior project, the C files are grouped according to their
functionality. The following outlines the meanings of the various groups:

• System
This group contains all of the C files dealing with basic system
operation. Everything from the boot code to random number
generation to the master linked list is contained in these files.

• Terrain
This group contains all of the files responsible for generating the 3D
terrain.

• Player
The 3 files in here deal with the player. All of the code to control
the player to managing the weapons is in this group.

• Enemies
All of the enemies in the game have their own C file and have been
grouped here.

• Items
Everything from powerups to time portals to the lava rocks are in
this group.

• Skeleton
This group contains the most complex C files in the entire engine.
These files handle the animation and rendering of all of the
dinosaurs in the game.

• QD3D
Most of the core QuickDraw 3D code is kept in this group of C files.
Everything from loading a 3DMF file to setting up a Draw Context is
here.

• Screens
Each of the files in this group handles one of the screens (such as
title screen, high scores screen, main menu, and even the infobar) in
the game.

This document is not going to explain every single function in every
single C file. Most of the functions are self-explanatory either by the
name of the function or the comments in the code. Instead, this
document will try to explain the fundamental workings of the key
components of the Nanosaur engine. Any specific questions can easily be
answered by sending an email to brian@pangeasoft.net.

THE TOOLS
To generate the data for the Nanosaur engine, several custom tools must
be used:

• BioOreo Pro

This is the keyframe animation tool which is used to create the
animation scripts for all of the skinned models. In Nanosaur, the
main character plus all of the enemy dinosaurs were animated with
this tool.

• OreoTerrain
This tool is tile-based terrain editing tool which is used to create the
Nanosaur landscapes and is also used to place all of the objects
(enemies, powerups, etc.) on the terrain.

• 3DMF Optimizer
All models to be used in the game or by the other tools first need to
be optimized using this tool. This tool takes 3DMF geometry files
and optimizes them and saves them in a simple 3DMF format that
the other tools and the game can work with easily.

• 3DMF Linker
Nanosaur uses large 3DMF files which contain all of the 3D models
used in the game rather than creating a separate file for each object.
3DMF Linker is used to take your original 3DMF models for each
object and merge them all into a single large file which the
Nanosaur engine can reference into easily.

• OreoSprite
This tool is not used extensivly by the Nanosaur engine. It is only
used to create sprites for the game’s status bar (the score, weapon
icons, etc.).

• 3DMF Mapper
This tool is not required by the Nanosaur engine, but it does make
certain tasks easier. Most 3D modeling applications have lousy
texture mapping features. 3DMF Mapper is a great texture mapping
tool for doing organic models such as dinosaurs and other animals.

Instructions for using these tools are not included in this document. Each
tool comes with its own set of documentation which explains how to use
the tool and the file format(s) which it outputs.

You have also been provided the source code to BioOreo Pro and
OreoTerrain since these tools are specific for Nanosaur and you may wish
to add features or change the file formats of these tools for your specific
application.

USING THE ENGINE
Once you have licensed the Nanosaur engine from Pangea Software, you
are free to do whatever you want with it except sub-license it to anyone
else or start giving it away to people. You may modify the code as much
as you like and may use it in as many applications as you like – all royalty
free!

** Remember, however, that only the code and tools have been licensed to
you. The artwork to Nanosaur is the property of the artist who drew it
and is therefore not part of the licensing agreement. You should not use
any artwork or audio from Nanosaur in your own applications since the
original owner of the art or sound may sic his lawyers on you.

GAME OBJECTS

OBJECTS == GAME ITEMS
The first thing you need to learn about this game engine is that the entire
thing essentially runs off of a gigantic linked list of “objects.” Don’t
worry, this isn’t some mystical object like you think of in C++. These
objects are more like “real” objects in that each is simply a big data
structure which contains all of the data for one item in the game. Each
dinosaur is an object, each rock, each bullet, each shadow is an object.

THE OBJECT DATA STRUCTURE
An object is simply a node in a linked list. The code often refers to
objects as nodes and vice versa. The structure which defines an object is
called ObjNode (object node) and its definition as seen in Structs.h is as
follows:

struct ObjNode
{

struct ObjNode *PrevNode; // ptr toprevious node in linked list
struct ObjNode *NextNode; // ptr to next node in linked list
struct ObjNode *ChainNode;
struct ObjNode *ChainHead;// a chain's head (link back to 1st

obj in chain)

short Slot; // sort value
Byte Genre; // obj genre
Byte Type; // obj type

Byte Group; // obj group
void (*MoveCall)(struct ObjNode *); // ptr to obj’s move routine
TQ3Point3D Coord; // coord of object
TQ3Point3D OldCoord; // coord @ previous frame
TQ3Vector3DDelta; // delta velocity of object
TQ3Vector3DRot; // rotation of object
TQ3Vector3DRotDelta; // rotation delta
TQ3Vector3DScale; // scale of object
float Speed; // speed: sqrt(dx2 * dz2)
float Accel; // current acceleration value
TQ3Vector2DTerrainAccel; // force added by terrain slopes
TQ3Point2D TargetOff; // target offsets
TQ3Point3D AltCoord; // alternate misc usage coordinate
unsigned long CType; // collision type bits
unsigned long CBits; // collision attribute bits
Byte Kind; // kind
signed char Mode; // mode
signed char Flag[6];
long Special[6];
float SpecialF[6];
float Health; // health 0..1
float Damage; // damage

unsigned long StatusBits;// various status bits

struct ObjNode *ShadowNode; // ptr to node's shadow (if any)
struct ObjNode *PlatformNode; // ptr to obj which it on top of.
Struct ObjNode *CarriedObj; // ptr to obj being carried/pickedup

Byte NumCollisionBoxes;
CollisionBoxType*CollisionBoxes;// Ptr to array of collision

rectangles

// box offsets (only used by simple
 objects with 1 collision box)

short LeftOff,RightOff,FrontOff,BackOff,TopOff,BottomOff;

TriangleCollisionList *CollisionTriangles; // ptr to triangle
collision data

short StreamingEffect; // streaming effect (-1 = none)

TQ3Matrix4x4 BaseTransformMatrix; // matrix which contains all
of the transforms for the
object as a whole

TQ3TransformObject BaseTransformObject;// extra LEGAL object ref to
BaseTransformMatrix (other
legal ref is kept in
BaseGroup)

TQ3Object BaseGroup; // group containing all
geometry,etc. for this object
(for drawing)

float Radius; // radius use for object
culling calculation

SkeletonObjDataType *Skeleton; // pointer to skeleton
record data

TerrainItemEntryType *TerrainItemPtr; // if item was from terrain,
then this pts to entry in
array

};
typedef struct ObjNode ObjNode;

The ObjNode structure is pretty massive, but it contains everything you’d
ever need to know about any object in the entire game. I’m not going to
go into the gritty details of every single record in the ObjNode structure
since the comments in the code explain most of it, but the fundamental
ones will be covered in this document.

The most important records in the ObjNode structure are the following:

• PrevNode
Points to the previous node in the linked list.

• NextNode
Points to the next node in the linked list.

• Slot
Determines the position to insert the node in the linked list. This
linked list is ordered from smallest to largest Slot value.

All of the other records are used by specific parts of the game. Only these
three basic records are used to manage the objects in the linked list.

OBJECT GENRES
The basic principle behind the Nanosaur engine is to create an ObjNode
for each game item as it is needed and then get rid of the node when the
item is not needed anymore. Generally, new ObjNode’s are created as the
player runs along the terrain and a new enemy or item comes into range.
As other enemies and items go out of range, their ObjNode’s are deleted.
So, at any given time, the Object linked list contains all of the currently
active items in the game. When the player fires a bullet, a new ObjNode is
created for the bullet and when the bullet explodes its ObjNode is deleted.

There are several different “Genres” of ObjNodes for performing different
tasks.

• SKELETON_GENRE

This ObjNode will contain information describing an animated
character based on a skeleton file created with BioOreo Pro.

• DISPLAY_GROUP_GENRE,
Simple geometry models are described by the data in this ObjNode.

• EVENT_GENRE
Even generes don’t actually contain any geometry like the other two.
These objects simply describe events such as timers or “particle
emitters.” For example, a special Event object generates the random
lava balls that appear in the lava fields. Each lava ball generated by
the event object is actually a display group genre object.

CREATING NEW OBJECTS
There are specific functions for creating Skeleton Objects or Display
Group Objects, but they all in turn call one core ObjNode initialization
function MakeNewObject and take a pointer to an “object definition” data
structure as input. The NewObjectDefinitionType contains some default
information about the object you want to create. This data is then passed
to one of the Object creation routines to actually setup the ObjNode for
the new object.

typedef struct
{

Byte genre,group,type,animNum;
TQ3Point3D coord;
unsigned long flags;
short slot;
void (*moveCall)(ObjNode *);
float rot,scale;

}NewObjectDefinitionType;

Not all fields are used by each genre of Object, but here’s what they all
mean:

• genre
Obviously defines the genre of Object we are about to create. Only
needs to be set if calling MakeNewObject directly.

• group
For Display Group objects this refers to the 3DMF group containing
the model we want to use.

• type
Refers to the specific model inside the 3DMF group which we want
to use for this object.

• animNum
Used by Skeleton objects to determine which animation sequence
the object should be using upon creation.

• coord
Defines the 3D coordinate of the object in the game.

• flags
Contains bits which define special features of the object.

• slot
Where to put this new Object in the linked list

• moveCall
This is a pointer to the Object’s “move” routine. This function will
automatically be called by the MoveObjects function each frame of
the game.

• rot
The initial y-axis rotation of a Skeleton or Display Group Object.

• scale
The initial scale of a Skeleton or Display Group Object.

As mentioned above, there are different functions for creating the
different genres of objects:

• MakeNewDisplayGroupObject
This function is used to create a new Display Group Object. For
example, the following code is used to create a new “spore pod” in
Nanosaur:

NewObjectDefinitionTypegNewObjectDefinition;
ObjNode *newObj;

gNewObjectDefinition.group = LEVEL0_MGroupNum_Pod;
gNewObjectDefinition.type = LEVEL0_MObjType_Pod;
gNewObjectDefinition.coord.x = x;
gNewObjectDefinition.coord.y = GetTerrainHeightAtCoord_Planar(x,z);
gNewObjectDefinition.coord.z = z;

gNewObjectDefinition.flags = 0;
gNewObjectDefinition.slot = 100;
gNewObjectDefinition.moveCall = MoveSporePod;
gNewObjectDefinition.rot = 0;
gNewObjectDefinition.scale = .5;
newObj = MakeNewDisplayGroupObject(&gNewObjectDefinition);

As you can see, the required fields of the NewObjectDefinitionType
structure are filled out and then passed to
MakeNewDisplayGroupObject. MakeNewDisplayGroupObject
automatically sets the genre field and takes care of doing everything
else needed to initialize the Object.

• MakeNewSkeletonObject
This function is used to create a new Skeleton Object. The code to
create a new skeleton object looks very similar to the above code
with a few exceptions. Here’s the code to put the Nanosaur on the
game’s Main Menu:

gNewObjectDefinition.type = SKELETON_TYPE_DEINON;
gNewObjectDefinition.animNum = 1;
gNewObjectDefinition.scale = .8;
gNewObjectDefinition.coord.x = -350;
gNewObjectDefinition.coord.y = 00;
gNewObjectDefinition.coord.z = 630;
gNewObjectDefinition.slot = 10;
gNewObjectDefinition.flags = STATUS_BIT_HIGHFILTER|STATUS_BIT_DONTCULL;
gNewObjectDefinition.moveCall = nil;
gNewObjectDefinition.rot = 0
newObj = MakeNewSkeletonObject(&gNewObjectDefinition);

This code tells the game to create the new Skeleton Object and start
it playing animation #1. It also sets a few of the status bits in the
flags field. These status bits tell the game engine to use the best
texture filtering and not to bother cull-testing the model when
rendering it.

This is all that is needed to put an animating character on the
screen. Once the ObjNode has been created and put into the linked
list like this, everything else is automatically handed by the game
engine and you don’t need to worry about a thing.

PROCESSING OBJECTS
Once you have created a new ObjNode as in above, all processing is
handled pretty much automatically. In your game loop you only need to

call two functions: MoveObjects and DrawObjects. When these functions
are called, the ObjNode linked list is traversed and each object is
processed.

The MoveObjects function will automatically call the “MoveCall” for each
Object. Remember the MoveCall was set in the definition structure you
filled out when you created the Object. Skeleton Objects also have their
animation automatically updated here. You don’t have to do a thing – it’s
all automatic!

Your move function can do whatever it likes to the input ObjNode. The
one thing to know is that you must call UpdateObjectTransforms at the
end of the function to update the Object’s transform matrices if you have
moved, scaled, or rotated the object. To move the Object you just fiddle
with the Coord field of the ObjNode (ie. myObj->Coord.x = 100). Or, to
rotate it you would do something like myObj->Rot.z += 1.2. These actions
alone don’t actually do anything. You must call UpdateObjectTransforms
to update the transform matrices to these new orientation values.

When you want to remove an Object from the linked list (say the enemy
gets blown up or walks too far away) all you need to do is call
DeleteObject which takes care of disposing of all memory allocated by the
ObjNode and removes the ObjNode from the linked list. It is very
important that you never try to access fields of an ObjNode which you
have just Deleted since the memory may now be in use by something else
and modifying it could cause a crash.

SKELETON OBJECTS
Later in this document I will give more details how the actual Skeleton
animation code works, but for now there are some things to know about
Skeleton Objects in general.

Skeleton Objects automatically take care of updating the skeleton’s
animation from frame to frame. You use the following functions to
change the Skeleton’s animation:

• SetSkeletonAnim
Use this function to set the animation number of a Skeleton Object.

• MorphToSkeletonAnim

Causes the animation to morph from the current frame to the 1st

frame of the indicated animation. You can set the speed of the
morph.

Also, keep in mind that Skeleton Objects do use up a lot of memory in
addition to just the ObjNode structure. Notice that many of the fields in
the ObjNode structure are there for Skeleton Objects. When a new
Skeleton Object is created, a bunch of other memory is allocated to the
ObjNode for these fields.

NOTES ABOUT OBJECTS
There are many additional functions you can use to manage ObjNodes,
and most of them are found in Objects.c and Objects2.c. Most of these
functions are self explanatory, therefore, their functionality is not covered
here.

QD3D SUPPORT FUNCTIONS

VIEW CREATION
Normally, creating a new View object in QuickDraw 3D is a very tedious
and annoying process to endure. The QD3D_Support.c file contains a
bunch of functions I have written to assist with working with QD3D.

To create a new Draw Context / View Object with the Nanosaur engine,
you can do something like the following:

QD3DSetupInputType viewDef;

QD3D_NewViewDef(&viewDef, gCoverWindow);

viewDef.camera.hither = 10;
viewDef.camera.yon = 500;
viewDef.camera.fov = 1.0;
viewDef.lights.fogHither = .3;

QD3D_SetupWindow(&viewDef, &gGameViewInfoPtr);

The function QD3D_NewViewDef is called to initialize a
QD3DSetupInputType structure to its default values. The
QD3DSetupInputType structure is a large data structure which contains
all of the settings which you wish to base your new View from. In the
code above, we are modifying some of the default values that were set in
QD3D_NewViewDef. We are changing some of the camera’s values
(hither, yon, fov) and one of the light values (fogHither). You can look in
QD3DSupport.h for the description of the full data structure. You are free
to modify any of the default values after QD3D_NewViewDef has been
called.

Once you have filled out your QD3DSetupInputType structure, you simply
pass it to QD3D_SetupWindow. QD3D_SetupWindow automatically creates
a new View object based on the information in the input data structure.
No work on your part is required – it is all done automatically!

QD3D_SetupWindow does just return you a reference to a View object.
Instead it fills out another data structure: QD3DsetupOutputType. This
new structure looks like this:

typedef struct
{
Boolean isActive;

TQ3ViewObject viewObject;
TQ3ShaderObject shaderObject;
TQ3ShaderObject nullShaderObject;
TQ3StyleObject interpolationStyle;
TQ3StyleObject backfacingStyle;
TQ3StyleObject fillStyle;
TQ3CameraObject cameraObject;
TQ3GroupObject lightGroup;
TQ3DrawContextObject drawContext;
WindowPtr window;
Rect paneClip;
TQ3Point3D currentCameraCoords;
TQ3Point3D currentCameraLookAt;
float hither,yon;

}QD3DSetupOutputType;

This structure contains everything you’ll ever need to know about the
new View that was created. Here you have access to the camera, the
lights, the draw Context, etc. Since this structure contains everything
important about the View, this is the structure that you will usually be
passing to most of the rendering functions. For example, you pass this
data to DrawObjects when you are about to draw the objects in the linked
list.

UTILITY FUNCTIONS
In QD3DSupport.c you will see that there are a lot of other utility
functions which do everything from creating new lights, to updating the
camera position, to creating texture shaders. All of these functions are
fairly self-explanatory but if something does not make sense, find out
where it is being called in the Nanosaur code to get a better idea how it
should be used.

GEOMETRY FUNCTIONS
There is also a file called QD3DGeometry.c which contains a bunch of
useful geometry related functions. Here there are functions for
calculating bounding boxes, exploding geometries into small triangles,
and animating the UV coordinates on models. All of these functions are
used in Nanosaur, so once again, look thru the code to learn how they are
used.

THE TERRAIN ENGINE

FROM 2D TO 3D
The terrain in Nanosaur is actually a 2D tiled map like you would find in
any old scrolling game from years past. The thing that makes it 3D is that
there is a “heightmap” layer which is used to provide height information
for each corner of each tile in the map. So, we are essentially taking a 2D
map and extruding it up to make it 3D.

The OreoTerrain documentation explains how to create the terrain files
and use the editor. This documentation will explain the general
functionality of the terrain engine inside Nanosaur. It will explain how
the OreoTerrain data files are actually processed by this engine.

TILES AND SUPERTILES
The tiles that make up a terrain map in Nanosaur are 32x32 pixels in size.
For speed and efficiency, however, the Nanosaur engine also uses what
are called “SuperTiles.” A SuperTile is nothing more than a 5x5 matrix of
tiles. Each SuperTile is a single piece of geometry which is built on-the-fly
as the player moves along the terrain. The texture for the SuperTile is
also built on-the-fly by simply drawing the textures for the 25 tiles into a
buffer and then assigning that to the SuperTile’s geometry.

Since each tile is 32 pixels wide and each SuperTile is 5 tiles. That would
make each SuperTile’s texture 160 pixels in dimension. Since 3D
accelerators only work with textures which are powers of 2, the Nanosaur
terrain engine actually shrinks the 160x160 SuperTile texture down to
128x128 pixels. The 2MB version of the game actually shrinks the
textures down to 64x64.

As the player moves along the terrain, new SuperTiles are created and old
ones are removed. The Nanosaur engine knows which SuperTiles are not
visible by the camera and culls them from the scene before rendering.

PARAMETERS
The terrain.h header file contains various values for adjusting the terrain
parameters. For example, TERRAIN_POLYGON_SIZE determines the size of
a single tile in world units. Even though a tile may be 32 pixels in size,

you can make the geometry be any size you want. Nanosaur defaults to
140 units, but you can set this to whatever works for your application.

The SUPERTILE_SIZE value determines the actual size of a SuperTile in
terms of tiles. Keep in mind that changing this value or the
SUPERTILE_TEXMAP_SIZE value will mean that you need to rewrite the
texture shrinking function since it’s custom hard-coded for these values.
In general, you should not need to change most of the values in this
header file.

The SUPERTILE_ACTIVE_RANGE value is of particular interest. This value
is normally set to 3. It indicates how many SuperTiles to the left, right,
front, and back of the camera to make the visible scene. If you increase
your camera’s yon value, you will need to increast the
SUPERTILE_ACTIVE_RANGE value so that more SuperTiles will be visible
off in the distance. With the value of 3, there are 6x6 (or 36) active
SuperTiles at any given time. Note that the more SuperTiles that are
active, the more VRAM you will need to hold their 36 textures.

Another very important value is HEIGHT_EXTRUDE_FACTOR. This
determines how much to extrude the vertices of the terrain. Each vertex
has a height value of 0 to 255 which it gets from the OreoTerrain data
file. This height value is then multiplied by the
HEIGHT_EXTRUDE_FACTOR to get the actual y-coordinate of the vertex.
Therefore, the larger a number you assign to HEIGHT_EXTRUDE_FACTOR,
the taller and steeper the terrain will appear.

BASIC TERRAIN FUNCTION CALLS
At boot, you need to call the function InitTerrainManager to initialize the
terrain manager. This will allocate memory for the terrain SuperTiles and
do other buffer allocation.

Next, you will need to load the terrain data files. The code to do this
should look something like this:

FSMakeFSSpec(gDataSpec.vRefNum, gDataSpec.parID, "\p:terrain:level1.trt", &spec);
LoadTerrainTileset(&spec);
FSMakeFSSpec(gDataSpec.vRefNum, gDataSpec.parID, "\p:terrain:level1.ter", &spec);
LoadTerrain(&spec);

Note that the LoadTerrain function also scans for the player’s starting
coordinate which is one of the map “items” in the data.

Once the data files are loaded you need to “prime” the terrain by calling
PrimeInitialTerrain. This will initialize all of the SuperTiles which need to
be visible when the first frame of animation is rendered. At this point
calling DrawTerrain is all you need to do to draw the terrain.

When the player moves, the function DoMyTerrainUpdate needs to be
called. This will tell the terrain manager to scroll the terrain, create new
SuperTiles, and delete old SuperTiles. It also takes care of initializing any
new items or enemies which may have scrolled into range as well.

The best way to understand how these functions work is to look at the
Nanosaur code which calls them. It’s probably not important that you
understand exactly how each of the functions works. The code is
commented well, but the terrain engine is fairly complex and unless you
have a really good reason for doing so, it is not advisable to mess with it.

GETTING THE TERRAIN HEIGHT
Perhaps the most often called terrain manager function is
GetTerrainHeightAtCoord_Planar. This call returns a y-coordinate based
on the input x and z coodinates. Given any x and z coordinate in the
world, this function will return the y coordinate (the height) of the terrain
at that point.

This function is extremely accurate when the point is on top of an active
SuperTile. If the point is outside of range where no SuperTile is currently
active, then the function returns a “rough” result based on the
OreoTerrain data file’s height map information. The function
GetTerrainHeightAtCoord_Quick is used to get this value
(GetTerrainHeightAtCoord_Planar automatically calls this if the point is
out of range).

You will notice that every moving object in the game from the player to
the bullets to the enemies calls GetTerrainHeightAtCoord_Planar after
each move to update it’s y-coordinate or to see if it has hit the “floor.”

TERRAIN ITEMS
As mentioned above, new rows and columns of SuperTiles are created as
the player moves along the ground. In addition to new SuperTiles, any
terrain items which exist on those SuperTiles are also initialized at this

time. However, as SuperTiles are deleted off of the trailing edge of the
scroll “window”, items are not deleted. Items are generally deleted when
they are significantly out of range. The function TrackTerrainItem() is
used to determine if an ObjNode is out of the default range. If so, then
the object’s move handling function will delete it.

The OreoTerrain documentation explains how terrain items are identified
by item numbers with other sub-parameters. As the Nanosaur Terrain
manager scans for new items to initialize as you scroll along the terrain, it
uses a big jump table to handle the items. In Terrain2.c, there is a long
jump table called gTerrainItemAddRoutines[]. When the Terrain manager
encounters an item, it looks up the item’s initialization or “Add” function
in this table and then calls it. The Add function then takes care of making
the new ObjNode for that terrain item. You will notice that the Nanosaur
code is very consistent in that all terrain item initialization routines start
with “Add…” (i.e. AddGasVent, AddBush, AddEnemy_Stego, etc.). Most of
these functions look very similar: they create a new ObjNode and set
custom information about the object.

COLLISION DETECTION

This section explains how the collision detection in the game engine
works. There are basically 3 different types of collision:

• Object bounding box collision
• Object triangle collision
• Tile collision

The file Collision.c contains all of the core collision detection routines, but
much of the custom handling is done in MyGuy.c and Enemy.c,

OBJECT COLLISIONS
Object collision is the collision between two ObjNode’s. There are several
fields in the ObjNode structure which are important to the collision
detecting process:

• CType
“Collision Type” for use in classifying an object type.

• CBits
“Collision Bits” specifies collision options.

• NumCollisionBoxes
the number of collision boxes assigned to this ObjNode.

• CollisionBoxes
an array of CollisionBoxType’s which contains the world-space
collision box coordiantes.

• CollisionTriangles
pointer to collison triangle information for doing triangle-accurate
collision detection.

CTYPE & CBITS

The CType field determines the collision classification of an object. When
a collision function is called a CType value is passed in which indicates
what objects to perform collision on. An object is only tested if one or
more of it’s CType bits match the input CType’s bits. In other words, if an
object is an enemy, then it will have the CTYPE_ENEMY bit set. If you
want to see if a bullet has hit an enemy then you pass the CTYPE_ENEMY

bit to the collision function. If you also want to check if the bullet has hit
the player, you also pass the CTYPE_PLAYER (CTYPE_ENEMY | CTYPE_PLAYER).

All of the CType values are defined in Structs.h:

enum
{

CTYPE_PLAYER = 1, // Me
CTYPE_ENEMY = (1<<1), // Enemy
CTYPE_MYBULLET = (1<<2), // Player's bullet
CTYPE_BONUS = (1<<3), // Bonus item
CTYPE_TRIGGER = (1<<5), // Trigger
CTYPE_SKELETON = (1<<6), // Skeleton
CTYPE_MISC = (1<<7), // Misc
CTYPE_BLOCKSHADOW = (1<<8), // Shadows go over it
CTYPE_HURTIFTOUCH= (1<<9), // Hurt if touched
CTYPE_PORTAL = (1<<10), // time portal
CTYPE_BGROUND2 = (1<<11), // Terrain BGround 2 path tiles
CTYPE_PICKUP = (1<<12), // Pickup
CTYPE_CRYSTAL = (1<<13), // Crystal
CTYPE_HURTME = (1<<14), // Hurt Me
CTYPE_HURTENEMY = (1<<15), // Hurt Enemy
CTYPE_BGROUND = (1<<16), // Terrain BGround path tiles
CTYPE_PLAYERTRIGGERONLY= (1<<17) // combined with _TRIGGER, this..

// ..trigger is only triggerable by player
};

You will notice that when most ObjNode’s are created in an item’s Add
function, the CType and CBits are set to tell the collision system what kind
of object it is and how collision should be performed on it. For example,
when a Time Portal terrain item is initialized, the following code sets this
collision type and bits:

newObj->CType = CTYPE_PORTAL;
newObj->CBits = CBITS_TOUCHABLE;

COLLISION BOX

Every ObjNode which you plan on colliding with needs a collision box.
The collision box is a bounding box which closely approximates the
bounds of an object. If an object is moving, this bounding box will need
to be updated on every frame. Nanosaur allows for an ObjNode to have
multiple collision boxes, but in most cases only 1 box is needed (as is such
in the Nanosaur code).

To easily set an ObjNode’s collision box, simply call the following
function:

SetObjectCollisionBounds(theObjNode, top, bottom, left, right, front, back);

The top, bottom, left, right, front, and back values are the offsets from the
object’s origin for its bounding box. The Time Portal’s collision box is
defined as:

SetObjectCollisionBounds(newObj,500,0,-60,60,60,-60);

Once you have set an ObjNode’s Ctype, CBits, and collision box, you’ve
done all you need to do to setup its collision information for doing simple
bounding box collision detection. Just remember that if the object moves,
you need to be sure that the bounding box gets updated. To do this you
should call CalcObjectBoxFromNode() which will automatically recalculate
the bounding box’s coordinates based on the ObjNode’s new coordinate
and the old top, bottom, etc., offsets that you fed it at init time.

Note, that in most cases you will call a function called UpdateObject at the
end of its “move” function. UpdateObject will automatically call
CalcObjectBoxFromNode for you so you don’t really need to think about
it.

COLLISION TRIANGLES

Occasionally, you may want to be able to collide more accurately with an
ObjNode, and when this happens you need to calculate Collision Triangles
for the object. Objects with this kind of collision still have bounding
boxes, but you do not need to specify them explicity like we did before.
Instead, the function CreateCollisionTrianglesForObject() takes care of
everything for us. It scans the object and creates a list of triangles for
later collision detection and also builds the collison box for internal use.

Collision Triangles can only be assigned to non-moving objects! Do not
try to do this on something that moves because it just won’t work.

In Nanosaur, the gray boulders are an example of an object with collision
triangles. The boulder’s collision information is setup with the following
code:

newObj->CType = CTYPE_MISC;

newObj->CBits = CBITS_ALLSOLID;

CreateCollisionTrianglesForObject(newObj);

That’s all that needs to be done to make the collision detection on this
object work on a polygon-accurate level. You can run around and jump
on boulders in a very accurate collision scheme.

TILE COLLISIONS
Tile collisions are somewhat complex when explained in detail, so I will
try to explain just the important points here since it is unlikely that you
will ever need to modify this part of the Nanosaur engine.

In the Nanosaur engine, the terrain maps have 3 layers: the texture layer,
height layer, and the path layer. The path layer contains collision tiles
which are used to determine where solid areas of the map are. See the
OreoTerrain documentation for more information.

The collision manager will automatically take care of detecting collisions
with tiles, but suffice to say that the function
GetTileCollisionBitsAtRowCol() is called to get the collision information
about the tiles which the ObjNode in question is colliding against.

PERFORMING COLLISIONS
Most generic Objects can call a single collision function to automatically
handle all collision detection: HandleCollisions(). This function takes an
ObjNode and a CType as input values, but also relies on some global
values for doing collision detection:

• gCoord
Contains the current global coordinate of the ObjNode. This
function does not use the Coord field in the ObjNode structure!

• gDelta
Contains the motion delta values that the ObjNode just now moved.
This function does not use the Delta field in the ObjNode structure!

The HandleCollisions function takes care of performing collisions against
all ObjNodes with matching Ctypes, and the collision information is stored
in the array gCollisionList[]. You can use gNumCollisions and
gCollisionList to manually find out information about what kinds of
collisions just occurred, but it is more likely that you will usually let the
collision manager handle these events on its own.

In the case that your object is not generic and you need to handle
collisions in a specific way, you will want to call the function
CollisionDetect. All this functions does is build the gCollisionList, but
unlike HandleCollisions, nothing is done about these collisions. Both the
player and enemy manager code have specialized collision handling logic,
so they only call CollisionDetect and then parse through the data in
gCollisionList manually. The player’s collision handling function is called
DoPlayerCollisionDetect, and the enemy’s collision function is
DoEnemyCollisionDetect.

It is best to examine the existing Nanosaur code to learn more about how
these functions are called and used. The important thing to remember is
that most of the time, all collisions are handled automatically and it is not
important that you understand everything about how the code works.

TRIGGERS
Triggers are a specific type of object which does something when the
player touches it. PowerUps, Exploding Crystals, and Lava Stepping
Stones are examples of Triggers – they all respond to being touched by
the player.

The player’s collision detection handler calls the Trigger collision handler
function called HandleTrigger(). This function determines if the collision
requires action by the Trigger Object and if so, it calls the Trigger’s
“DoTrig_” function.

SKELETONS

The Skeleton Manager is really the core part about the Nanosaur engine
which makes it unique. This is the section of code which handles all of
the character animation for the dinosaurs in Nanosaur. The skeleton data
is created with BioOreo Pro, and the documentation for that tool explains
the workings of the Skeleton in more detail than is covered here. In this
document, I will cover the specifics of the function calls you need to use
to work with Skeleton models in your application.

SKELETON FILES
The first thing you need to do in order to use Skeletons in your
application is to load the .skeleton file(s) that you are going to use. A
single Skeleton can be used to simultaneously animate an infinite number
of Skeleton objects on the screen. So, to load the T-Rex Skeleton, we do
the following:

LoadASkeleton(SKELETON_TYPE_REX);

This function takes a “SKELETON_TYPE” as input. These values are
enumerated in SkeletonObj.h:

enum
{
SKELETON_TYPE_PTERA,
SKELETON_TYPE_REX,
SKELETON_TYPE_STEGO,
SKELETON_TYPE_DEINON,
SKELETON_TYPE_TRICER,
SKELETON_TYPE_SPITTER

};

You can easily add or remove Skeleton Types from this list, just be sure to
always update the MAX_SKELETON_TYPES value to indicate the correct
quantity of Types you have.

LoadASkeleton() calls a function named LoadSkeletonFile(). This function
has a big switch statement which handles the loading of the specific
skeleton file indicated by the Type you have passed in.
LoadSkeletonFile() then takes care of actually loading in the data for the
Skeleton and also loads the Skeleton’s 3DMF model file. Basically, calling
LoadASkeleton will do all memory allocations and geometry parsing that
needs to be done. You really don’t have to worry about much – it’s all
automatic.

SKELETON 3DMF DECOMPOSITION
When a Skeleton’s 3DMF file is loaded via LoadASkeleton(), the geometry
in the file is “decomposed” into data which the Nanosaur engine can use
to do the animation. Bascially, this decomposition simply creates lists of
vertices and normals for the model while removing all duplicates. When
the engine animates a skeleton, it uses this decomposed data to construct
the actual TriMesh which is eventually displayed on the screen.

Remember that the Skeleton animation in Nanosaur is done by deforming
the original 3DMF geometry of the dinosaur. We keep an original copy of
the geometry in our decomposed lists, deform the geometry and store the
result into a temporary TriMesh, and then submit the TriMesh in
immediate mode to render it. Sounds relatively straight-forward, but
believe me, it is a very complex process and luckily for you, you don’t
need to worry about how it works.

During decomposition, the following functions are used to determine if
two points or vectors are identical or “close enough”:

PointsAreCloseEnough()
VectorsAreCloseEnough()

Notice how one of these functions appears:

Boolean VectorsAreCloseEnough(TQ3Vector3D *v1, TQ3Vector3D *v2)
{
if (fabs(v1->x - v2->x) < 0.02f)

if (fabs(v1->y - v2->y) < 0.02f)
if (fabs(v1->z - v2->z) < 0.02f)

return(true);

return(false);
}

There is an identical function in BioOreo Pro which
does the same thing. The “tolerance” values used in
both the Nanosaur engine and BioOreo Pro must
match exactly or bad things will happen.

In the above function, the tolerance values are set to 0.02. In the
PointsAreCloseEnough function, the tolerance is 0.001. The tolerance
values in BioOreo Pro are identical. If you change them in one app, you
must change them in the other.

SKELETON OBJECTS
The third genre of Objects in the Nanosaur engine is the
SKELETON_GENRE. Just like the other genre (DISPLAY_GROUP_GENRE
and EVENT_GENRE), there is a special function call used to create a new
Skeleton Object:

MakeNewSkeletonObject()

Just as with the other genres, this function takes a
NewObjectDefinitionType structure as input. You fill out the usual data
plus a few additional fields. The following code is used to create the
player’s Skeleton Object in Nanosaur:

gNewObjectDefinition.type = SKELETON_TYPE_DEINON;
gNewObjectDefinition.animNum = PLAYER_ANIM_FALLING;
gNewObjectDefinition.coord.x = gMyStartX;
gNewObjectDefinition.coord.y = y + 400;
gNewObjectDefinition.coord.z = gMyStartZ;
gNewObjectDefinition.slot = PLAYER_SLOT;
gNewObjectDefinition.flags = STATUS_BIT_DONTCULL|STATUS_BIT_HIDDEN;
gNewObjectDefinition.moveCall = MoveMe;
gNewObjectDefinition.rot = (float)gMyStartAim * (PI2/8);
gNewObjectDefinition.scale = MY_SCALE;
gPlayerObj = MakeNewSkeletonObject(&gNewObjectDefinition);

Most of this should look pretty familiar from earlier in this document.
The main difference is the use of the animNum field. A .skeleton file
contains not only the skeleton geometry information, but also the
animation information for all of the skeleton’s animation sequences.
When you create a new Skeleton Object you specify which animation to
start with by filling in the animNum field.

Everything else behaves just as it does for a DISPLAY_GROUP_GENRE
Object, but as we’ll see later, the Object’s Move function needs to do a
little more work to keep the Skeleton Object updated.

In the ObjNode structure, there is a field called Skeleton. When you
create a Skeleton Object, this field will point to a large block of data which
contains all of the additional information needed to describe a Skeleton
Object:

typedef struct
{
Byte AnimNum; // animation #

Boolean IsMorphing; // flag set when morphing
float MorphSpeed; // speed of morphing (1.0 = normal)
float MorphPercent; // % morph from kf1 to kf2 (0.0 - 1.0)

JointKeyframeTypeJointCurrentPosition[MAX_JOINTS];// for each joint,
holds current interpolated keyframe values

JointKeyframeTypeMorphStart[MAX_JOINTS];// morph start & end keyframes for
each joint

JointKeyframeTypeMorphEnd[MAX_JOINTS];

float CurrentAnimTime;// current time index for animation
float LoopBackTime; // time to loop or zigzag back to
float MaxAnimTime; // duration of current anim
float AnimSpeed; // time factor for speed of executing

current anim (1.0 = normal time)
Byte AnimEventIndex; // current index into anim event list
Byte AnimDirection; // forward or backward
Byte EndMode; // what to do when reach end of anim
Boolean AnimHasStopped; // flag gets set when anim has reached

end of sequence (looping anims don't set
this!)

TQ3Matrix4x4 jointTransformMatrix[MAX_JOINTS]; // holds matrix xform
for each joint

SkeletonDefType *skeletonDefinition; // point to skeleton's shared data

TQ3TriMeshData localTriMeshes[MAX_DECOMPOSED_TRIMESHES];// the triMeshes
to submit for this ObjNode

}SkeletonObjDataType

This structure holds information ranging from the status of the current
animation to the TriMeshes used to render the model. The structure is
large and complicated, but the commenting in the code is fairly clear
about how everything operates. For the most part, you should never have
to worry about anything in this structure that is not documented below.

SKELETON ANIMATION
A looping animation will continue to play and will automatically be
updated each time through the game’s main loop. The MoveObjects()
function calls UpdateSkeletonAnimation() which does the deformation on
the skeleton’s geometry for the current frame. It handles all of the
interpolation of the keyframes to get the exact state of each vertex in the
mesh. To change from one animation to another or to morph to a
different animation, there are two functions which can be called inside
the Skeleton’s Move function:

SetSkeletonAnim()
MorphToSkeletonAnim()

Use SetSkeletonAnim() to immediately switch to a different animation
sequence. The following code shows how the player starts the death
sequence in Nanosaur:

SetSkeletonAnim(theNode->Skeleton, PLAYER_ANIM_DEATH);

This will cause the animation to start at time = 0 of the given animation
sequence. This function also resets the animation playback speed to 1.0
(normal) by setting the AnimSpeed field in the ObjNode’s
SkeletonObjDataType structure.

By default, animations and morphs always play at “normal” speed.
Normal speed simply means the speed that the animation appears in
BioOreo Pro. You can speed up and slow down any animation simply by
changing the AnimSpeed field. A value of 2.0 would make the animation
run 2x faster, and a value of 0.5 would make it run half as fast. In
Nanosaur, I tweak the animation playback speed for the running
animation depending on how fast the player is moving. The faster the
player moves, the faster I play the animation so he doesn’t appear to
moon-walk.

A morph causes the current frame of animation to morph to the first
frame of animation in the target animation before continuing to play the
target animation. It’s really the same as a “SetAnim” except that it doesn’t
immediately start the next animation. Instead, it morphs to the animation
before playing it.

In Nanosaur, when the player stops running, he morphs back to the stand
position. This makes the transition much smoother than a SetAnim:

MorphToSkeletonAnim(theNode->Skeleton,PLAYER_ANIM_STAND,3.0);

This looks just like SetSkeletonAnim() except that there is a third
parameter which is the morph speed parameter. The bigger the number,
the faster the morph will be. There’s no real meaning to this number, just
use whatever gives you the desired visual effect. In general, I use
numbers between 2 and 6 for most of the morphing in Nanosaur.

JOINT COORDINATES & ORIENTATION
Very often you may need to know the world-space coordinate of a
Skeleton’s head, foot, or whatever. For example, in Nanosaur I need to
know the coordinate and orientation of the player’s gun so I know where
to start the bullets and which direction to fire them in.

Getting this information is very easy because there are a few utility
functions in the Nanosaur engine for extracting the coordinates and
matrix associated with any of the Skeleton’s joints:

FindCoordOfJoint()
FindCoordOnJoint()
FindJointFullMatrix()

FindCoordOfJoint()

This function will return the current world-space coordinates of the joint
in question.

Nanosaur calls this function for a kick animation that never made it into
the final game. I needed to know the coordinates of the player’s foot so
that I could see if he had successfully kicked an enemy:

FindCoordOfJoint(theNode, MY_FOOT_JOINT_NUM, &footCoord);

You need to know the joint # of the limb you are finding. This is done by
looking at the Animation Timeline window in BioOreo Pro. The footCoord
value will contain the world-space coordinates of this joint upon return.

FindCoordOnJoint()

This function is similar to FindCoordOfJoint() except that it returns the
coordinates of a point relative to the joint. In other words, if I’m shooing
a bullet out of the tip of my gun, I need the coordinates of the tip of the
gun, not the origin of the gun. FindCoordOfJoint() only returns me the
coordinates of the origin of a joint, but FindCoordOnJoint() gives me the
coordinates of any point relative to the origin.

So, the code for finding the coordinate of the tip of the player’s gun looks
like this:

static TQ3Point3D gGunTipOffset = {0,0,-65};

FindCoordOnJoint(theNode, MYGUY_LIMB_GUN, &gGunTipOffset, &gunTipCoord);

I know by looking at my model in Form*Z that the tip of the gun is –65
units down the z-axis from the origin. Therefore, I set the gGunTipOffset
to (0,0,-65). When I pass this to FindCoordOnJoint(), it returns the world-
space coordinates of this offset.

FindJointFullMatrix ()

The other two functions return coordinates, but not any orientation
information. I still need to know what direction my gun’s tip is facing so I
can know which direction to shoot my bullets. Actually, to be fair, I don’t
actually use this function to get the bullet’s trajectory in Nanosaur. Since
the gun doesn’t really move much relative to the player, I cheat and just
assume its pointing straight and I use the player’s y-axis rotation
information.

But… if I were to do this correctly, I would do the following:

FindJointFullMatrix(playerObj, MYGUY_LIMB_GUN, &jointMat);

This would return to me the full 4x4 transformation matrix for that joint.

CONCLUSION

So, hopefully, you have at least a rough understanding of how the
Nanosaur engine works. Most of the code is fairly easy to understand and
is well commented. My advice for working with this code is to start with
the Nanosaur engine as a shell and gradually take things out and add
your own things in. Going slow will avoid any catastrophic events.

Should have run into problems or have questions that are not answered
in this document, please don’t hesitate to contact me (pangea@bga.com).

